R"中具有非双曲奇点的异宿分支 *

孙建华

(南京大学数学系,南京 210008)

摘 要

考虑具有两个非双曲奇点的n维异宿系统.对这类 \mathbb{R}^n 中的高余维分支问题,求得 Melnikov 型向量分支函数,以保证在两个非双曲奇点所分裂出的新奇点间存在异宿轨线.

关键词 非双曲奇点、异宿轨线、指数三分法、Melnikov向量函数、分支

1 引 言

考虑n维含参数自治系统

$$\dot{x} = F(x, \alpha), \tag{1.1}$$

其中 $x \in \mathbb{R}^n$, $\alpha \in \mathbb{R}^k$, $F : \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}^n$ 为足够次可微函数. 假设 $(1.1)_0$ 具有连结两个奇点 P_0 和 P_1 的异宿轨线 Γ_0 (不排除 P_0 与 P_1 重合, Γ_0 为同宿轨的情形). 当 $|\alpha| \neq 0$ 充分小时, $(1.1)_\alpha$ 在 Γ_0 附近的轨线结构一般将发生变化. 对两个奇点均为双曲奇点的情形,不少作者进行过研究 $^{[1.2]}$. 近来,人们的研究兴趣已转向 P_0 或 P_1 为非双曲奇点的情形. 如 Γ_0 为同宿轨的情形 $^{[3.4]}$; n=2, Γ_0 为异宿轨,而 P_0 和 P_1 之一为非双曲奇点的情形 $^{[3]}$; 文献 $^{[6]}$ 对 \mathbb{R}^3 中类似的问题进行了研究,得到相空间和参数空间中详尽的分支拓扑结构图.

本文研究当 P_0 和 P_1 均为非双曲奇点时,系统(1.1)在 $\Gamma_0 \cup \{P_0, P_1\}$ 邻近的分支结构问题. 我们首先用 Lypunov-Schmidt 方法和 C^p -奇异理论研究非双曲奇点 P_0 和 P_1 的局部分支;然后用指数三分法研究系统(1.1)。的线性变分系统的解结构;进而研究大范围的异宿分支,得到 Melnikov 向量函数型的条件,以保证在 P_0 和 P_1 分支出的新奇点间沿(强)不变流形存在异宿轨线、最后,我们给出一个具体例子.

2 奇点分支

考虑含参数系统

$$\dot{x} = F(x, \alpha), \tag{2.1}_{\alpha}$$

¹⁹⁹⁴⁻⁰¹⁻⁰³ 收稿, 1994-04-06 收修改稿.

^{*}国家自然科学基金和江苏省自然科学基金资助项目.

其中 $x \in \mathbb{R}^n$, $\alpha = (\alpha_1, \dots, \alpha_k) \in \mathbb{R}^k$. 假设

- $(1)F:\mathbb{R}^n \times \mathbb{R}^k \rightarrow \mathbb{R}^n 为 C'- 向量函数, r≥2.$
- (2) $\forall \alpha \in \mathbb{R}^k$, $F(P_i, \alpha) = 0$, i = 0, 1. $\alpha = 0$ 时, $D_x F(P_i, 0)$ 有特征值 λ_j^i , 0, β_i^i , 其中 $\operatorname{Re} \lambda_j^i < 0$, $\operatorname{Re} \beta_i^i > 0$, $j = 1, \dots, n_i^+$, $l = 1, \dots, n_i^-$, $n_i^- + n_i^+ + 1 = n$, i = 0, 1.

以 $v(v_{\bullet})$ 记 P 点对应于特征值 0 的右 (E) 单位特征向量, i=0,1.

 $(3) v_{-1}^{i} D_{x}^{2} F(P_{i}, 0) (v_{1}^{i}, v_{1}^{i}) > 0, v_{-1}^{i} D_{x\alpha_{1}} F(P_{i}, 0) v_{1}^{i} > 0, i = 0, 1.$

在条件(2) 和(3)下,对 $|\alpha|\neq 0$ 充分小,(2.1)_{α}式在 P_i 点出现 transcritical 分支. 下述局部 分支结果可用 Lypunov-Schmidt 方法及 C^p - 奇异理论^[7-9]证明之. 由于篇幅限制,略去其细节. 请参见文献[6].

