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Efficient quantum circuits for arithmetic operations are vital for quantum algorithms. A fault-tolerant circuit is required for
a robust quantum computing in the presence of noise. Quantum circuits based on Clifford+T gates are easily rendered fault-
tolerant. Therefore, reducing the T-depth and T-Count without increasing the qubit number represents vital optimization goals
for quantum circuits. In this study, we propose the fault-tolerant implementations for TR and Peres gates with optimized T-depth
and T-Count. Next, we design fault-tolerant circuits for quantum arithmetic operations using the TR and Peres gates. Then,
we implement cyclic and complete translations of quantum images using quantum arithmetic operations, and the scalar matrix
multiplication. Comparative analysis and simulation results reveal that the proposed arithmetic and image operations are efficient.
For instance, cyclic translations of a quantum image produce 50% T-depth reduction relative to the previous best-known cyclic

translation.
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1 Introduction

Based on the principles of quantum mechanics, quantum
computation utilizes quantum states [1,2] to efficiently solve
mathematical problems that are commonly insurmountable
using classical computers [3,4]. Also, quantum principles
facilitate communication, thus providing an approach abso-
lutely guarantees communication security [5, 6]. Quantum
communication includes areas such as quantum secure di-
rect communication [7-10], quantum key distribution [11],
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and quantum private query [12].

Several models exist for quantum computation, includ-
ing blind quantum computation [13], Turing machine, and
quantum circuit [14]. These models promote efficient im-
plementation of quantum algorithms, such as the quantum
search algorithm [4], discrete transform [15], wavelet trans-
form [16, 17], Fourier transform [18], geometric transforma-
tion [19,20], edge detection [21], and machine learning [22].

Since a unitary operation is reversible, quantum arithmetic
operations, such as addition and multiplication, must be built
from reversible logical circuits. The performance indicators
of quantum circuits include the cost, delay, and ancilla num-
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ber, with the optimization possible using synthesis methods
[23-25]. The plain adder was implemented using Toffoli gates
[26], involving 15x + 3 quantum delay for n-bit addition. To
decrease quantum delay, Draper et al. [27] designed a fast
adder with O(logn) delay, and Takahashi et al. [28,29] pro-
posed two adders with O(logn) delay. To reduce ancillary
qubits, Cuccaro et al. [30] designed a circuit with an ancil-
lary qubit. In fact, quantum modular addition and subtraction
are implemented with one ancillary qubit using the Fredkin
gates [31]. Using the Toffoli, Peres [32], and TR gates [33],
Thapliyal et al. [34] proposed an adder without ancilla. Cir-
cuits on controlled addition [35], quantum integer multiplier
[35], and quantum comparator [27,30, 36] have also been re-
ported.

Fault-tolerant implementation of quantum gates is crucial
for a robust quantum computing in the presence of noise [37].
Clifford and T circuits are widely accepted solutions for fault-
tolerant implementation [38,39], and Amy et al. [40,41] pro-
posed optimal depth implementations for the Toffoli, Fred-
kin, and Peres gates. Gosset et al. [42] introduced optimal T-
count circuits for the Toffoli and Fredkin gates, with the Tof-
foli gate T-count reduction possible using ancillas [40,41,43].
To reduce circuit costs, Jones employed the Toffoli gates and
measurement methods to implement a quantum addition [44].
Also, Thapliyal et al. [45,46] designed fault-tolerant circuits
for integer division using the Toffoli gates, whereas Munoz-
Coreas and Thapliyal used these gates to create a controlled
adder [47]. Based on the controlled adder, they introduced
a T-count optimized integer multiplier without garbage, only
requiring 4n + 1 qubits [47].

Another possible quantum computation application area is
in quantum image processing. In the past decade, quantum
image processing was proposed [48, 49] and actively stud-
ied [50-54], with the advantages associated with the principle
highlighted. For instance, the flexible representation of quan-
tum images (FRQI) [50], normal arbitrary superposition state
(NASS) [51], and novel enhanced quantum representation of
digital images (NEQR) [52] store a 2" x 2" grayscale image
using 2n + 1, 2n, and 2n + 8 qubits, respectively.

Without quantum arithmetic operations, quantum image
translation applied to 2"-sized images based on NASS [20]
exhibited the complexity represented as O(n*2"). By contrast,
quantum image translations were implemented using quan-
tum arithmetic circuits with O(n) complexity [55, 56], which
demonstrates that efficient arithmetic operation circuits are
crucial for quantum image processing.

Through the previously stated analysis, we study efficient
fault-tolerant implementations of arithmetic operations for
quantum image processing. We design fault-tolerant imple-
mentations of the TR gate, Peres gate, and variants, with bet-
ter performance than those from the Toffoli and Fredkin gates
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(see Table 1). Therefore, based on the fault-tolerant imple-
mentations of the TR and Peres gates, we implemented fault-
tolerant circuits for quantum arithmetic operations. Then, we
created efficient circuits for cyclic and complete translations
of quantum images using the quantum arithmetic operations.

2 Background

In this section, we briefly examine the general NEQR
(GNEQR) proposed in ref. [54], and introduce the approach
to obtain the vector forms of quantum image representations
and matrix forms of quantum gates using MATLAB. Our
study is based on the GNEQR.

2.1 Brief description of the GNEQR

The computational basis states |0), |1), and their dual states
(0], (1| can be expressed in the row and column vectors as:

|0>={(1)},|1>=[?l,<0|=[1 o].cai=o1].

