神经网络法在气井产能预测中的应用

许 敏*

赵粉霞

(中国石油长庆油田公司勘探开发处)

(中国石油长庆油田公司油气工艺研究所)

许 敏等, 神经网络法在气井产能预测中的应用, 天然气工业, 2000; 20(3):73~75

摘 要 气井产能预测是气藏工程研究中一项非常重要的工作和任务,它是编制气田开发规划部署、进行开 发方案设计、开发动态分析、气井配产及开发方案调整的重要内容。 文章以神经网络理论为基础,建立了以神经网 络法进行气井产能预测的基本模型,通过对长庆气田数十口天然气井的实际应用,表明这种方法实用、有效和可 靠。

主题词 神经网络 气井 生产能力 天然气工程 碳酸盐岩 鄂尔多斯盆地

目前,气井产能预测的方法有多种,但各种方法 都有一定的先决条件限制。象长庆气田这种非常规 碳酸盐岩气藏,其地质条件复杂多样,结构特征变化 多端,对产能有影响作用的因素有多个,而且各种因 素交互重叠,用常规方法进行产能预测,其精度远远 不够。

近年来,神经网络方法在油气田开发领域得到 广泛应用。这种方法的优越之处就在于它能充分考 虑客观实际问题的多个复杂因素,以及因素与因素 间的非线性复杂联系和因果效应的传播过程,达到 对客观问题的最佳拟合,这是以前的其它任何方法 所不及的。本文介绍的就是这种方法在气井产能预 测中的具体应用。

问 题 描 述

众所周知,气井产能通常用无阻流量的大小来 描述,因此,气井产能预测的实质就是气井无阻流量 的预测。只要预测出气井的无阻流量,就相当干知 道了气井的产能。

气井二项式产能方程的形式为:

$$p_{\rm e}^2 - p_{\rm wf}^2 = A Q_{\rm g} + B Q_{\rm g}^2 \tag{1}$$

当 pwf取 0.101 时,由式(1)可求得:

其中:
$$A = \frac{84.84 \,\mu_{\rm g} \, ZTp_{\rm sc}}{Kh^2 \, T_{\rm sc}} \left[\lg \frac{r_{\rm e}}{r_{\rm w}} + 0.434 \, 8 \, S \right]$$
 (3)

$$B = \frac{1.966 \times 10^{-2} ZT \text{ g } p_{\text{sc}}^2}{Kh^2 T_{\text{sc}}} = \frac{1}{r_{\text{w}}} - \frac{1}{r_{\text{e}}}$$
(4)

由上可知,对气井无阻流量大小产生直接影响 的参数有:地层渗透率、气层有效厚度、流体粘度、排 驱半径、气井半径、表皮因子、气层孔隙度、原始地层 压力、含气饱和度等因素。通过运用灰色系统理论 中的灰色关联分析方法,对影响产能的这些因素进 行分析处理,筛选出对产能有影响的5个主要因素: 地层渗透率、气层有效厚度、气层孔隙度、原始地层 压力、含气饱和度。这样,剩下要解决的问题就是建 立这 5 个影响因素与气井无阻流量之间的关系。

模型建立及样本训练

根据前面的分析结果可知,气井无阻流量与其 影响因素之间的关系是直接性的,因此,预测模型的 建立采用三层 BP 网络模型。为此,我们以气井的绝 对无阻流量作为网络模型的输出结点,以地层渗透 率、气层有效厚度、孔隙度、原始地层压力、含气饱和 度等影响因素作为网络模型的输入特征值(即结 点)。这里,输出结点只有1个,输入结点有5个,根 据 BP 网络模型理论,隐含结点选 8 个比较合理,故 建立的预测气井产能的三层神经网络模型为 5 x8 x 1,其网络结构如图1所示。

鉴于长庆气田现有的气井基本上都进行过产能 试井,为此,挑选了资料比较齐全、储层性质明确、有 代表性的 20 口井的资料作为模型的学习样本,进行

^{*}许 敏,1966年生,工程师;1991年毕业于西南石油学院油藏工程专业;曾在国内公开刊物上发表论文10余篇,现从事 油气田开发方面的生产科研管理工作。地址:(710021)陕西省西安市长庆兴隆园小区。电话:(029)3592918。

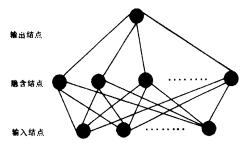


图 1 三层神经网络模型

训练学习,并通过不断的迭代,修改神经元之间的连接权值,使网络的实际输出逐渐逼近期望输出,当误差达到了容许程度时,训练结束。由此便可用确定的模型对新输入参数的气井的产能进行预测。

