A 辑

在算子 Fuzzy 逻辑中带有相等 关系的 Fuzzy 推理

刘叙华

(吉林大学计算机科学系,长春)

樀 要

本文提出了处理带有相等谓词的子句集的 λ -Paramodulation 方法。使得在Fuzzy 推理过程中可以做 Fuzzy 等量替换。本文证明了: λ -Paramodulation 与 λ -锁语义 归结方法相结合是完备的。

一、引 言

作者于 1984 年提出了算子 Fuzzy 逻辑的概念和 λ -归结方法(即 λ -Resolution). 在 1985—1986 年间,作者与肖红^[13], Fang 和 Jeff, J.-P. Tsai^[2,3] 一起,对 λ -归结方法做了进一步的研究,并得到一系列结果。 我们不仅证明了: 两个 Fuzzy 子句的 λ -归结式是该两个 Fuzzy 子句的 λ -归结方法对于 λ -恒假子句集是完备的这两个基本事实,我们还对算子 Fuzzy 逻辑系统中,以 λ -归结为基本方法的 Fuzzy 推理的实际意义给出了解释。 从解释中,我们可以看到: 在精确意义下证明不了的定理,在我们的系统中,只要增大一些命题的模糊性和舍弃另一些模糊命题,就可以在模糊意义下证明出该定理。

相等关系是数学中一个最基本、最常用的关系。相等关系的一个重要特性是可以进行等量替换以及等量的传递。 那么在模糊定理证明中,很自然地也就需要模糊等量的传递和进行模糊等量替换。本文提出了处理模糊等量的 λ -Paramodulation 方法,并且使该方法与 λ -归结方法配合去证明算子 Fuzzy 逻辑中所描述的 Fuzzy 定理。本文证明了,这两种方法的配合,对于 λ -恒假公式是完备的。

二、基本概念与性质

从文献 [1-3] 知,算子 Fuzzy 逻辑是建立在算子格上。 可以证明: 区间 [0,1] 在如下定义的运算上: 对任意 $x,y \in [0,1]$,

 $x * y = \min\{x, y\},$ $x \oplus y = \max\{x, y\},$ $x \circ y = (x + y)/2,$ x' = 1 - x

^{*} 本文1986年4月3日收到,1987年4月28日收到修改稿.

组成一个筐子格。

我们下面的讨论,为方便计,将限制在建立在[0,1]区间上的算了 Fuzzy 逻辑系统中,并 且假设 λ 只取[0,1]中有限个值。

关于算子格,Fuzzy 文字,公式,解释,公式G在解释I下的真值 $T_I(G)$, λ -互补文字, λ -一致文字等概念,均可在文献 [1—3] 中找到。

为了下面讨论的方便,我们写出下面两个定义,

定义 1. 任取 $\lambda \in [0,1]$. 公式 G 称为 λ -恒真,如果对任意解释 I,都有 $T_i(G) \ge \lambda$; G 称为 λ -恒侵,如果对任意 I,都有 $T_i(G) \le \lambda$.

显然, G 是 λ -恒真的当且仅当 \sim G 是 $(1-\lambda)$ -恒假的.

定义 2. 设 C_1 , C_2 是两个无公共变元的子句, $\lambda_1 L_1$, $\lambda_2 L_2$ 分别是 C_1 , C_2 中两个 Fuzzy 文字。 如果 L_1 和 L_2 有 MGU (Most General Unifier) σ ,并且 $\lambda_1 L_1^{\sigma}$ 与 $\lambda_2 L_2^{\sigma}$ 是 λ -互补文字,则

$$(C_1^{\sigma} - S_1) \cup (C_2^{\sigma} - S_2)$$

称为 C_1 和 C_2 的二元 λ -归结式,记为 $R_1(C_1,C_2)$,其中

$$S_1 = \{\lambda^* L^{\sigma} | (\lambda^* L^{\sigma} \in C_1^{\sigma}) \wedge (\lambda^* L^{\sigma} - \beta - \lambda_1 L_1^{\sigma} - B - \lambda_2 L_1^{\sigma} - B - \lambda_2$$

由于下面一些基本性质的简单性,所以都略去了证明。

性质 1. 设 P 是原子,于是, $\sim (1P) = 0P$.