Considering that |k) is a basis state in a 2"-dimensional
Hilbert space for k = 0, 1,--- ,2" — 1, the binary forms of |k)
and (k| are given as:

k) = lkn-1) ® lkn-2) ® ... ® lko)
= lkn-1) lkn-2) - - - ko)
= lkn-1kn—2 - . . ko),

Ckl = (kn-1] ® Ckn2| ® . .. ® kol
= (kp-1l¢kn—2] - - - Ckol
= (kn-1kn-2 . . - kol,

ey

where the decimal representation of k is k = Z;:é k%27,
ko ki, ,ky—1 € {0,1}, and ® is the symbol of tensor prod-
uct.

An integer set is defined as follows:

Cm:{osls"'szm_l}s (2)

where m is an integer.
To store a 1D image of 2" X 1, i.e., a column vector, the
GNEQR is defined as follows:

=
i)y=—= ) IfGNIi), (3)

where |j) = |j,—1 - - j1jo) and f(j) denote the j-th location of
a vector and the corresponding element value, respectively.
f(j) € Cyy, therefore, 2" is the number of possible values sat-
isfying f(j), for instance, m = 1 for binary images, and m = 8§
for grayscale images.
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To store a 2" x 2% image, the GNEQR is expressed as:

2nk—1 2k

P k) =\/% ZO ZO £, 9)) 1) Iy, )
x= y=

where |x) = |j,—1 - jky and [y) = |jx—1 - - - jo) are the X-axis
and Y-axis of an image, and jo, - - - ji, - , ju—1 € {0, 1}. Here,
| f(x,y)) denotes the color of the pixel on the coordinate (x, y),
f(x,y) € G

For instance, a binary column vector [0 110 ]T can be
stored in |‘I’;> = %(IO) [00) + [1)]01) + [1)]10) + |0)|11)),
where [ 17 is the transpose of matrix [ ]. |‘P}1> = %(IO) |0) |0)Y+
[1)10) |1) + 1) |1)]0) + ]|0) |1} 1)) can store a binary image of
2 x 2 presented in Figure 1.

2.2 The quantum gate matrix forms

The matrix of the outer product |k) (k| defines the product of
|k) and (k|, for instance,

10 00
|0><0|=[ ],|1><1I=[ ]
00 01

Suppose U is the matrix of an n-qubit gate, two controlled-
U gates are presented in Figure 2, with matrices that can be
expressed as:

&)

Cup(U) = D) (1|® U +10) (0] & I*",
Cun(U) = U 1) (1] +1*" ®0) (O,

where [ is the identity matrix, and I®" is the n fold tensor
product / ® I ® --- ® I. For instance, unitary matrices of 1-

qubit X and V are
b= vi= E 1i
-i 1 2 1i1

and the corresponding controlled gates are presented in the
dashed box in Figure 2, where i is an imaginary unit.

X =

10 2

oﬂ 1+i
V=

2.3 Fault-tolerant circuits

A specific instruction set for Clifford and T circuits [40,41],
comprising a few fault-tolerant gates, is given by X, XOR
gates in Figure 2, and

Lot [ro] e [1o
V21 -1 0eT |’ 0e |

Using the specific instruction set, Amy et al. [40] give the
optimal implementations of Toffoli gate, and Peres gate (see
Figure 3(a) and (b)).

By modifying the Toffoli gate circuit in Figure 3(a), we ob-
tain the optimal T-depth implementations for another Toffoli
gate and Fredkin gate (see Figure 3(c) and (d)).
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3 The optimal T-depth implementations for the
TR gate, Peres gate, and their variants

In this section, we design the optimal T-depth implementa-
tions for the TR gate, Peres gate, and their variants.

3.1 TR gate and its variant

Inspired by the method in ref. [34], we use two symbols in
Figure 4 to label the TR gate as TR1 and its variant TR2.

0 1

0 1
>y : . >y
0 0| f0.0)=0| fO=1
I F0=1| f1,n=0
X

Figure 1 A 2 X 2 binary image.

U] v A
(-
() () (e) U]

(@) (b)

—_

Figure 2  Representations of some quantum gates, including (a) Cyp(U),
(b) Cun(U), (c) the NOT gate (i.e., X gate), (d) the controlled-NOT gate (i.e.,
XOR gate), (e) the controlled-V gate, and (f) the controlled-V* gate.

T} 7] 3)
&
@ = T D7t T b
TT& o{7—o&

Figure 3 Optimal implementation circuits for (a) the Toffoli gate (T-depth
3, total depth 9), (b) the Peres gate (T-depth 4, total depth 8), (c) another
Toffoli gate (T-depth 3, total depth 9), and (d) the Fredkin gate (T-depth 3,
total depth 11).
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Tllustration of the TR gate and its variant showing (a) the quantum symbol of TR1, (b) the implementation of TR1, (c) the quantum symbol of

TR2, (d) the implementation of TR2, (e) the optimal T-depth implementation of TR1, (f) another optimal T-depth implementation of 7R1, and (g) the optimal

T-depth implementation of TR2.

We implement the TR gate and its variant using four el-
ementary quantum gates in Figure 2, respectively. Their T-
depths and total depths are 3 and 9, respectively.