定理 1 假设条件 (1)—(3) 成立,则在参数空间 \mathbb{R}^k 的原点的某邻域内,存在两个 k-1 维的超曲面 Σ_i : $\alpha_1 = E_i(\alpha_2, \cdots, \alpha_k)$, $0 \in \Sigma_i$, 使得当 $\alpha \in \Sigma_i$ 时,除双曲奇点 P_i 外,还存在双曲奇点 $P_i(\alpha) \in C^{r-1}(\mathbb{R}^k, \mathbb{R}^n)$ 满足 $F(P_i(\alpha), \alpha) = 0$; 当 $\alpha \in \Sigma_i$ 时, $P_i(\alpha) = P_i$. 进一步,当 $\alpha \in \{\alpha \in \mathbb{R}^k | \alpha_1 > E_i(\alpha_2, \cdots, \alpha_k)\}$ 时, $\dim W^u(P_i) = n_i^- + 1$, $\dim W^s(P_i(\alpha)) = n_i^+ + 1$, $\dim W^s(P_i(\alpha)) = n_i^- + 1$,i = 0,1.

定理中新奇点 $P_i(\alpha) \in C^{r-1}(\mathbb{R}^k, \mathbb{R}^n)$ 的结论对大范围异宿分支的研究是重要的. 如非双曲奇点 P_i , i=0, 1, 具有鞍结点 (Saddle-node) 分支,按上述方法所得到的新奇点未必可微. 但我们可施行变量代换,使新奇点满足可微性. 对 P_i 具有 Pitchfork 分支及 P_0 和 P_1 具有不同类型分支时,可类似处理.

3 指数三分法和解结构

考虑线性系统

$$\dot{x} = A(t)x, \qquad t \in J \subset \mathbb{R}, \tag{3.1}$$

其中 $x \in \mathbb{R}^n$, A(t) 为 $n \times n$ 阶有界矩阵函数. 令 X(t) 为 (3.1) 式的基本解矩阵, X(0) = I.

定义 1 如存在投影 P, Q, R, P+Q+R=I, 以及常数 K, ε , δ , $0<\varepsilon<\delta$, $K\geq 1$, 使得

$$||X(t)PX^{-1}(s)|| \leq Ke^{-\delta(t-s)}, \quad s, \ t \in J, \quad s \leq t, ||X(t)QX^{-1}(s)|| \leq Ke^{\delta(t-s)}, \quad s, \ t \in J, \quad t \leq s, ||X(t)RX^{-1}(s)|| \leq Ke^{\epsilon|t-s|}, \quad s, \ t \in J,$$

则称系统(3.1)或解矩阵 X(t) 在 J 上具有指数三分法,其中 ε , δ 称为三分法的指数.

$$\dot{x} = [A(t) + B(t)]x$$

在 J上亦具有指数三分法,其投影为 \overline{P} , \overline{Q} , \overline{R} ; 且当 σ 充分小时,投影 \overline{P} , \overline{Q} , \overline{R} 分别与 P, Q, R 同秩.

现在,我们进一步假设

 $(4)(2.1)_0$ 存在一条连结 P_1 与 P_0 的异宿轨线

$$\Gamma_0 = \{x_0(t) | t \in \mathbb{R}\},$$
并且当 $t \to (-1)^i \infty$ 时, $x_0(t) \to P$. $i = 0, 1$.

其渐近速度为指数式的.

以 $W^*(P_1)$ 记奇点 P_1 的不稳定流形,即其于 P_1 点的切空间为由特征值 β_1^1 , $l=1, \dots, n_1^-$ 对应的特征向量所张成的不稳定子空间,类似定义 $W^*(P_0)$. 由假设(4)知, $\Gamma_0 \subset W^*(P_0) \cap W^*(P_1)$.