性质 2. 设 P 是原子,于是, $\sim (0P) = 1P$.

今后,在算子 Fuzzy 逻辑中, 1 P 可以简写为 P.

性质 3. 设 P 是原子, 干是, $\sim \lambda P = (1 - \lambda)P$.

性质 4. 设 P 是原子, 于是,

$$\sim (\lambda_1 \cdots \lambda_n P) = (1 - \lambda_1) \cdots (1 - \lambda_n) P$$

性质 5. 设 G 是公式, 于是,

$$\sim G \rightleftharpoons 0G$$

例如,取 G = 0.3P, $I = \{P\}$, 干是

$$T_I(\sim G) = T_I(0.7P) = 0.7,$$

 $T_I(0G) = T_I(0(0.3P)) = 0.15.$

性质 6. 设 G 是公式,于是

$$\sim \lambda G = (1 - \lambda)(\sim G)$$
.

性质 7. 设 G 是公式,于是

$$\sim (\lambda_1 \cdots \lambda_n G) = (1 - \lambda_1) \cdots (1 - \lambda_n) (\sim G).$$

性质 8. 设 P 是原子,于是

$$\lambda_1\lambda_2P \Rightarrow (\lambda_1\circ\lambda_2)P$$

例如, $0.8(0.6P) \approx (0.8 \circ 0.6)P = 0.7P$

性质 9. 设 G 是公式,于是, $\lambda_1\lambda_2G \neq (\lambda_1\circ\lambda_2)G$.

定义 3. 设 G, H 是两个公式。 对任意解释 I, 若 $T_I(G) > 1 - \lambda$, 则 $T_I(H) \ge \lambda$ 。 则 称 G 是 λ -蕴函 H, 记为 $G \Rightarrow H$ 。

定义 4. 设 G, H 是两个公式。 对任意解释 I, 若 $T_I(G) > \lambda$, 则 $T_I(H) > \lambda$, 则称 G 是 λ -强蕴函 H, 记为 $G \Rightarrow H$.

性质 10. 设A 是公式、干是

- 1) 当 $\lambda \leq 0.5$ 时, $A \Rightarrow A$.
- 2) $A \Rightarrow A$.

性质 11. 设 A, B, C 是三个公式,于是,

- 1) 当 $\lambda > 0.5$ 时,若 $A \Rightarrow B$, $B \Rightarrow C$, 则 $A \Rightarrow C$.
- 2) 若 $A \Rightarrow B$, $B \Rightarrow C$, 则 $A \Rightarrow C$.

性质 12. 设 C_1 , C_2 是两个子句, $R_{\lambda}(C_1, C_2)$ 是 C_1 和 C_2 的 λ -归结式,于是,

- 1) $\stackrel{\mathcal{L}}{=}$ $\lambda = 0.5$ $\stackrel{\mathcal{L}}{=}$ $\stackrel{\mathcal$
- 2) 当 $\lambda \geqslant 0.5$ 时, $C_1 \wedge C_2 \Rightarrow R_{\lambda}(C_1, C_2)$.

这个性质的证明,将在另一篇待发表的论文中写出。

性质 13. 设 A, B, C 是公式, 干是,

- 1) 若 $A \Rightarrow B$, $A \Rightarrow C$ 则 $A \Rightarrow (B \land C)$,
- 2) 若 $A \Rightarrow B$, $A \Rightarrow C$ 则 $A \Rightarrow (B \land C)$.

定义 5. 一个子句称为 λ -空子句,记为 λ - \square ,如果该子句中任一文字 λ *L 都满足:

$$1 - \lambda \leq \lambda^* \leq \lambda$$
 (当 $\lambda \geq 0.5$ 时)。

性质 14. 设 $\lambda \ge 0.5$ 。于是,子句集 S 是 λ -恒假的当且仅当从 S 出发,使用 λ -归结方法 能够在有限步内推出 λ - \square .