TR1 and TR2 are implemented as:

TR1:|C)|B)|A) - |AB&C)lA® B)|A),
and

TR2:|C)|B)|A) > |AB&C)IB)|A® B),

T3]

where the symbols
exclusive-or operators, respectively. B is equal to (1 — B).

Using eq. (1), we can calculate the vector form of a state,
such as:

and “ @ ” are multiplication and

T

0=[10000000].
T

m=[01000000].

. (6)

. T

7y=[00000001],

where |k) (k =0, 1,---,7) comprises the tensor products of 3

computational basis states.

For simulation verification convenience, we calculate the
matrix form of the gate TR1 as follows:

[10000000]
00010000
00100000
00000100
00001000/
00000001
00000010

101000000]

TRl =

From eq. (6), the matrix TR1 can be expressed as:

TR1 =110).17),12),11),14),13),16) . 15)]. N

The matrix form of the gate TR2 is given by

TR2 =1]0),15),13),12),14),11),17),16)]. ®)

3.2 The Peres gate and its variant

We designed the optimal T-depth implementation circuits for
the Peres gate and its variant presented in Figures 5 and 6.
Their T-depths and total depths were also 3 and 9, respec-
tively. Compared with the circuit in Figure 3(b), the proposed
Peres gate circuits exhibit lower T-depths.

PG1, PG2, and PG3 in Figures 5 and 6 implement

PG1:|C)|BY|A)y - |A.B&C)|A® B)|A),
PG2 :|C)|B)|A) > |A.B&C)|B)|A® B),
PG3:|B)|C)|A) = |B)JA.B®C)|A® B).

Their matrix forms are given as:

PG1 =110,13),12),15),14),17),16) ., I1)],
PG2 =|0),11),13).16).14),15),17),12)], 9
PG3 =[10),11).12).13).15),16) . [7) . 14)] -

Using eqs. (7)-(9), we obtain the following:
PG1 «TR1 = TRI1 = PG1 = I3, (10)
and

TR2 x PGl = PG2 = TR1
=[10),12),13),11),14),16),17),15)], Y

where Ig is an 8 x 8 identity matrix. The effects of the eqs.
(10) and (11) are presented in Figure 7.

3.3 Quantum gate implementation circuit indicators

The quantum cost and delay are two key indicators of non-
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fault tolerant circuits. According to refs. [23,24], the quan-
tum cost and delay of the elementary gates in the dashed
box in Figure 2 are identical. For fault-tolerant circuits, the
four key indicators are the T-depth, T-count, total depth, and
total count. The implementation circuit indicators of these
gates in Figures 3-6 are presented in Table 1. The data show

) AB®C) {7

| B) A® B) Do Sya bl

| 4) )
(@) (b)

Fan)
Y

(d)

Figure 5 Illustration of a Peres gate PG 1 showing (a) the quantum symbol
of PG1, (b) the implementation of PG1, (c) the optimal T-depth implemen-
tation of PG1, and (d) another optimal T-depth implementation of PG1.

CH%A-B@C) P Ore—{H}-

|B)—9—18) . —1 T:I TH

|[4)-@—4©5) S ————
(c)

B

o
I

(@) (b)
|B)—e—|B) — — PO p—1r—
|C)—pH489C) {H—P——{THP
|4)—@—4®B) r—eHTH—
(d) e) ®

Figure 6 Variants of the Peres gate PG2 and PG3 showing (a) the quan-
tum symbol of PG2, (b) the implementation of PG2, (c) the optimal T-depth
implementation of PG2, (d) the quantum symbol of PG3, (e) the implemen-
tation of PG3, (f) and the optimal T-depth implementation of PG3.

Figure 7  The relationships between the Peres and TR gates shown by (a)
TRI1 % PG1, (b) PGl « TR1, (c) TR2 + PG1, and (d) PG2 * TR1.

Table 1 Performance indicators of the gates in Figures 3-6

Indicators  Toffoli Fredkin TR1 TR2 PGl PG2 PG3
Cost 5 7 4 4 4 4 4
Delay 5 7 4 4 4 4 4
T-depth 3 3 3 3 3 3 3
Total depth 9 11 9 9 9 9 9
T-count 7 7 7 7 7 7 7
Total count 16 18 15 15 15 15 15
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that TR1, TR2, PG1, PG2, and PG3 exhibit better perfor-
mance than the Toffoli and Fredkin gates.

4 Quantum arithmetic operation circuit design

4.1 Quantum adder

A quantum adder implemented using the PG1 and TR2 gates
is presented in Figure 8.

Suppose that |b) = |b,_1b,—2 - bo), la) = |ap-1a,-2 - - - ap),
and |s) = [s,Sy,—1---So), then, the quantum adder imple-
mented the operation s = a + b. The executing processes
are described as follows.