考虑到所建立的模型主要用于无动态资料井的产能预测,因此,进行样本训练学习时,各井参数均采用测井解释结果。这样,只要知道了气井的静态参数——测井解释结果,即可用来预测该井的产能。进行样本训练的各井参数见表1。

表 1 进行样本训练的各井参数一览表

气井 序号	储集层 渗透率 (10 ³ µm²)	测 井 孔隙度 (%)	含 水 饱和度 (%)	气层有 效厚度 (m)	气层原 始压力 (MPa)	气井无 阻流量 (10 ⁴ m ³ /d)
1	0.109 1	4.8	24.25	9	31.34	10.63
2	0.375 8	5	30.16	8.6	31.121	58.25
3	0.396	5.92	21.96	6	30.59	8.456
4	0.171 6	4.3	29.37	4.6	30.484	8.672 5
5	0.282 6	6.5	19.32	7.4	31.142	43.913
6	0.17	5.4	24.85	7.2	30.037	4.231 6
7	0.621 3	7.3	17.83	13.6	30.579	88.828 6
8	0.063	4.58	23.88	4.6	33.278	18.162
9	0.057 3	4.3	32.99	6.4	31.606	9.0768
10	0.172 5	5	23.55	8.2	31.844	28. 186 6
11	0.185 8	5.64	22.49	5.8	31.287	12.230
12	0.082 6	4.4	21.23	6.4	32.695	13.278
13	0.203 6	5.126	17.96	3.6	34.609	9.259 6
14	0.442 5	5.62	20.2	6.8	30.156	15.129 8
15	0.490 1	6.4	22.92	8.2	31.038	154
16	0.414 3	5.08	31.15	8.4	32.054	6.200 8
17	0.284 7	6.3	21.63	8	31.188	41.12
18	0.1209	4.78	27.3	9.2	30. 196	6.38
19	0.155	5.24	24.3	5.2	30.996	11.148 1
20	0.022	3.51	33.85	6.8	31.315	10.06

为了增强神经网络的适应性,减少各参数在训练学习中的相互影响,训练过程中参数的选用采取了先粗后细的原则。

模型检验及预测结果评价

为确定所建模型的正确性,在此对模型进行检验。目前,长庆气田已全面投入开发,投产井 100 多口,用于检验的样本也很多,由于篇幅所限,此处只选用了部分气井的已知样本进行检验。

选择用于检验的气井样本共 10 个。检验样本的全部输入参数及产能见表 2。

表 2 检验样本输入参数一览表

气井 序号	储集层 渗透率 (10 ⁻³ µm²)	测 井 孔隙度 (%)	含 水 饱和度 (%)	气层有 效厚度 (m)	气层原 始压力 (MPa)	气井无 阻流量 (10 ⁴ m ³ /d)
21	0.022	3.74	33.73	6.8	31.314 6	10.06
22	0.284	6.28	20.93	8	30.908	31.578 5
23	0.106 5	5.05	25.86	6.8	30.56	4.2548
24	0.372 9	6.1	25.94	7	30.171	3.576 5
25	0.147 4	4.656	19.8	9	32.258	103.975
26	0.407 3	6	19.98	4	31.677	15.382
27	0.1524	6.46	46.59	6.4	32.099 6	34.574 6
28	0.103 5	4.99	24.32	8.2	33.163	26.173 8
29	0.093	4.28	24.84	7.6	31.604	7.092 56
30	0.124	5.2	25	4.6	31.18	66.4

将 10 个检验样本的参数代入前面建立起来的 产能预测网络模型,预测结果与实际产能对比见表 3。

表 3 产能预测结果一览表

气井 序号	气井无阻流量 (10 ⁴ m ³ /d)	预测无阻流量 (10 ⁴ m ³ /d)	绝对误差 (10 ⁴ m ³ /d)	相对误差
21	10.06	11.020 33	- 0.960 33	9.55
22	31.578 5	32.634 1	- 1.055 6	3.34
23	4.254 8	3.936 265	0.318 535	7.49
24	3.576 5	3.592 615	- 0.016 115	0.45
25	103.975	99. 292 2	4.6828	4.5
26	15.382	13.952 16	1.429 84	9.29
27	34. 574 6	34. 243 27	0.33133	0.96
28	26. 173 8	26.470 19	- 0.296 39	1.13
29	7.092 56	8.010 935	- 0.918 375	12.95
30	66.4	67.050 13	- 0.650 13	0.98
合计	303.067 76	300. 202 195	2.865 565	50.64
平均	30.306 776	30.020 219 5	0.286 556 5	5.064