这个性质是文献[1]中一个重要定理,证明略去。

三、Fuzzy 相等公理集

- 定义 6. 子句集 S 的一个解释 I,称为一个 E 解释(记为 I_E),如果对 S 的 Herbrand 域 中的任意项 (Term $^{(4)}$) α , β , γ 及 S 中出现的任意 Fuzzy 文字 $\lambda_1 P$ (···· α ····),满足下面条 件:
 - 1. $T_{I_F}((\alpha = \alpha)) = T;$
 - 2. 若 $T_{I_r}((\alpha = \beta)) = T$, 则 $T_{I_r}((\beta = \alpha)) = T$;
 - 3. 若 $T_{I_E}((\alpha=\beta))=T$, $T_{I_E}((\beta=\gamma))=T$, 则 $T_{I_{C}}((\alpha=\gamma))=T$;
 - 4. 岩 $T_{I_F}((\alpha = \beta)) = T$, 则

$$T_{I_E}(P(\cdots \alpha \cdots)) = T_{I_E}(P(\cdots \beta \cdots)).$$

定义 7. 设 S 是子句集, $\lambda \in [0,1]$ 且 $\lambda \ge 0.5$ 。 下面的子句集称为 S 的 λ -相等公理集 K_{λ} : 对任意 $\lambda^* > \lambda$,

- 1. $\lambda^*(x=x)$;
- 2. $(1 \lambda^*)(x = y) \vee \lambda^*(y = x)$;
- 3. $(1 \lambda^*)(x = y) \vee (1 \lambda^*)(y = z) \vee \lambda^*(x = z)$;
- 4. $(1-\lambda^*)(x_i=x_0) \vee (1-\lambda^*) P(\cdots x_i\cdots) \vee \lambda^* P(\cdots x_0\cdots)$

对 S 中出现的任意原子 $P(x_1, \dots, x_n), j=1, \dots, n$;

5. $(1-\lambda^*)(x_1=x_0) \vee \lambda^*(f(\cdots x_1\cdots)=f(\cdots x_0\cdots))$.

对 S 中出现的任意函数符号 $f(x_1, \dots, x_n)$, $j=1, \dots, n$.

定义 8. 子句集 S 称为 λE -恒假的,如果对任意 E 解释 I_E ,都有 $T_{I_E}(S) \leq \lambda$; S 称为 λE -恒真的,如果 $T_{I_F}(S) \geq \lambda$.

若 I_E 是子句集 S 的一个 E 解释, 显然有:

- 1. $T_{I_r}(\lambda^*(x=x)) = \lambda^* > \lambda$;
- 2. $T_{l_v}((1-\lambda^*)(x=y) \vee \lambda^*(y=x)) = \lambda^* > \lambda;$
- 3. $T_{l_v}((1-\lambda^*)(x=y)) \vee (1-\lambda^*)(y=z) \vee \lambda^*(x=z)) = \lambda^* > \lambda;$
- 4. 若 $T_{I_E}((x_t = x_0)) = T$,因为 I_E 是 E 解释,所以 $T_{I_F}(P(\cdots x_i \cdots)) = T_{I_F}(P(\cdots x_0 \cdots))$,故

$$T_{l_r}((1-\lambda^*)(x_l=x_0)\vee(1-\lambda^*)P(\cdots x_l\cdots)\vee\lambda^*P(\cdots x_0\cdots))=\lambda^*>\lambda;$$

5. 若 $T_L((x_i = x_0)) = T$, 因为 I_E 是 E 解释, 所以,

$$T_{I_E}(f(\cdots x_j \cdots) = f(\cdots x_j \cdots)) = T_{I_E}(f(\cdots x_j \cdots) = f(\cdots x_0 \cdots)).$$

而对任意 α , 都有 $T_{Ir}((\alpha = \alpha)) = T$, 所以

$$T_{I_2}(f(\cdots x_i \cdots) = f(\cdots x_0 \cdots)) = T_2$$

所以,

$$T_{I_i}((1-\lambda^*)(x_i=x_0)) \vee \lambda^*(f(\cdots x_i\cdots)=f(\cdots x_0\cdots))) = \lambda^* \geq \lambda_*$$

综上所述, $T_{I_{c}}(K_{\lambda}) > \lambda$, 其中 K_{λ} 是 S 的 λ -相等公理集.