(1) Step 1. The circuit in step 1 involves 2n — 2 XOR
gates and n PG1 gates. When the fault-tolerant circuit in Fig-
ure 5(c) is used for implementing the Peres gate PG1, step 1
shows a T-depth of 3n and a total depth of 8n+ 2. However, if
we use the circuit in ref. [40] (see Figure 3(b)) to implement
the Peres gate, the circuit in step 1 shows a T-depth of 4n and
a total depth of 9n. After step 1, the input state is transformed
to the following:

1
) (@ v el @ ) Isodlao),

S
~
a
A\

> D ‘Sv1*l>

a,,,1> N> i @ D ‘I’ a,,,1>

bH> ® ® & s,,72>

aH>j—4>—LIP@—£—0—L a,,)

. . | .. . L .
|a,) &— ' © D |a,)
) © : 3—5-1s)
) Lﬁi—ﬁ@ o—ob—da)
|B0) O : * [5)
@) be ! o o)
Stepl | Step2
(a)
0) @ @ |55)
) —o ® o)
la,) —e—o i 0 P—e—|a,)
5 3 ¢ e
}a;i o o O—@-o—e }a3>>
b, & S,
) b L)
A a— —
: A
b, O * Sy
) + ©d )
(b)
Figure 8  (Color online) Diagram showing (a) the implementation circuit

of the quantum adder, and (b) a 5-bit quantum adder.
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where

{Ci =a,1bi_1 ®bi_icis1 ®aj—1ci-1,2 < i< n, (12)

Cc1 = aob().

(2) Step 2. The circuit in step 2 involves n — 1 TR2 gates
and 3n — 4 XOR gates with a T-depth of 3n — 3 and a to-
tal depth of 8n — 5. After step 2, the output is as follows:

50) ® (s lai)

Tﬁus, the proposed quantum adder has a T-depth of 6n — 3
and a total depth of 16n — 3. An example of the quantum
adder is presented in Figure 8(b).

4.2 Quantum modular adder

We can modify the circuit of the quantum adder to ob-
tain a quantum modular adder. The quantum modular
adder implemented the operation s = (a + b) mod 2", where
|s) = |Sp—1---S0). An example of a quantum modular adder
is presented in Figure 9.

The quantum modular adder comprises n — 1 PG1 gates,
n—2 TR2 gates, and 5n — 10 XOR gates. Thus, the proposed
quantum modular adder has a T-depth of 6n — 9 and a total
depth of 16n — 19.

4.3 Quantum modular subtractor

By substituting TR1 and PG2 for PG1 and TR2 in the cir-
cuit of the quantum modular adder, we obtain the circuit of
the quantum modular subtractor. The quantum modular sub-
tractor implemented the operation d = (b — a) mod 2", where
|d) = |dy-1 - - - dp). An example of the quantum modular sub-
tractor is presented in Figure 10.

The quantum modular subtractor contains the n — 1 TR1
gates, n — 2 PG2 gates, and 5n — 10 XOR gates, with a T-
depth of 6n — 9 and a total depth of 16n — 19.

4.4 Quantum comparator and quantum carry circuit

The quantum comparator implemented is presented in Fig-
ure 11(a) using the TR1 and PG1 gates. ¢ shows the result
of the comparison of two numbers, i.e., if b > a, ¢ = 0;
otherwise, ¢ = 1. The executing processes are described as
follows:

(1) Step 1. The circuit in step 1 contains the 2n — 1 XOR
gates and n TR1 gates. When the fault-tolerant circuit in Fig-
ure 4(e) is used to implement the TR1 gate, step 1 shows a
T-depth of 3n and a total depth of 8n + 3. After step 1, the
input state is transformed to the following:

2
ot @,1)( & 1ar @ e lbiot @ ei1)) lay @ 1) 1do) o
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Figure 9 A 5-bit quantum modular adder.
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Figure 10 Illustration of a 5-bit quantum modular subtractor.
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Figure 11  (Color online) Diagram showing (a) quantum comparator, and

(b) quantum carry circuit.

where

ey =

aob().

{ei =ai-1bi-1 ®bi_iei_1 ®aj_1ei-1,2 <i<n,

13)
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(2) Step 2. The circuit in step 2 involves the 2n — 3 XOR
gates and n — 1 PG1 gates. When the fault-tolerant circuit in
Figure 5(d) is used to implement the PG1 gate, step 2 shows
a T-depth of 3n — 3 and a total depth of 8n — 6. After step 2,

0
the output is as follows: |c) ® | |bi)la;) .
The proposed comparator’s T-depth is 6n — 3 and the total
depth is 16n — 3.
Swapping TR1 and PG2 in the circuit of the compara-

tor, we obtain the quantum carry circuit presented in Fig-
ure 11(b). The carry circuit implemented is expressed as:

0 0
0) ® 1bi)laiy = lca) ® |bi)lai),
i=n—1 i=n—1

where ¢, = 1fora+b >2",andc, =0 fora+ b < 2"

When the fault tolerant circuits in Figures 5(c) and 4(f) are
used to implement the PG1 and TR1 gates, respectively, the
proposed carry circuit also shows a T-depth of 6n — 3 and a
total depth of 16n — 3.

4.5 Controlled quantum adder

The controlled quantum adder implemented the operation
t = da + b, where [t) = |tyt,_1 - ty), |a) = |ap_1a,_2 ... ag),
and d € {0,1}. For n = 1, we designed a gate named CA in
Figure 12, which implemented the following:

|d} 10 1bo) lao) — |d) |t} It0) lao) -

The optimal T-depth circuit of CA is presented in Fig-
ure 12(c), with a T-depth of 9 and a total depth of 26.

When n > 1, the circuit of the controlled quantum adder
is exhibited in Figure 13, and the executing processes are de-
scribed as follows.