由表 3 可知,利用训练出来的预测模型对气井产能进行预测的结果,与各井的实际测试结果有较好的吻合性,其绝对误差平均为 0.2865565,相对误

油气体系气液固三相相平衡计算

梅海燕 * * 孔祥言 张茂林 李士伦 孙良田 (中国科学技术大学) (西南石油学院)

梅海燕等,油气体系气液固三相相平衡计算,天然气工业,2000;20(3):75~78

摘 要 油气体系含有一定的石蜡、胶质、沥青质等有机固相物质,当油气体系的热力学条件发生改变时,它们将从气、液中析出而沉积,给油气田生产带来严重的危害。气液固三相相平衡理论研究和相态计算能够确定油气流体发生固体沉积的热力学条件,并确定出不同热力学条件下的固体沉积数量,从而为防止和控制固体沉积提供理论依据和评价技术,以利于指导油气田开发开采工艺设计。文章根据正规溶液理论和状态方程以及流体热力学相平衡原理建立了油气体系气液固三相相平衡热力学模型,结合物料守衡方程建立了相应的数值计算模型。实例计算表明,模型具有较好的收敛性和稳定性。

主题词 油气 热力学 相平衡 模型 气相 液相 参数 计算

油气烃类体系固相沉积一直是石油工业所面临的严重问题。有机固相的沉积可以发生在油气开发开采的各个生产环节。若在储集层中产生沉积,则沉积出的固相物质将引起地层伤害,堵塞油气通道,导致地层渗透率下降和孔隙度降低;此外沉积出的固相有机化合物将吸附于孔隙介质表面,改变地层岩石的润湿性,从而降低原油的采收率。

油气体系气液固三相相平衡理论和相态计算研

究在理论上和实际应用上都具有重要的意义。在气 —液平衡、液—液平衡已得到了较为广泛的研究,并 取得了大量的研究成果。而对于气液固三相相平衡 理论研究和实验研究则较为落后,只是近年来才受 到重视。

气液固三相相态研究,其关键和难点在于如何 描述固相的相态特征。目前有两种途径:一是采用 状态方程统一描述气液固三相,但还没有一个状态

差平均为 5.064 %,只有 1 口井的相对误差大于 10 %。表明用神经网络法建立的产能预测模型,基本能满足现场产能预测的精度要求,可用作未知产能气井的产能预测。同时也说明,用神经网络法预测气井产能是一种有效、可靠的方法。

认识与结论

- 1)用神经网络法进行气井产能预测是一种有效、实用的方法。只要知道了气田区块内气井的静态参数(测井解释结果),便可应用此方法预测出气井的产能。
- 2)模型建立过程中,如果用于训练的样本过少,则建立的预测模型就缺乏代表性。要利用这种方法,必须有足够的训练样本作为基础。

- 3) 增加隐含层数和改变层内神经元的个数,可进一步提高学习效果,从而建立更有效的预测模型。
- 4) 应用神经网络法对长庆气田气井产能进行预测的实践表明,神经网络模型具有计算方法先进、可操作性强、精度高的特点,是一种适用性较强的现代预测技术,具有推广应用价值。

参考文献

- 1 陈元千.油藏工程计算方法.北京:石油工业出版社
- 2 焦李成. 神经网络系统理论. 西安: 西安电子科技大学出版社,1991
- 3 靳番,范俊东,谭永东.神经网络与神经计算机原理应用. 西南交通大学出版社,1992

(收稿日期 2000 - 01 - 05 编辑 韩晓渝)

^{*}本文受西南石油学院"油气藏地质与开发工程'国家重点实验室开放基金(PLN9901)资助。

^{**}梅海燕,1965年生,中国科学技术大学博士研究生,现主要从事油气藏工程、流体相态及有机固溶物沉积研究。地址:(637001)四川省南充市西南石油学院石油工程系。电话:(0817)2643060。

IN LOW-VELOCITY NON-DARCY PERCO-LATION FLOW THE UNITY OF WELL TEST ANALYSIS EQUATIONS USED FOR GAS AND OIL WELLS RESPECTIVELY