 $(5)\dim[T_pW^s(P_0)\cap T_pW^u(P_1)]=m, \quad P\in\Gamma_0.$

考虑系统(2.1)。的线性变分方程

$$\dot{x} = D F(x_0(t), 0)x.$$
 (3.2)

记 $A(t) = D_x F(x_0(t), 0)$. 显然, $A(t) \to D_x F(P_i, 0)$, 当 $t \to (-1)' \infty$. 而系统 $\dot{x} = D_x F(P_i, 0) x$ 在 \mathbb{R}^{\pm} 上有指数三分法. 令 $A(t) = D_x F(P_i, 0) + [A(t) - D_x F(P_i, 0)]$. 据引理 1, 系统 (3.2) 在 \mathbb{R}^{\pm} 上有指数三分法, 其投影分别为 P_+ , Q_+ , R_+ ; 且不失一般性, 取三分法的指数同为 ε, δ, 常数为 K

(3.2) 式的伴随方程为

$$\dot{y} = -A(t)^* y,\tag{3.3}$$

其中A(t)=D, $F(x_0(t),0)$. 因 (3.2) 式在 \mathbb{R}^t 上有指数三分法,(3.3) 式亦然,且在 \mathbb{R}^t 上的投影为 Q_+^* , P_+^* , R_+^* . 记 l=dim[$T_pW^\circ(P_0)$ + $T_pW^\circ(P_1)$] c . 易见,l-n= n_0^+ - n_1^- +m.

引理 2 设条件 (4) 和 (5) 成立,则变分方程 (3.2) 在 \mathbb{R} 上恰有 m 个线性独立的指数式有界解; 其伴随方程 (3.3) 在 \mathbb{R} 上有 l 个线性独立的有界解 $\psi(t)$ 满足 $|\psi(t)| \leq Ke^{nt}$, $i=1,\dots,l$.

证 记(3.2)式的基解矩阵为 X(t),则解 $\varphi_i(t) = X(t)\varphi_i$ 在 \mathbb{R} 上指数式有界当且仅当 $\varphi_i \in \mathscr{R}P_+ \cap \mathscr{R}Q_i$;而 $\mathscr{R}P_+ \cap \mathscr{R}Q_i$ 同构于 $T_pW^s(P_0) \cap T_pW^u(P_1)$. 由条件 (5) 知;(3.2) 式在 \mathbb{R} 上恰有 m 个线性独立的指数式有界解 $\varphi_i(t)$, $i=1,\dots,m$. 显然, $\dot{x}_0(t)$ 为其中之一.

易见, 伴随方程 (3.3) 的基解矩阵为 $X^{-1}(t)^*$. (3.3) 式的解 $\psi_i(t)$ 在 \mathbb{R} 上有界当且仅当初值向量 $\psi_i \in \mathcal{P}^* \cap \mathcal{P}^* \cap \mathcal{Q}^*$. 这同构于[$\mathcal{P}P_+ + \mathcal{P}Q_-$]*, 而后者又同构于[$T_pW^i(P_0) + T_pW^i(P_1)$]*. 故 (3.3) 式在 \mathbb{R} 上存在 l 个线性无关的有界解 $\psi_i(t) = X^{-1}(t)^*\psi_i$. 由指数三分法知, $|\psi_i(t)| \leq Ke^{itl}$, $i = 1, \cdots, l$.