(1) Step 1. The circuit in step 1 contains the 2n — 3 XOR
gates, Toffoli gate, CA gate, and n — 1 PG1 gates. When the
fault-tolerant circuit in Figure 5(c) is used to implement the
Peres gate PG1, step 1 yields a T-depth of 3n + 9 and a total
depth of 8n + 29. After step 1, the input state is transformed
to the following:

1
@) 1) a1 @ an-)( ©_151@ il @ i) lao @ bo) o)

where ¢; is presented in eq. (12).

(2) Step 2. The circuit in step 2 involves the n — 1 TR1
gates, n — 1 Toffoli gates, and 2n — 3 XOR gates with a T-
depth of 6n — 6 and a total depth of 1917 — 19. After step 2,

0
the output is expressed as |d) |t,) ® (|t;)|a;)).
i=n—1

The proposed controlled adder shows a T-depth of 9n + 3
and a total depth of 271 + 10.

280311-7
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Figure 12 Representation of the gate CA showing (a) the quantum symbol,
(b) the implementation of CA, and (c) the optimal T-depth implementation.

|d) T H |d)
‘0> © CA : t”>
b,,,l>? . ? t)
a, ) -eed o H1o ©-o—|a, )
e o D

SR K

Vany

vy
B OR%)
D
~ s
=8
2

S
b
D
o0

Step 1 Step 2

Figure 13  (Color online) Quantum controlled adder for n > 1.

4.6 Controlled quantum modular subtractor

The controlled quantum modular subtractor implemented the
operation [ = (b — da) mod 2", where |[) = |[,— - - 1ly), and
d € {0,1}. The circuit of the controlled quantum modular
subtractor is presented in Figure 14. The executing processes
are described as follows.

(1) Step 1. The circuit in step 1 comprises the 2n — 6 XOR
gates, n — 1 TR1 gate, and a PG3 gate, with a T-depth of 3n
and a total depth of 8n. After step 1, the input state is trans-
formed to the following:

1
D)D) lar1 @ eny @) © bi@enias@e)
X 1bo ® ao) lao) ,

where ¢; is presented in ref. (13).

(2) Step 2. The circuit in step 2 contains the n — 1 TR1
gates, n — 1 Toffoli gates, and 2n — 3 XOR gates with a T-
depth of 6n — 6 and a total depth of 19n — 19. After step 2,

0
the output is expressed as |d) |£,) ® ](Iti) lai)).

The proposed controlled modular subtractor shows a T-
depth of 9n — 6 and a total depth of 27n — 19.

4.7 Controlled quantum modular adder

The controlled quantum modular adder implemented the op-
eration t = (da + b) mod 2", where |t) = |t,_1 - t1ty), and
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d € {0, 1}. By exchanging the order of the TR1 and PG1 gates
in Figure 14, we obtain the circuit of a controlled quantum
modular adder. An example of a controlled quantum modu-
lar addition is presented in Figure 15.

The proposed controlled modular adder possesses a T-
depth of 9n — 6 and a total depth of 27n — 19.

4.8 Quantum multiplier

For convenience, the notations for the quantum arithmetic op-
m—1 X

erations are listed in Figure 16. Sinceaxb = Y, a; X b x 2!,
i=0

an m-bit multiplication can be implemented by n-controlled

additions. To implement the multiplication, we designed a
quantum multiplier circuit presented in Figure 17(a) using
controlled quantum adders. The multiplier implemented the
following:

lay [0Y**" by — lay |p) Ib),

where p = a X b, a = ay_---a1ap, b = b,_1 ---b1by, and
P = Pm+n-1"""P1D0-

For n = m, the proposed multiplier shows a T-depth of
91 — 3n — 3 and a total depth of 27n” — 34n + 19.
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Figure 14 (Color online) The controlled quantum modular subtractor.
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Figure 15 A 5-bit controlled quantum modular adder.
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Figure 16 Notations for the quantum arithmetic operation circuits, includ-
ing (a) quantum adder, (b) quantum modular adder, (c) quantum modular
subtractor, (d) controlled quantum adder, (e) controlled quantum modular
adder, (f) controlled quantum modular subtractor, (g) quantum comparator,
(h) quantum carry circuit, and (i) quantum multiplier. +, and —, are the
symbols of the modular 2" addition and subtraction, respectively.

Figure 17
the circuit of the quantum multiplier for m = 1.

Ilustration of (a) the circuit of the quantum multiplier and (b)

4.9 Comparative analysis of the quantum arithmetic op-

eration circuits

The quantum cost, delay, ancilla, and width are the key per-
formance indicators of non-fault tolerant circuits. Mean-
while, the T-depth, total depth, T-count, total count, and an-
cilla are the principal performance indicators of fault-tolerant
circuits. Using the fault-tolerant circuits in Figure 3 to im-
plement the Toffoli and Fredkin gates, we can obtain perfor-
mance indicators for the quantum arithmetic operations pre-
sented in Tables 2 and 3.

Since (b — a)ymod 2" = (b+a) mod 2", where b de-
notes bitwise implementation, the modular subtractors in
refs. [31,45] add to the 2n NOT gates to produce the modular
subtractor. From Table 2, we observe that the proposed arith-
metic operations are superior to the corresponding operations
in refs. [26,30,31,34-36,45,47].