若 I 是 子 句集 S 的 一 个解释, 且 $T_i(K_{\lambda}) > \lambda$, 则显然

- 1. $T_{I}((\alpha = \alpha)) = T$, 对 S 中任意项 α ;
- 2. 若 $T_I((\alpha = \beta)) = T$, 根据 K_λ 中第二类子句在 I 下共真值大于 λ , 必有 $T_I((\beta = \alpha)) = T$;
- 3. 若 $T_I((\alpha = \beta)) = T$, $T_I((\beta = \gamma)) = T$, 根据 K_{λ} 中第三类子旬在 I 下真值大于 λ , 必有 $T_I((\alpha = \gamma)) = T$;
- 4. 若 $T_i((\alpha = \beta)) = T$, $T_i(P(\cdots \alpha \cdots)) = T$, 根据 K_λ 中等四类子句在 I 下真值大于 λ , 必有 $T_i(P(\cdots \beta \cdots)) = T$. 反之,若 $T_i((\alpha = \beta)) = T$, $T_i(P(\cdots \beta \cdots)) = T$, 根据 K_λ 中第二类子句,必有 $T_i(P(\cdots \alpha \cdots)) = T$, 点之,

$$T_l(P(\cdots a \cdots)) = T_l(P(\cdots \beta \cdots)),$$

散 $I \to S$ 的一个 E 解释.

因此,得到如下定理:

定理 1. 设 S 是子句集, K_{λ} 是 S 的 λ -相等公理集。S 的解释 I 是一个 E 解释当且仅当 $T_{I}(K_{\lambda}) > \lambda$ 。

定理 2. 设 S 是子句集, K_{λ} 是 S 的 λ 相等公理集。 于是、S 是 λE 一恒假的当且仅当($S \cup K_{\lambda}$) 是 λ 一恒假的。

证。(\Rightarrow) 若 S 是 λE -恒假的、但是、($S \cup K_{\lambda}$) 不是 λ -恒假的、则必 有解释 I,使得 $T_{I}((S \cup K_{\lambda})) > \lambda$ 。故有 $T_{I}(S) > \lambda$ 如 $T_{I}(K_{\lambda}) > \lambda$.

由定理 1 知, I 必是 S 的 - \cap E 解释。由 $T_i(S) > \lambda$ 知, S 不是 λE -恒假的,矛盾!

(\Leftarrow)假设($S \cup K_{\lambda}$)是 λ -恒假的,但是,S 不是 λE -恒假的。 于是,有 E 解释 I_E ,使得 $T_{I_E}(S) > \lambda$ 。显然, $T_{I_E}(K_{\lambda}) > \lambda$ 。故 $T_{I_E}((S \cup K_{\lambda})) > \lambda$ 。与 (SUK_{λ}) 是 λ -恒假性矛盾。

M λ-Paramodulation

定义 9. 设 C_1 和 C_2 是两个无公共变元的子句。 $\lambda \ge 0.5$ C_1 , C_2 的结构分别如下:

$$\lambda_1 L[t] \lor C_1', \ \lambda_1 > \lambda \text{ ss} \ \lambda_1 < 1 - \lambda,$$

 $\lambda_2(r = s) \lor C_2', \ \lambda_2 > \lambda.$

其中 $\lambda_1 L[t]$ 表示含有项 t 的 Fuzzy 文字, C_1 和 C_2 仍是子句。如果 t 和 t 有 MGU σ ,则 $\lambda^* L^{\sigma}[\lambda^{\sigma}] \cup C_1^{\sigma} \cup C_2^{\sigma}$

称为 C_1 和 C_2 的二元 λ -Paramodulant. 其中 $\lambda_1 L[t]$ 和 $\lambda_2(r-\epsilon)$ 称为 Paramodulated 文字,

$$\lambda^* = \begin{cases} (\lambda_1 + \lambda_2)/2, & \text{if } \lambda_1 > \lambda, \\ (\lambda_1 + 1 - \lambda_2)/2, & \text{if } \lambda_1 < 1 - \lambda. \end{cases}$$

 $L^{o}[s^{o}]$ 表示以 s^{o} 替换 L^{o} 中的 t^{o} 的一次出现.

定义 10. 两个子句 C_1 和 C_2 的 λ -Paramodulant 是 C_1 或 C_1 的 λ -因子和 C_2 或 C_2 的 λ -因子的一个二元 λ -Paramodulant, 记为 $P_1(C_1, C_2)$.