现在考虑空间 T_{s0} ", $p \in \Gamma_0$ 的下述直和分解:

$$T_{p}\mathbb{R}^{n} = \{T_{p}W^{u}(P_{1})\backslash [T_{p}W^{s}(P_{0})\bigcap T_{p}W^{u}(P_{1})]\}$$

$$\bigoplus \{T_{p}W^{s}(P_{0})\bigcap T_{p}W^{u}(P_{1})\}$$

$$\bigoplus \{T_{p}W^{s}(P_{0})\backslash [T_{p}W^{s}(P_{0})\bigcap T_{p}W^{u}(P_{1})]\}$$

$$\bigoplus \{[T_{p}W^{s}(P_{0}) + T_{p}W^{u}(P_{1})]^{c}\}$$

$$= A \bigoplus B \bigoplus C \bigoplus D. \tag{3.4}$$

可见, $\dim A = n_1^+ - m$, $\dim B = m$, $\dim C = n_0^+ - m$, $\dim D = l$. 定义指标集 $I_1 = \{1, 2, \dots, n_l^- - m\}$, $I_2 = \{1, \dots, m\}$, $I_3 = \{1, 2, \dots, n_0^+ - m\}$, $I_4 = \{1, \dots, l\}$.

现按下述方式取定系统(3.2)的一个基本解组:

取 $n_1 - m$ 个线性无关的初值向量 $x_i \in A$, 得解 $x_i(t)$, $i \in I_1$; 取 m 个线性无关的初值向量 $y_i \in B$, 得解 $y_i(t)$, $i \in I_2$; 取 $n_0 - m$ 个线性无关的初值向量 $z_i \in C$, 得解 $z_i(t)$, $i \in I_3$; 取 l 个线性无关的初值向量 $w_i \in D$, 得解 $w_i(t)$, $i \in I_4$. 易见, $x_i(t)$, $i \in I_1$; $y_i(t)$, $i \in I_2$; $z_i(t)$, $i \in I_3$; $w_i(t)$, $i \in I_4$ 构成变分方程 (3.2)的一个基本解组. 不妨记 $y_i(t) = x_0(t)$.

4 异宿分支

假设系统 $(2.1)_{\alpha}$ 满足条件(1)—(5). 由第 2 节可知, 对 $|\alpha| \neq 0$ 充分小, 奇点 P_i 分支出新奇点 $P_i(\alpha)$, i=0,1. 本节的目的是寻求条件, 以保证在新奇点 $P_i(\alpha)$, i=0,1 之间, 沿着(强) 不变流形存在异宿轨道.

为确定起见, 假设 $\alpha \in \{\alpha \in \mathbb{R}^k | \alpha_1 > E_i(\alpha_2, \dots, \alpha_k, i=0, 1\}$. 记 $W^u(P_1(\alpha))$ 为 $P_1(\alpha)$ 点的不稳定流形, $W^{ss}(P_0(\alpha))$ 为 $P_0(\alpha)$ 点的强稳定流形. 由定理 1 知, $\dim W^u(P_1(\alpha)) = n_1^-$, $\dim W^{ss}(P_0(\alpha)) = n_0^+$.

过 $x_0(0) \in \Gamma_0$, 构作 Poincaré 截面 π , 使其横截于 $y_1(0) = \dot{x}_0(0)$. 取 $x_i(0)$, $i \in I_1$; $y_i(0)$, $i \in I_2 - \{1\}$; $z_i(0)$, $i \in I_3$; $w_i(0)$, $i \in I_4$, 作为 π 的一组基向量.则 π 上任一点可表示为

$$x_0(0) + \sum_{i \in I_1} a_i x_i(0) + \sum_{i \in I_2 - \{1\}} b_i y_i(0) + \sum_{i \in I_3} c_i z_i(0) + \sum_{i \in I_4} d_i w_i(0).$$

记 $a \in \mathbb{R}^{n_1^- - m}$, $b \in \mathbb{R}^{m-1}$, $c \in \mathbb{R}^{n_0^+ - m}$, $d \in \mathbb{R}^l$.

对 $|\alpha| \neq 0$ 充分小, $P_{\alpha}(\alpha)$ 的不稳定流形 $W''(P_{\alpha}(\alpha))$ 交 π 于一子流形, 其方程可表 为

$$c = \widetilde{c} \ (a, b, \alpha), \tag{4.1}_1$$

$$d = \widetilde{d} \ (a, b, \alpha), \tag{4.1}$$

其中 $\widetilde{c}(0)=0$, $D_{\alpha}\widetilde{c}(0)=0$. 同理, $P_{\alpha}(\alpha)$ 的强稳定流形 $W^{ss}(P_{\alpha}(\alpha))$ 交 π 于一子流形, 其方程可表为

$$a = \overline{a} \ (b, c, \alpha) \tag{4.2}_1$$

$$d = \overline{d} \ (b, c, \alpha), \tag{4.2}$$

其中 $\overline{a}(0)=0$, $D_{c}\overline{a}(0)=0$.