Three adders and a comparator in refs. [27-29] display
logarithmic T-depths. For simplicity, we consider only the
Toffoli gates in the four circuits previously stated, and the
Peres and TR gates in the circuits. Their comparisons in
Table 3 demonstrate that the adders and the comparator in
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refs. [27-29] show smaller T-depths than that proposed in
this study for high n. However, these require many ancil-
lary qubits and enormous T-counts. Figure 18 shows that
the T-depth of the proposed adder is lower than those stated
in refs. [27-29] forn < 16, n < 50, and n < 90, re-
spectively. The circuits for the adders and the comparator
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with their comparison data presented in Table 4. We can see
from Tables 3 and 4, and Figure 18 that the proposed adder
and comparator are superior to the others when n is a low
number. Since grayscale and RGB color images use 8 and
24 bits to represent a color, respectively, the operation num-
bers are not high for image processing. Furthermore, few

(n =10, n = 8, or n = 7) are provided in refs. [27-29], ancillary qubits are also essential for efficient quantum image
Table 2 Comparisons of quantum arithmetic operations
Quantum arithmetic operations Cost Delay T-depth Total depth T-count Total count Ancilla Width
proposed 13n - 10 10n -4 6n-3 16n-3 14n -1 35n-21 0 2n+1
Adder [26]2 24n - 10 24n - 10 12n-6 40n - 18 28n - 14 68n — 32 n+1 3n+1
[301» 17n-12 10n 6n-3 18n -4 14n -7 39n - 23 1 2n+2
[34]9 13n - 10 11n-6 6n-3 18n -8 14n-17 35n-21 0 2n+1
proposed 13n-22 10n - 14 6n-9 16n - 19 14n - 21 35n—-55 0 2n
Modular adder [301” 17n - 28 10n - 10 6n-9 18n —22 14n -21 39n - 61 1 2n+1
3119 l6n - 14 15n - 13 6n-6 23n-21 l4n - 14 381 - 36 1 2n+ 1
proposed 13n-22 10n - 14 6n -9 16n-19 14n - 21 35n-55 0 2n
Modular subtractor [301» 19n — 28 10n -8 6n-9 18n-2 14n - 21 41n-61 1 2n+1
3119 18n—14 15n - 11 6n-6 23n-19 14n - 14 40n - 36 1 2n+1
proposed 12n-8 10n -4 6n-3 16n-3 14n -7 34n-19 0 2n+1
Comparator [30]” 18n -8 10n+1 6n-3 18n-3 14n-17 40n - 19 1 2n+2
[36] 14n+1 14n + 1 6n 22n+1 14n 36n+1 1 2n+2
proposed 17n 15n+4 In+3 27n + 10 2ln+5 50n+9 0 2n+2
Controlled adder 3519 24n+5 197+ 10 on+6 40n + 18 28n+7 68n + 16 1 2n+3
[47]® 19n +4 17n+17 on+6 29n+ 15 21n+ 14 52n+26 1 2n+3
proposed 17n-18 15n-12 on-6 27n - 19 2ln- 14 50n - 50 0 2n+1
Controlled modular adder 3119 24n - 14 197 -9 9n-3 3ln-13 28n - 14 68n — 36 1 2n+3
(451 19— 16 17n-12 9n-6 291 — 20 21n - 14 52n-48 0 2n+1
proposed 17n - 18 15n - 12 9n -6 27n - 19 2ln—-14 50n - 50 0 2n+1
Controlled modular subtractor 3119 26n — 14 19n =17 9n -3 3ln-11 28n — 14 70n — 36 1 2n+3
(451 21ln—-16 17n - 10 In-6 29n - 18 21n - 14 54n — 48 0 2n+1
proposed 17n%~12n 150> —6n+4 9n?-3n-3 27n*=34n+19 21n*-9n-5 50n%—84n+50 0 4n
Multiplier 3517 30n%—4n+3 19n%+16n-6 92 +6n 40n%+24n-6 28n*+7n 74n*+Tn+3 1 4n+1
[471® 1972~ 10n—4 17n%+19n+7 9n?-6 29n%-5n-15 21n*-14 52n%-10n-26 1 dn+1

a) is the design by Vedral et al. [26] in 1996; b) is the design by Cuccaro et al. [30] in 2004; c) is the design by Thapliyal and Ranganathan [34] in 2013; d) is the design by
Thomsen et al. [31] in 2013; e) is the design by Xia et al. [36] in 2018; f) is the design by Jayashree et al. [35] in 2016; g) is the design by Munoz-Coreas and Thapliyal [47] in 2019;
h) is the design by Thapliyal et al. [45] in 2016.

Table 3 Comparisons of adder and comparator for n > 16

Adder and comparator Cost Delay T-depth Total depth T-count Total count Ancilla Width
proposed 8n—4 8n—4 6n-3 14n-3 14n -7 30n - 15 0 2n+1
Adder 271V (=) 50n 20logn + 40 121logn +24 36logn +72 70n 160n 2n 4n
2817 (») 145n 150logn 90logn 270logn 203n 464n 3n/logn 2n + 3nflogn
2919 (=) T0n 90logn S54logn 1621ogn 98n 224n 3n/logn 2n + 3nflogn
proposed 8n—4 8n—4 6n-3 14n-3 14n -7 30n - 15 0 2n+1
Comparator
[281” (») 30n 10logn + 25 6logn + 15 18logn + 45 42n 96n 2n 4n
a) is the design by Draper et al. [27] in 2004; b) is the design by Takahashi and Kunihiro [28] in 2008; ¢) is the design by Takahashi et al. [29] in 2009.
Table 4 Comparisons of examples of adder and comparator
Adder and comparator Cost Delay T-depth Total depth T-count Total count Ancilla Width
proposed (n = 10) 120 96 57 157 133 329 0 21
[27]¥ (n = 10) 359 105 60 185 441 1052 14 35
Adder proposed (n = 8) 104 76 45 125 105 259 0 17
[281Y (n = 8) 322 107 60 197 350 872 7 24
[2919 (n = 8) 356 134 69 226 399 983 7 24
proposed (n = 7) 76 66 39 109 91 219 0 15
Comparator
281 (n=7) 172 59 33 103 203 491 9 24