定义 11. 设 S 是子句集,G ,H 是 S 中两个子句。对 S 的任一 E 解释 I_E ,若 $T_{I_E}(G) > \lambda$,则有 $T_{I_E}(H) > \lambda$,则称 G 是 λE 一强蕴涵 H ,记为 $G \Longrightarrow H$ 。

定理 3. 设 C_1 , C_2 是两个子句, $\lambda \ge 0.5$, $P_{\lambda}(C_1, C_2)$ 是 λ -Paramodulant. 于是, $(C_1 \land C_2) \Rightarrow P_{\lambda}(C_1, C_2)$.

证。不妨设 C_1 是 $\lambda_1 L[t] \lor C_1'$, C_2 是 $\lambda_2(r=a) \lor C_2'$, $P_{\lambda}(C_1, C_2)$ 是二元 λ -Paramodulant. 其中 $\lambda_2 > \lambda$.

设 t 和 t 的 MGU 为 σ , I_E 是任一 E 解释,使 $T_{I_E}(C_1) > \lambda$, $T_{I_E}(C_2) > \lambda$. 于是,显然有 $T_{I_F}(C_1^e) > \lambda$, $T_{I_E}(C_2^e) > \lambda$ (注意: 子句中所有变元都由全称量词约束)。 任取 C_1 , C_2 的一个基例作如下考虑:

1. 当 λ, > λ 时.

若 $T_{I_{\nu}}(L^{\sigma}[t^{\sigma}]) = F$,则 $T_{I_{\nu}}(C_{1}^{\sigma}) > \lambda$,于是, $T_{I_{\nu}}(P_{\lambda}(C_{1}, C_{1})) > \lambda$ 。

 $\stackrel{\sim}{\mathcal{L}}_{l_E}(L^{\sigma}[t^{\sigma}]) = T$,由于 $t^{\sigma} = r^{\sigma}$, $r^{\sigma} = s^{\sigma}$,所以 $T_{l_E}(L^{\sigma}[s^{\sigma}]) = T$,而 $P_{\lambda}(C_1, C_2)$ 中的 $\lambda^* > \lambda$,所以 $T_{l_E}(P_{\lambda}(C_1, C_2)) > \lambda$ 。

2. 当 λ1 < λ 时, 类似于上面的证明, 也能得到:

$$T_{I_E}(P_{\lambda}(C_1, C_2)) > \lambda_{\bullet}$$

故 $(C_1 \land C_2) \Rightarrow P_1(C_1, C_2)$.

定义 12. 设 C_1 , C_2 是配锁子句, $P_{\lambda}(C_1, C_2)$ 是一个 λ -Paramodulant ($\lambda \ge 0.5$), 如果 1. C_1 和 C_2 都是 λ -正子句(即子句中每个 Fuzzy 文字 λ^*L , 都有 $\lambda^* \ge 1 - \lambda$).

2. C₁ 和 C₂ 中的 Paramodulated 文字分别是 C₁ 和 C₂ 中带有最小锁的文字。则 P_λ(C₁, C₂) 被称为 λ-Lock-Hyperparamodωant, 简称为 λ-LH-Paramodulant.

定义 13. 设 $\lambda \ge 0.5$. 称配锁子句序列 (E_1, \dots, E_q, N) 为一个 λ -Lock-Hypersemantic 互撞(简称 λ -LH 互撞)如果满足下面条件:

1. *E*₁, · · · · , *E*_q 为 λ-正子句;

- 2. 设 $R_1 = N$, 对每个 $i(1 \le i \le q)$, 存在 E_i 和 R_i 的 λ -归结式 R_{i+1} ;
- 3. E, 中归结文字是 E, 中有最小锁者;
- 4. R_{a+1} 是 λ-正子句。

称 R_{g+1} 是此互撞的 λ-LH 归结式。

定理 4. 若配锁子句集 S 是 λ -恒假的, 并且 $\lambda \ge 0.5$,则存在一个从 S 出发,使用 λ -LH 归结方法,推出 λ -空子句的演绎。

此定理的证明,见文献[3]。

定义 14. 设 S 是子句集和 $\lambda \ge 0.5$ 、S 的 λ -函数反身公理集 F_{λ} 是如下集合。

$$F_1 = \{\lambda^*(f(x_1, \dots, x_n)) = f(x_1, \dots, x_n))\},\$$

其中 $\lambda^* \in [0,1]$ 且 $\lambda^* > \lambda$, f 是出现在 S 中的任意 n 元函数符号。

定义 15. 设 $\lambda \ge 0.5$. Fuzzy 文字 λ^*L 称为 λ -无关文字,如果 $1-\lambda \le \lambda^* \le \lambda$.