据隐函数定理,从(4.1),(4.2),式可解得

$$a = a(b, \alpha), \quad c = c(b, \alpha). \tag{4.3}$$

于是,如果

$$V(b,\alpha) = \widetilde{d}(a(b,\alpha), b,\alpha) - \overline{d}(b, c(b,\alpha), \alpha) = 0, \tag{4.4}$$

则在 $P_1(\alpha)$ 与 $P_0(\alpha)$ 之间沿(强)不变流形存在异宿轨.显然, $V: \mathbb{R}^{m-1} \times \mathbb{R}^k \to \mathbb{R}^l$, V(b,0) = 0 且 $V \in C^{r-1}(\mathbb{R}^{m-1} \times \mathbb{R}^k, \mathbb{R}^l)$.

我们不妨设 $k \ge l$, 现计算 $\frac{\partial V}{\partial \alpha}$ (0) 的表达式. 记 $x^s(t;b,c,\alpha)$ 为 (2.1) 式当 t = 0 时过 π 上点 (a,b,c,d) 且位于 $W^{ss}(P_0(\alpha))$ 上的解,其中 $a = a(b,c,\alpha)$, $d = \overline{d}(b,c,\alpha)$,而 $c = c(b,\alpha)$;又记 $x^u(t;a,b,\alpha)$ 为 (2.1) 式当 t = 0 时过 π 上点 (a,b,c,d) 且位于 $W^u(P_1(\alpha))$ 上的解,其中 $c = \overline{c}(a,b,\alpha)$, $d = \overline{d}(a,b,\alpha)$,而 $a = a(b,\alpha)$. 显然,由 Γ_0 的存在性知,

$$x^{u}(t;0) = x^{s}(t;0) = x_{0}(t).$$

不难看出,

$$V(b,\alpha) = \Psi^*(0)[x^u(0; a(b, \alpha), b, \alpha) - x^s(0; b, c(b, \alpha), \alpha)], \tag{4.5}$$

其中 $\Psi(t) = (\psi_1(t), \dots, \psi_l(t)).$

注意到, $\mathcal{R}D_a x''(0) = \operatorname{span}\{x_i(0), i \in I_1\}, \mathcal{R}D_b x''(0) = \operatorname{span}\{y_i(0), i \in I_2 - \{1\}\}, \mathcal{R}D_b x'(0) = \operatorname{span}\{y_i(0), i \in I_2 - \{1\}\}, \mathcal{R}D_b x''(0) = \operatorname{span}\{z_i(0), i \in I_3\}.$ 则

$$\Psi(0)*D_a x^a(0) = \Psi(0)*D_b x^a(0) = 0,$$

 $\Psi(0)*D_b x^s(0) = \Psi(0)*D_b x^s(0) = 0.$

故

$$\frac{\partial V}{\partial \alpha} (0) = \Psi(0)^* \left[\frac{\partial x^u}{\partial \alpha} (0) - \frac{\partial x^s}{\partial \alpha} (0) \right]. \tag{4.6}$$

令

$$\Delta^{j}(t) = \Psi(t)^{*} \frac{\partial x^{j}}{\partial \alpha} (t; 0), \quad j = u, s.$$
 (4.7)

则

$$\dot{\Delta}'(t) = \dot{\Psi}(t)^* \frac{\partial x'}{\partial \alpha} (t; 0) + \Psi(t)^* \{ D_x F(x_0(t), 0) \frac{\partial x'}{\partial \alpha} (t; 0) + \frac{\partial F}{\partial \alpha} (x_0(t), 0) \}.$$