a) is the design by Draper et al. [27] in 2004; b) is the design by Takahashi and Kunihiro [28] in 2008; c) is the design by Takahashi et al. [29] in 2009.
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n bit
Figure 18  (Color online) T-depth of the proposed adder and three that
already exist. Note: 1 is the design by Draper et al. [27] in 2004; 2 was

designed by Takahashi and Kunihiro [28] in 2008; and 3 was introduced by
Takahashi et al. [29] in 2009.

processing algorithms. Therefore, the proposed arithmetic
operations are more suitable for quantum image processing.

S Quantum image operators

In this section, considering a 2"7* x 2 image is stored in the
GNEQR state |‘I‘:’Lk’k> in eq. (4), we describe the implemen-
tation of quantum image operators using elementary quantum
arithmetic operations. We simulate the image operations with
a classical computer running in MATLAB R2017a, and Win-
dows 7, with 64 GB RAM.

5.1 Cyclic translation of a quantum image

Using the modular adder and the modular subtractor in Fig-
ure 16, we designed the implementation circuits of the cyclic
translation of the quantum image in Figure 19. After the
cyclic right translation, the output is expressed as:

1 2nk_12k—1 ]
— |£(x, ) 1x) [y + @) mod 2°) ||a) .
P 2, | )

Similarly, after the cyclic left translation, the output is as
follows:

1 2nk_12k—1 ]
lf e, 1)) 1x) [y — @) mod 2)|la) .
[@ x=0 y=0 | >

When a = 7 and a binary image of 32 x 32 are the input,
simulation results are presented in Figure 20.
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5.2 The local cyclic translation of quantum image

Using the controlled modular adder and the controlled mod-
ular subtractor in Figure 16, we designed the implementation
circuits for the local cyclic translation of a quantum image in
Figure 21.

The circuits in Figure 21 transform the input |‘I’n’”7k!k> |a)
into the following:

2117/‘_1 2/(—1 -1

1
N ZO 20] e 9 mod 2|y,
x= y=
1 on—k_1 ok=1_1
\/? ZO Z; lf(x, ) 1x) |zz mod 2k—1> ay |
X= y=
and
1 on—k_1 ok-1_1
N Z; 1f(x,3)) %) |23 mod 2k—1> .
x= y=
em o
) [ e ek
\a)#MADD: ) k| wsup —

Figure 19  Cyclic translation of a quantum image showing (a) the cyclic
right translation and (b) cyclic left translation of images.

£
A |G AP |¢

(a) (b) (©)

Figure 20 Simulation results of cyclic translation of a quantum image for
(a) an original binary image of 32 x 32, (b) the cyclic right translation, and
(c) the cyclic left translation.

, m ,m
, n—k , n—k
m n m
‘q}nfk,k> { ‘\P”*A~k> {
k=1 k=1
‘a> k —1|MADD ‘a> k—1|MSUB
(a) (b)
m
n—k
[0
k=2
|a) -+k=2|{MADD | [MADD
(c)
Figure 21  Local cyclic translation of a quantum image for (a) the local

cyclic right translations of a quantum image, (b) the local cyclic right trans-
lations of a quantum image, and (c) combination translation.
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where z; = y| + ji-d, 22 = Y1 — Jie@, 73 = Y1t a+ jra,
ly) = L) Iy1), and ji € {0, 1}.

Let a = 5 and a binary image of 32 x 32 in Figure 22(a)
be the input. The results after shifting the right side of the
original image right and left by 5 pixels, respectively, are
presented in Figure 22(b) and (c). Figure 22(d) shows that
complex cyclic translations can be implemented by combin-
ing quantum arithmetic operations.

5.3 Complete quantum image translation

By substituting TR1 and PG2 for PG1 and TR2 in the cir-
cuit of the quantum adder, we obtain the inverse circuit of the
quantum adder, which is named IADD. The IADD imple-
mented the modular subtraction and the borrow operation of
the most significant qubit. Using the carry circuit, the adder,
the comparator in Figure 16, and the IADD, we designed
the implementation circuits for the complete translation of a
quantum image in Figure 23. The circuits in Figure 23 trans-

form the input |0)®" |‘I’:’f_k,k> |a) |0) into the following:

| 2 [2ka1
— Lf G ) 1F ey 1) |y + a)
= b

y=0
2k
+-§]mmvmwnm@+mmwzﬁhmm,<M)
y=2k—a
and
| 2Lt (ad
= & [Z(; 10)*™ | (x, 1)) 1) |7 — @) mod 2°)
2k—1
+ |ﬂ%MUUJ»MW—®yWM~ (15)
y=a

Egs. (14) and (15) show that the translated region is filled
with zeroes. Next, we use the measurement method in ref.
[54] to read out transformed images. When a = 3 and a bi-
nary image of 16 x 16 are the input, the simulation results are
presented in Figure 24.