Jia Yonglu and Tan Leijun (Southwest Petroleum Institute) and Feng Xi and Zhong Fuxun (Geological Exploration and Development Research Institute of SPA). $NA\ TUR$. $GA\ S\ IND$. v. 20 ,no. 3 ,pp. 70 ~ 72 , 5/25/2000. (ISSN 1000 - 0976; **In Chinese**)

ABSTRACT: In tight reservoirs, owing to the reasons for the influence of adsorbed water films, narrow pore throats, bad connectivity ,extremely low permeability and the effect of surface adsorptive forces among gas, liquid and solid, etc., the problem with starting pressure gradient is always found in low-permeability oil and gas reservoirs, i. e. the flow of fluids in porous media is no longer accordant with Darcy 's low and follows low-velocity non-Darcy percolation flow law, which has been proved by the laboratory test in the Geological Exploration and Development Research Institute of SPA. Under the conditions of isothermal, single-phase ,laminar flow and neglecting gas slippage effect the dimensionless percolation flow equation of expressing gas low-velocity non-Darcy percolation flow is fully the same as that of expressing liquid low-velocity non-Darcy percolation flow , however the methods of gas well testing include pressure method, square pressure method and pseudopressure method, etc., and the definitions of their dimensionless pressures and dimensionless starting pressure gradients are different from each other, which makes well test interpretation very inconvenient. On the basis of introducing the concepts of the pseudo-volume factor and pseudo-actual starting pressure gradient ,the unity of well test analysis equations used for the low-velocity non-Darcy flow in gas and oil wells respectively is realized for the first time by the authors, so as to be convenient to do the research and teaching of the lowvelocity non-Darcy flow well test analysis theory and to greatly simplify the design of well test analysis software.

SUBJECT HEADINGS: Darcy 's law, Well test interpretation, Gas well, Oil well, Pressure gradient, Mathematical model, Method

Jia Yonglu 's introduction : See v. 17 ,no. 1 ,1997. Add : Nanchong ,Sichuan (637001) ,China Tel : (0817) 2642170

APPLICATION OF NERVE NETWORK METHOD TO GAS WELL PRODUCTIVITY PREDICTION

Xu Min (Exploration and Development Depart-

ment of Changqing Oil Field Company, CNPC) and Zhao Fenxia (Oil and Gas Technological Research Institute of Changqing Oil Field Company, CNPC). *NA TUR*. *GAS IND*. v. 20, no. 3, pp. 73 ~ 75,5/25/2000. (ISSN 1000 - 0976; **In Chinese**)

ABSTRACT: The gas well productivity prediction is a very important task in gas reservoir engineering research, being an important component part of gas field development planning and disposition, development plan design, development performance analysis, gas well proration and development plan adjustment. Based on the nerve network theory, a basic model of gas well productivity prediction is set up by use of the nerve network method in the paper. Through practically applying it to few tens of wells in Changqing gas field, it is indicated that this method is useful, efficient and reliable.

SUBJECT HEADINGS: Nerve network, Gas well, Productivity, Gas engineering, Carbonate rock, E'erduosi Basin

Xu Min (engineer), born in 1966, graduated in reservoir engineering from the Southwest Petroleum Institute in 1991 and has published more than ten articles in domestic public periodicals. Now he is engaged in a management job of the production and scientific research on oil and gas field development. Add: Changqing Xinglong small district, Xi 'an, Shaanxi (710021), China Tel:(029) 3592918

PHASE EQUIL IBRIUM CALCULATION OF THE GAS-LIQUID-SOLID THREE PHASE IN OIL- GAS SYSTEM

Mei Haiyan, Kong Xiangyan and Zhang Maolin (China University of Science and Technolgy) and Li Shilun and Sun Liangtian (Southwest Petroleum Institute). *NA TUR*. *GAS IND*. v. 20, no. 3, pp. 75 ~ 78,5/25/2000. (ISSN 1000 - 0976; **In Chinese**)

ABSTRACT: In an oil-gas system there are certain amounts of solid organic substances, such as paraffins, colloids and asphaltenes, etc., which will be precipitated from the oil-gas system as its thermodynamic conditions are changed, thus causing serious harm to the oil and gas production. The phase equilibrium theory research and calculation of gas-liquid-solid three-phase can determine the thermodynamic conditions of forming solid precipitates in oil-gas fluid and their amounts in different thermodynamic conditions, thus providing the theoretic basis and evaluation technique for preventing and controlling the formation of the solid precipitates so as to be beneficial to guiding the technological designs of oil and gas field development and production. In the light of the regular solution theory, the equation of state and the phase equilibrium principle of fluid thermodynamics, a phase