因 $\Psi(t)$ 为伴随方程 (3.3) 的解矩阵,则

$$\Psi(t)^* = -\Psi(t)^* D F(x_0(t), 0)$$

所以

$$\dot{\mathcal{A}}(t) = \Psi(t)^* \frac{\partial F}{\partial \alpha} (x_0(t), 0). \tag{4.8}$$

当 j=u 时, 对 (4.8) 式从 t_1 到 0 积分, 得

$$\Delta^{\mu}(0) = \Delta^{\mu}(t_1) + \int_{t_1}^{0} \Psi(t)^* \frac{\partial F}{\partial \alpha} (x_0(t), 0) dt, \qquad (4.9)$$

当 j=s 时, 对 (4.8) 式从 0 到 t_2 积分, 得

$$-\Delta^{s}(0) = -\Delta^{s}(t_{2}) + \int_{0}^{t_{2}} \Psi(t)^{*} \frac{\partial F}{\partial \alpha} (x_{0}(t), 0) dt.$$
 (4.10)

则

$$\frac{\partial V}{\partial \alpha} (0) = \Psi(t_1)^* \frac{\partial x^u}{\partial \alpha} (t_1; 0) - \Psi(t_2)^* \frac{\partial x^s}{\partial \alpha} (t_2; 0) + \int_{t_1}^{t_2} \Psi(t)^* \frac{\partial F}{\partial \alpha} (x_0(t), 0) dt. \tag{4.11}$$

由条件(4),存在正常数 $\overline{\delta}$, \overline{K} , 使得

$$|x_0(t) - P_1| \le \overline{K} e^{\overline{\delta}t}, \quad t < 0,$$

$$|x_0(t) - P_0| \le \overline{K} e^{-\overline{\delta}t}, \quad t > 0.$$

则 $\left| \frac{\partial F}{\partial \alpha} (x_0(t), 0) \right| = \left| \frac{\partial F}{\partial \alpha} (x_0(t), 0) - \frac{\partial F}{\partial \alpha} (P_1, 0) \right| \le M|x_0(t) - P_1| \le M\overline{K}e^{\delta t}, \ t < 0.$ 又 $|\Psi(t)^*| \le Ke^{-u}, t < 0.$ 故

$$|\Psi(t)^* \frac{\partial F}{\partial \alpha} (x_0(t), 0)| \leq MK\overline{K}e^{(\overline{\delta}+\epsilon)t}, \quad t < 0.$$

而对 α 充分小, $\overline{\delta} - \varepsilon > 0$. 所以

$$\int_{-\infty}^{0} \Psi(t)^* \frac{\partial F}{\partial \alpha} (x_0(t), 0) dt < \infty.$$

同理可证,

$$\int_0^\infty \Psi(t)^* \frac{\partial F}{\partial \alpha} (x_0(t), 0) dt < \infty.$$

故当 $t_1 \rightarrow -\infty$, $t_2 \rightarrow \infty$ 时, (4.11) 式中的反常积分收敛. 另外,可以证明,

$$\lim_{t \to -\infty} \frac{\partial x^{\mu}}{\partial \alpha} (t; 0) = \frac{\partial P_1(0)}{\partial \alpha} , \quad \lim_{t \to \infty} \frac{\partial x^s}{\partial \alpha} (t; 0) = \frac{\partial P_0(0)}{\partial \alpha} .$$

这里略去细节.

总之,我们有

$$\frac{\partial V}{\partial \alpha} (0) = \Psi(-\infty)^* \frac{\partial P_1}{\partial \alpha} (0) - \Psi(\infty)^* \frac{\partial P_0}{\partial \alpha} (0) + \int_{-\infty}^{\infty} \Psi(t)^* \frac{\partial F}{\partial \alpha} (x_0(t), 0) dt. \tag{4.12}$$

由以上讨论,利用隐函数定理不难证明本文的主要结果:

定理 2 设系统(2.1)满足条件(1)—(5). 如果 $l \times k$ 阶矩阵 $\left(\frac{\partial V}{\partial \alpha}\right)$ 的秩为 l,则在参数空间 \mathbb{R}^k 的原点的某邻域内,存在一个 k-l 维的超曲面 Σ , $0 \in \Sigma$; 当 $\alpha \in \Sigma$ 时,系统(2.1)沿着 $P_1(\alpha)$ 的不稳定流形和 $P_0(\alpha)$ 的强稳定流形存在异宿轨线.

