肉和肉制品中的维生素 天津禽蛋公司 沈自力编译

维生物可分为脂溶性和水溶性二种。脂溶性维生素包括维生素A、D、E和K; 水溶性包括复合维生素B和C。 肉是B族维生素的良好来源,有 B_1 、 B_2 、尼克酸、泛酸、 B_6 、叶酸、和 B_{12} 等,但缺少脂溶性维生素和Vc。而某些器官如肝、肾含有相当数量的维生素A、C、D、E和K.

肉的维生素含量变化很大,这和肉的种类、年龄、脂肪含量及饲料有关。其中肉的种类是最重要的因素。牛肉的叶酸含量比猪肉、羊肉高,而猪肉的维生素B族含量是牛肉和羊肉的5—10倍。这是因为猪饲料中含有丰富的B族维生素,所以,改变饲料,可影响肉中维生素的含量。此外,脂肪也是个不可忽视的因素。这是因为水溶性维生素存在于瘦肉中,而脂溶维生素存在于脂肪组织中,但肉脂肪中的维生素很少,因此,脂肪越多,单位重量的肉含有的维生素也就越少。另外,畜龄对肉的维生素含量也有影响。例如小牛肉中的维生素B₁、B₂和尼克酸含量比牛肉高,但小牛生长早期需要B族维生素,因此,在某种条件下,小牛肉的B族维生素含量反而比牛肉低。

虽然,肉的许多维生素在肉汁和肉汤中析出,但在煮制及加工过程中还是相当稳定的。 陈肉融化时,切割表面渗出的液汁含有大量的维生素B和氨基酸。因此,采用良好的解冻 法,尽量减少液汁的流失是很重要的。B₁和B₆属热不稳定维生素,在腌制、烟熏、煮制、 装罐、热脱水及辐射过程中,有部分被破坏。离子辐射造成的B₁损失可高达60%。即使中等程 度的腌制和烟熏也能使维生素B₁损失15%左右、肉和肉制品在煮制及加工过程中,维生素 B₁的损失平均为25%左右。

维生素 B_6 比 B_1 稳定,加热引起的损失一般只有 B_1 的一半。罐装肉加工需要的温度高,且时间长,因此,维生素的损失也就大。切得薄的肉块煮制时间比大块烤肉短,因此,保留的维生素 B_1 和 B_6 也就较多。在传统的煮制和热加工中, B_2 和尼克酸相当稳定。有些维生素在液汁中流失。离子辐射也可能破坏大部分的维生素K、25%的 B_2 和10%的尼克酸。除去液汁损失的因素,冻结和贮存对维生素含量的影响不大。煮制和加工对泛酸、生物素、叶酸和 B_{12} 含量的影响,我们了解还不多,但损失是实确存在的。

表1 鲜肉每100点可食部分中维生素的含量

Ī	帝 品 等 级	V _A (国际单位)	V_{B_1} (mg)	V_{B_2} (mg)	尼克酸 (mg)	(mg)
生牛胴体可	上等胴体(66%精肉,34脂肪)	60	0.07	0.15	4.0	
食部分包括	标准级(73%精肉,27%脂肪)	40	0.08	0.16	4.3	
肾脂肪和肾	商业级(64%精肉,36%脂肪	60	0.07	0.14	3.8	·'
生羊肉	上等腿精肉		0.18	0.25	5.8	
	上等肩精肉	,	0.16	0.23	5.3	
生猪肉	瘦胴体(53%精肉,47%脂肪)	(0)	0.54	0.13	2.9	
	瘦肩肉(75%精肉,25%脂肪)	(0)	0.66	0.16	3.5	<u> </u>
	修整过的后腿瘦肉(77%精肉,	(9)	0.82	0.20	4.4	· —
	23%肥肉)			1 1	<u> </u>	
生小牛肉	瘦胴体(86%精肉,14%脂肪)		0.14	0.26	6.5	
	肩肉(90%精肉,10%脂肪)	-	0.15	0.26	6.7	
	肥肉和臀肉(91%精肉,9%脂肪)		0.15	0.26	6.7	

产品名称	V _A (国际单位)	V _B ₁ (mg)	V_{B_2} (mg)	尼克酸 (mg)	V _c (mg)
糊状牛肉		0.01	0.16	3.5	0
小块状牛肉		0.02	0.20	4.3	0
糊状小牛肉		0.03	0.20	4.3	
小块状小牛肉	, 	0.03	0.22	6.0	بيند
牛心		0.06	0.62	3.6	0
鸡	-	0.02	0.16	3.5	0 '
含有火腿或培根的鸡蛋黄	1,900	0.10	0.23	0.5	
糊状羊肉	-	0.02	0.17	3.3	
小 块 羊肉		0.02	0.21	4.1	_
肝糊	24,000	0.0 5	2.00	7.6	10
糊状的肝和培根	22,000	0.05	1,.99	7.8	7
猪肉糊	, —	0.19	0.20	2.7	-
小 块 猪肉	_ `	, 0.23	0.23	2.8	

肉制品的分析方法(二)

张元生译 王丹辉树

八、磷酸盐

测定磷酸盐时, 先将不完全干燥的样品 灰化, 然后使磷酸盐水解为正盐, 再以磷钼 酸喹啉形式离析出来。

1. 原理: 首先, 将磷酸盐生成 磷 钼 酸 (有柠檬酸盐存在时), 然后磷钼酸再与碱、喹啉形成磷钼酸喹啉。 柠檬酸能与铵 离 子 络合, 阻止磷钼酸铵沉淀的出现。

最初,测定时需要制备种两溶液,以生成磷钼酸喹啉沉淀、即柠檬酸一钼酸溶液和喹啉溶液。后来使用了丙酮,使这两种溶液合二为一,即可用一种试剂作为沉淀剂。我们把该沉淀剂称为喹钼柠酮试剂,它是由混合物中的喹啉、钼酸盐、柠檬酸盐和丙酮的英文名称的字头命名的。

- 2. 仪器; ①古氏坩锅 (coors 4 号);
- ②玻璃纤维滤纸(圆周2.4公分)。

将备有玻璃纤维滤纸的古氏坩锅装在抽滤装置上,把滤纸放在板中央,并用50毫升左右的水洗涤,在通风烘箱内于250℃下干燥古氏坩锅30分钟,然后移入干燥器内冷却,称重。

3. 试剂: ①稀硝酸: 加工体积浓硝酸于4体积的水中。②喹钼柠酮试剂: 在150毫升水中溶解70克二水合钼酸钠; 在85毫升硝酸和150毫升水的混合液中溶解60克柠檬酸并冷却; 边搅拌边缓缓将钼酸钠溶液倒入柠檬酸一硝酸溶液中。溶解5毫升合成喹啉于35毫升浓硝酸和100毫升的混合液中,不时搅拌,并缓缓将其加到钼酸一硝酸溶液中,混合均匀,放置24小时后过滤,向过滤液中加