定义 16. 设 C_1 和 C_2 是两个子句。如果 C_1 和 C_2 中的文字能建立一一对应关系,并且两个对应文字或者是 λ -一致的,或者都是 λ -无关的,则称 C_1 和 C_2 是 λ -一致的。

定理 5. 设 $\lambda \ge 0.5$ 。 C_1 和 C_2 是两个子句,C 是 C_1 和 C_2 的一个 λ -锁归结式或者 λ -锁 Paramodulant。 若 C_1^* 和 C_2^* 分别与 C_1 和 C_2 是 λ -一致的,则存在 C_1^* 和 C_2^* 的一个 λ -锁归结式或者 λ -锁 Paramodulant C^* ,并且 C^* 与 C 是 λ -一致的。

证. 1) 不妨设 C_1 和 C_2 分别是如下两个子句:

$$\lambda_1 L_1 \vee C_1', \quad \lambda_2 L_2 \vee C_2'$$

其中 $\lambda_1 > \lambda$, $\lambda_2 < 1 - \lambda$. 令

$$C = (C_1^{\sigma} - \lambda_1 L_1^{\sigma}) || (C_2^{\sigma} - \lambda_2 L_2^{\sigma}),$$

其中 σ 是 L_1 与 L_2 的 MGU. 于是, C_1^* , C_2^* 分别是如下两个子句:

$$\lambda_1^* L_1 \vee C_1^{*\prime}, \quad \lambda_2^* L_2 \vee C_2^*$$

其中 $\lambda_1^* > \lambda$, $\lambda_2^* < 1 - \lambda$, $C_1^{*\prime}$ 和 $C_2^{*\prime}$ 分别与 C_1 和 C_2^{\prime} 是 λ -一致的。 令

$$C^* = (C_1^{*\sigma} - \lambda_1^* L_1^{\sigma}) \cup (C_2^{*\sigma} - \lambda_2^* L_2^{\sigma}),$$

显然, C^* 是 C_1^* 和 C_2^* 的一个 λ -归结式。 不难看出, C^* 还是一个 λ -锁归结式,并且 C^* 与 C 是 λ -一致的。

2) 不妨设 C_1 和 C_2 分别是如下两个子句:

$$\lambda_1 L[t] \vee C'_1, \ \lambda_2(r = J) \vee C'_2,$$

其中 $\lambda_1 > \lambda$, $\lambda_2 > \lambda$. C是如下 λ -锁 Paramodulant:

$$\lambda_3 L^{\sigma}[\Delta^{\sigma}] \vee C_1^{\prime \sigma} \vee C_2^{\prime \sigma}$$

其中 $\lambda_3 = (\lambda_1 + \lambda_2)/2$, σ 是 t 和 r 的 MGU。于是, C_1^* 和 C_2^* 分別是如下子句:

$$\lambda_1^*L[t] \bigvee C_1^{*\prime}, \ \lambda_2^*(r=a) \bigvee C_2^{*\prime},$$

其中 $\lambda_1^* > \lambda$, $\lambda_2^* > \lambda$, $C_1^{*'}$ 和 $C_2^{*'}$ 分别与 C_1 和 C_2 是 λ -一致的。令

$$C^* = \lambda_3^* L^{\sigma}[_{\mathfrak{a}^{\sigma}}] \vee C_1^{*,\sigma} \vee C_2^{*,\sigma},$$

其中 $\lambda_3^* = (\lambda_1^* + \lambda_2^*)/2$, 显然, $C^* \not = C_1^*$ 和 C_2^* 的 λ -锁 Paramodulant,并且 $C^* \not = C \not = \lambda$ 一致的。

定理 6. 配锁子句集 S 是 λE - 恒假的当且仅当存在一个从 $(S \cup \{\lambda^*(x=x)\} \cup F_1)$ 出发,使用 λ -LH 归结方法和 λ -LH-Paramodulation 方法推出 λ -空子句的演绎,其中 F_1 是 S 的