我们称 (4.12) 式为 Melnikov 向量函数. 注意到,如 dim $W^s(P_0) \cap W^u(P_1) = 1$,即仅存在一条 异宿轨线, Melnikov 向量函数作为距离向量 $V(b,\alpha)$ 关于 α 的一次近似量,并不含有参数 b.

文献[11] 用横截性理论研究连结两个双曲奇点的异宿轨分支,得到相应的 Melnikov 向量函数. 注意到,如 P_0 和 P_1 均为双曲奇点,则 (4.12) 式即化为其中的 Melnikov 向量. 文献[6] 研究了具有双曲奇点和一个非双曲奇点的异宿分支,得到分支向量 (4.11). 实际上,(4.12) 式可等价地化为文献[6] 中的 (4.11) 式 11 .

5 示 例

考虑三维系统

$$\dot{u} = F(u, \alpha) \tag{5.1}$$

即

$$\dot{x} = x^2 - \alpha_1 x + \alpha_2 y(y-1), \quad \dot{y} = y(y-1) + \alpha_2 x y^2 (1-y), \quad \dot{z} = z(1-2y) - \alpha_2 y(y-1).$$

对一切 $\alpha \in \mathbb{R}^3$, (5.1) 式有非双曲奇点 $P_0(0, 0, 0)$, $P_1(0, 1, 0)$. 对 $\alpha_1 \neq 0$, 除双曲奇点 P_0 , P_1 外,还有双曲奇点 $P_0(\alpha) = (\alpha_1, 0, 0)$, $P_1(\alpha) = (\alpha_1, 1, 0)$. (5.1) 式有从 P_1 到 P_0 的鞍点连线 $u_0(t) = \begin{pmatrix} 0 \\ 1 \\ 1 + e^t \end{pmatrix}$, 0. 记 $y_0(t) = \frac{1}{1 + e^t}$. 不难看出,在 (5.1) 式中, $n_1^- = n_0^+ = m = 1$, l = 2.

(5.1)。式沿 $u_0(t)$ 的一阶变分方程为

$$\dot{x} = 0, \quad \dot{y} = \frac{1 - e^t}{1 + e^t} \ y, \quad \dot{z} = \frac{e^t - 1}{1 + e^t} \ z.$$
 (5.2)

显然,(5.2) 式满足指数三分法,其标准基解矩阵为 $X(t) = \operatorname{diag}(1, 4e'(1+e')^{-2}, \frac{1}{4} e^{-t}(1+e')^2)$. 在 R 上,(5.2) 式仅有一个指数式有界解 $u_2(t) = (0, 4e'(1+e')^{-2}, 0)^T$. (这与 $m=1-\mathfrak{P}$). (5.2) 式的伴随方程的标准基解矩阵为 $\overline{y}(t) = \operatorname{diag}\left(1, \frac{1}{4} e^{-t}(1+e')^2, 4e'(1+e')^{-2}\right)$. 不难看出,伴随方程在 R 上有两个有界解 $v_1(t) = (1, 0, 0)^T$, $v_2(t) = (0, 0, 4e'(1+e')^{-2})^T$, 满足 $|v_1(t)| \leq Ke^{e|t|}$, i=1, 2, (这与 l=2一致). 进一步, $v_2(t)$ 为指数式有界解,而 $v_1(t)$ 为非指数式有界解。记 $\Psi(t) = (v_1(t), v_2(t))$.