5.4 Scalar multiplication of a column vector

We can see from eq. (3) that l‘I’Z’) can store a 2" X 1 col-
umn vector. Therefore, using the multiplier in Figure 16, we
designed the implementation circuit for the scalar multiplica-
tion of the column vector in Figure 25(a), which implemented
the following:

-1
1

O m+h \Pm — - - - - ,
lay 10y ¥y — lay ® NiT ;lam» LFGD 1D
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where a is an integer of & bits.

Fora =2, h =2, m =4, and n = 3, an example of scalar
multiplication is presented in Figure 25(b).

@ L

(a) (b) (c) (d)

i

]

Figure 22  Simulation results for local cyclic translation of a quantum im-
age showing (a) an original binary image of 32 x 32, (b) the local cyclic
right translation, (c) the local cyclic left translation, and (d) the combination
translation.
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Figure 23 Complete translation of a quantum image showing (a) the com-
plete right translation of a quantum image and (b) the complete left transla-
tion of a quantum image.

(a) (b) (c)

Figure 24 Simulation results of the complete translation of a quantum im-
age for (a) an original binary image, (b) the complete right translation, and
(c) the complete left translation.

@) b

‘()>®””h7MMULf 2x[15 14 13 12 11 10 9 8]
N — - =[30 28 26 24 22 20 18 16]T

N r—

(a) (b)

Figure 25 The scalar multiplication of a column vector for (a) the circuit of
the scalar multiplication and (b) the simulation of the scalar multiplication.
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Table 5 Comparisons of quantum image operations

Sci. China-Phys. Mech. Astron.

August (2020) Vol. 63 No. 8

280311-12

Quantum image operations Cost Delay T-depth Total depth T-count Total count Ancilla Width
proposed 13n-22 10n - 14 6n-9 16n - 19 14n - 21 35n-55 0 3n+m
. . [20]2 on*2") on*2") on*2") on*2") on*2") on?2") 0 2n
Cyclic translation
[551 24n - 10 24n - 10 12n-6 40n - 18 28n - 14 68n - 32 n+1 4n+m+1
[56]° 24n - 10 24n - 10 12n-6 40n - 18 28n - 14 68n — 32 n+1 4n+2
Local cyclic translation proposed 17n =35 15n -27 9n—-15 27n - 46 21n-35 50n — 100 0 3n+m-1
L . proposed 25n+5m-18 20n+5m-8 12n+3m-6 32n+9m-6 28n+7m-14 69n+16m—40 1 3n+2m+1
Entire right translation
551 24n+10m-10 24n+10m-10 12n+6m-6 40n+18m-18 28n+14m-14 68n+32m-32 n+1 4n+2m+1
. ) proposed 25n+5m-18 20n+5m-8 12n+3m-6 32n+9m-6 28n+7m-14 69n+16m—40 1 3n+2m+1
Entire left translation N
[551% O(n*)+10m O(n*)+10m O(n?)+6m O(n*)+18m O(n*)+14m O(n?)+32m 3n+1 6n+2m+1
Scalar multiplication proposed 17m*~12m 15m*~6m+4 9m>-3m-3 27m*-34m+19 21m*-9m-5 50m>-84m+50 0 4m +n

a) is the design by Fan et al. [20] in 2016; b) is the design by Wang et al. [55] in 2015; ¢) is the design by Zhou et al. [56] in 2017.

5.5 Comparison analysis of quantum image operators

For comparison convenience, a 2" x2" image in 2™ gray levels
is the input. Meanwhile, a 2" x 1 vector is the input for scalar
multiplication, where each vector element contains m bits.
The performance indicators of the circuits for the proposed
image operations are presented in Table 5. Meanwhile, com-
parisons of the translations of a quantum image [20, 55, 56]
and the proposed translations are also presented in Table 5.

Table 5 contains the data showing that the proposed im-
age operations are superior to the corresponding operations
in refs. [20, 55,56]. Complete translations in ref. [56] are
unable to implement the reset of the carry and borrow bits,
i.e., exiting a garbage output. To avoid this drawback, we
used the quantum carry circuit and comparator to preserve
auxiliary quantum state |0) presented in Figure 23.

6 Conclusions

In this study, we designed optimal T-depth implementations
for the TR gate, Peres gate, and variants, which exhibited bet-
ter performance than the Toffoli and Fredkin gates. Next, we
produced efficient fault-tolerant circuits for quantum arith-
metic operations. Comparative analysis revealed that the pro-
posed arithmetic operations were superior to the existing cor-
responding operations. Meanwhile, the proposed adder and
comparator exhibited many advantages for ancillary qubits,
with circuit widths better than those of the existing corre-
sponding operations. Furthermore, the proposed arithmetic
operations were more suitable for quantum image processing.
We implemented quantum image processing operations us-
ing the quantum arithmetic operations. These quantum image
operations included cyclic and complete translations. Perfor-
mance analysis revealed that the cyclic and complete trans-
lations involved a maximum T-depth of 12n + 3m — 6. The
proposed cyclic translations produced 50% T-depth reduction
relative to existing best-known cyclic translation. We demon-
strated that the proposed image operations are efficient. As

future work, the results in this study will be extended and
applied in practical image processing, such as coding and de-
noising.
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