 λ -函数反身公理集、 $\lambda ≥ 0.5$ 、 λ * $> \lambda$

证。(⇒)设 K_1 是 S 的 λ -相等公理集。因为 S 是 λE -恒假的,所以,由定理 2 知,($S \cup K_\lambda$) 是 λ -恒假的,由定理 4 知,存在从 ($S \cup K_\lambda$) 出发,推出 λ - \square 的 λ -LH 归结演绎 D. 下面我们将 D 改造成这个定理所需要的演绎。

对D中任一个 λ -LH 互撞(E_1 , …, E_q , N),由定义 13 知, E_1 , …, E_q 是 λ -正子句,所以,或者 $E_i \in S$ 或者 E_i 是 K_λ 中的 $\lambda^*(x=x)$ (对每个 $i=1,2,\dots,q$)。如果 $N \in S$,则此互撞就是子句集($S \cup \{\lambda^*(x=x)\}$)中的互撞,满足本定理的要求;如果 $N \in K_\lambda$,显然,N不可能是子句 $\lambda^*(x=x)$,因此有下面 4 种情况:

1. N是 K_{λ} 中子句: $(1-\lambda^*)(x=y) \vee \lambda^*(y=x)$, $\lambda^* > \lambda$. 显然,该互撞必有 q=1, E_{λ} 必是下面形状:

$$\lambda_1(t_1=t_2) \vee E_1'$$

其中 $\lambda_1 > \lambda_2$ 因此,

$$(E_1, N) = \lambda^*(t_2 = t_1) \vee E'_1$$

而 K_{λ} 中子句 $\lambda_1(x=x)$ 与子句 E_1 的 λ -Paramodulant 如下:

$$P_{\lambda}(\lambda_{1}(x=x), \lambda_{1}(t=t_{\lambda}) \vee E'_{1}) = \lambda_{1}(t_{\lambda}=t_{\lambda}) \vee E'_{1}$$

因为 (E_1, N) 是 λ -LH 互撞,所以 $P_{\lambda}(\lambda_1(x=x), E_1)$ 是 λ -LH-Paramodulant,并且这两个子句是 λ --·致的.

2. N是 K_{λ} 中子句: $(1-\lambda^*)(x=y) \lor (1-\lambda^*)(y=z) \lor \lambda^*(x=z)$, $\lambda^* > \lambda_{\bullet}$

显然,该互撞必有 q=2, 并且 E_1,E_2 分别是如下子句:

$$\lambda_1^*(t_1=t_2) \vee E_1', \ \lambda_2^*(a_1=a_2) \vee E_2',$$

其中 $\lambda_1^* > \lambda$, $\lambda_2^* > \lambda$. 于是,

$$(E_1, E_2, N) = \lambda^*(t_1^{\sigma} = a_2^{\sigma}) \vee E_1^{\sigma} \vee E_2^{\sigma},$$

其中 o 是 ta 和 sa 的 MGU、显然,

$$P_{\lambda}(E_1, E_2) = (\lambda_1^* + \lambda_2^*)/2(\iota_1^{\sigma} = \iota_2^{\sigma}) \vee E_1^{\sigma} \vee E_2^{\sigma}$$

不难看出, $P_1(E_1, E_2)$ 是 λ -LII-Paramodulant 并目和 (E_1, E_2, N) 是 λ -一致的

3. N是 K₁ 中子句:

$$(1-\lambda^*)(x_j=x_0)\vee(1-\lambda^*)P(x_1,\dots,x_j,\dots,x_n)\vee\lambda^*P(x_1,\dots,x_0,\dots,x_n),$$

其中 $\lambda^* > \lambda$.

显然,该互撞必有q=2并且 E_1, E_2 分别是如下子句·

$$\lambda_1(t_i = t_0) \vee E'_1, \ \lambda_2 P(s_1, \dots, s_i, \dots, s_n) \vee E'_2,$$

其中 $\lambda_1 > \lambda_2 > \lambda$ 、 于是,

$$(E_1, E_2, N) = \lambda^* P(\underline{a_1}^{\sigma}, \dots, \underline{t_0}^{\sigma}, \dots, \underline{a_n}^{\sigma}) \vee E_1^{\sigma} \vee E_2^{\sigma},$$

其中 σ 是 $(x_1, \dots, t_i, \dots, x_n)$ 与 $(a_1, \dots, a_i, \dots, a_n)$ 的 MGU、显然、

$$P_{\lambda}(E_2, E_1) = (\lambda_1 + \lambda_2)/2P(a_1^{\sigma}, \dots, a_n^{\sigma}, \dots, a_n^{\sigma}) \vee E_1^{\sigma} \vee E_2^{\sigma}$$

不难看出, $P_{\lambda}(E_2, E_1)$ 是 λ -LH-Paramodulant, 且和 (E_1, E_2, N) 是 λ -一致的.