¹⁾ 孙建华, 两类 Melnikov 函数的等价性, 预印本。

显然,
$$\Psi(-\infty) = \Psi(\infty) = (e_1, 0), \quad \frac{\partial P_i(0)}{\partial \alpha} = (e_1, 0, 0), \quad i = 0, 1.$$
 所以, $\Psi(-\infty)^* \frac{\partial P_i(0)}{\partial \alpha} = (e_1, 0)^*,$

$$\Psi(\infty)^* \frac{\partial P_0(0)}{\partial \alpha} = (e_1, 0)^*. \quad \text{由} \quad \frac{\partial F}{\partial \alpha} \quad (u_0(t), 0) = (0, \dot{y}(t)e_1, -\dot{y}(t)e_3), \quad \text{得}$$

$$\Psi^*(t) \frac{\partial F}{\partial \alpha} \quad (u_0(t), 0) = (0, \dot{y}(t)e_1, -4e^t(1+e^t)^{-2}\dot{y}(t)e_3)$$

经计算,

$$\int_{-\infty}^{\infty} \dot{y}(t)dt = -1, \quad \int_{-\infty}^{\infty} 4e^{t}(1+e^{t})^{-2}\dot{y}(t)dt = \int_{-\infty}^{\infty} 4e^{2t}/(1+e^{t})^{4}dt = \frac{2}{3}.$$

$$\frac{\partial V}{\partial \alpha} (0) = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -\frac{2}{3} \end{pmatrix},$$

故

· 其秩为 2(=1).

由定理 2 知,在 α - 参数空间的原点的某邻域内,存在一条曲线 L_1 : $\alpha_2 = O(\alpha_1^2)$, $\alpha_3 = O(\alpha_1^2)$, $0 \in L_1$, 使得当 $\alpha \in L_1$ 时, (5.1) 式沿(强)不变流形存在 $P_1(\alpha)$ 到 $P_0(\alpha)$ 的异宿轨线.

因

$$\Psi(-\infty)^* \frac{\partial P_1}{\partial \alpha} = (0, 0)^*, \quad \Psi(\infty)^* \frac{\partial P_0(0)}{\partial \alpha} = (e_1, 0)^*,$$

则此时

$$\frac{\partial V}{\partial \alpha} (0) = \begin{pmatrix} -1 & -1 & 0 \\ 0 & 0 & -\frac{2}{3} \end{pmatrix}.$$

可见从 P_1 到 $P_0(\alpha)$ 的异宿轨分支曲线为 L_2 : $\alpha_2 = -\alpha_1 + o(\alpha_1)$, $\alpha_3 = o(\alpha_1^2)$. 同理, 从 $P_1(\alpha)$ 到 P_0 的异宿轨分支曲线为 L_3 : $\alpha_5 = \alpha_1 + o(\alpha_1)$, $\alpha_3 = o(\alpha_1^2)$.

参考文献

- [1] Chow, S. N., Deng, B., Teaman, D., SIAM J. Math. Anal., 1990, 21(1): 179-204.
- [2] Kokubu, H., Japan J. Appl. Math., 1988, 5(3): 455-501.
- [3] Chow, S. N., Lin, X. B., Diff. Int. Equations, 1990, 3(3): 435-466.
- [4] Deng, B., SIAM J. Math. Anal., 1990, 21(3): 693-720.
- [5] Schecter, S., Nonlinearity, 1990, 3(1): 79-99.
- [6] Sun, J. H., Luo, D. J., Science in China, Series A, 1994, 37(5): 523-534.
- [7] Schecter, S., J. D. E., 1992, 99(2): 306-341.
- [8] Chow, S. N., Hale, J. K., Methods of Bifurcation Theory, Springer-Verlag, New York, 1982.
- [9] Golubitsky, M., Schaeffer, D. G., Singularities and Groups in Bifurcation Theory, Vol, I, Springer-Verlag, New York, 1985.
- [10] Hale, J. K., Lin, X. B., J. D. E., 1986, 65(2): 175-202.
- [11] 朱德明,中国科学,A辑,1994, 24(4):346-352.