4. N是 K, 中子句:

$$(1-\lambda^*)(x_j=x_0) \vee \lambda^*(f(x_1,\cdots,x_j,\cdots,x_n)=f(x_1,\cdots,x_0,\cdots,x_n)),$$

其中 **λ* > λ.**

显然,该互输必有 q=1, 并且 E_1 是如下子句:

$$\lambda_1(t_i = t_0) \vee E_1'$$

其中 $\lambda_1 > \lambda$. 干是,

$$(E_1, N) = \lambda^* (f(x_1, \dots, x_n), \dots, x_n) = f(x_1, \dots, x_n)) \vee E'_1,$$

求 $\lambda_1(f(x_1, \dots, x_t, \dots, x_n) = f(x_1, \dots, x_t, \dots, x_n))$ 与 E_1 的 λ -Paramodulant:

$$P_1(\lambda_1(f=f), E_1) = \lambda_1(f(x_1 \cdots x_n)) = f(x_1 \cdots x_n) \vee E_1$$

显然,这是一个 λ-LH-Paramodulant 并且与 (E₁, N) 是 λ-一致的。

由定理 5 知,对演绎 D 中的每一步推演,都可以进行如上的改变,于是,得一新演绎 D'. 显然,演绎树 D' 的初始节点都是($S \cup \{\lambda^*(x=x)\} \cup F_1$)中子句,中间节点与演绎树 D 的中间节点 ——对应并且 λ ——致,根节点是 λ —空子句。演绎 D' 中使用了 λ —LH 归结和 λ —LH—Paramodulation 两种方法,这正是本定理所要求的演绎。

(\leftarrow)若存在从($S \cup \{\lambda^*(x=x)\} \cup F_{\lambda}$)出发,使用 λ -LH-归结和 λ -LH-Paramodulation 方法推出 λ -□的演绎,但是S 不是 λE -恒假的,于是,存在E 解释 I_E ,使得 $T_{I_E}(S) > \lambda$ 。于是,对($S \cup \{\lambda^*(x=x)\} \cup F_{\lambda}$)中任一子句 C,都有 $T_{I_E}(C) > \lambda$ 。根据性质 11,性质 12 和定理 3,不难看出, $T_{I_E}(\lambda$ -□) $> \lambda$,矛盾。

至此,我们得到了: 在算子 Fuzzy 逻辑中,进行 Puzzy 推理的 λ-Paramodulation 方法。这个方法允许在 Fuzzy 推理申进行 Fuzzy 等量替换。

由于算子 Fuzzy 逻辑中的命题形式,很自然的描述了模糊命题¹⁰,因此, \(\lambda\)-Paramodulation 方法与我们已经得到的 \(\lambda\)-归清方法相结合,进行 Fuzzy 推理是方便的。

参考文献

- I i] Liu, X. H. & Xiao, H., Proc. of the 15-th ISMVL, Canada, 5(1985), ..8-75.
- [2] Liu, X. 11. & Fang, K. Y., Proc. of the 16-th ISMVL, U. S. A., 5(1986), 248-251.
- [5] Liu, X. H., Chang, Carl K. & Jeffery, J-P. Tsai, Proc. the IEEE 10-th International Computer Software & Applications Conference, U. S. A., 10(1986), 154-157.
- [4] Chang, C. L. & Lee, R. C. T. Symbolic Logic and Mechanical Theorem Proving. Academic Press, New York, 1973.
- [5] Lec, R. C. T., JACM, 19(1972), 1: 109-119.

¹⁾ Liu, X. H., Fang, K. Y. & Jeffery, J-P. Tsai, Fuzzy Reasoning in Operator Fuzzy Logic(料出).