天然气中最大容许 水含量预测方法的比较

周 安* 罗光熹 (大庆石油学院石化系)

内容提要 本文用与水合物呈平衡的天然气中水含量的实测数据来考察两个预测天然气最大容许水含量的模型,计算结果表明,为了能更准确地应用这两个模型来预测与水合物呈平衡的天然气中水含量,模型参数需作少量的修正。

主题词 天然气 饱和水含量 最大值 预测

湿天然气可在温度高于 0°C 及较高的压力条件下形成固体的水合物,给天然气的加工、集输带来困难。因此天然气脱水,降低烃类混合物气体中的水含量就会减少水合物生成的危险。自然,准确预测给定天然气组成在一定温、压条件下最大可容许的水含量(即与水合物相平衡的气相水含量),对于天然气的加工过程具有十分重要的理论与实际意义。

近年来,国外对最大可容许水含量的预测方法多有报道^[1~3]。这些方法的共同点系从 Van der waals 和 Platteeuw 开发的理论出发,用基本热力学方程进行关联,再辅以实测的与水合物呈平衡的气相水含量的实验数据确定方程式中的参数,然后将方程式外推用于预测条件。本文试图对混合烃类天然气最大可容许水含量的预测方法进行评述。

Robinson 模型

从 Van der waals 和 Platteeuw 所提出的 气体水合物性质与其分子参数的通用关系出 发,求水在水合物 H 相与空的水合物晶格 β 相的化学位差:

$$\Delta \mu^{II} = \mu^{\beta} - \mu^{II} = RT \sum_{m} v_{m} \operatorname{Ln}(1 + \sum_{j} C_{mj} f_{j})$$
(1)

式中 v_m — 水合物的结构特性参数; f; — 水合物生成组分 j 在气相 中的逸度;

 C_{mi} \longrightarrow j 组分在 m 型大小洞穴中的 Langmuir 常数。

用以描述天然气水合物生成分子与洞穴 之间相互作用的 Langmuir 常数 C_{mj} ,以下式 积分表示:

$$C_{\rm mj} = {4\pi \over KT} \int_0^\infty \exp(-W(r)/KT) 4\pi r^2 dr$$
 (2)
式中 K —— Boltzman 常数; $W(r)$ —— 洞穴内水合物生成气

W(r)— 洞穴内水合物生成气 分子与其中心相距为 r时与周围水分子相 互作用能量的总和。

可用 Kihara 分子势能模型通过积分方程式 (2)确定 Langmuir 常数 C_{mj} ,详细计算可参考 文献 (4) (5)、(6)。

^{* 151400,}黑龙江省安达市。

在计算天然气中最大可容许水含量时, 可将方程式(1)写成用逸度表示的形式:

$$f_{W}^{H} = f_{W}^{\mu} \exp\left(-\frac{\Delta \mu^{H}}{RT}\right) \tag{3}$$

> /β— 水在空的水合物晶格(即 β相)中的逸度。

当相平衡时,水在水合物 H 相的逸度等于水 在与之平衡的气相逸度,故有:

$$f_{W}^{II} = f_{W}^{I} = y_{W} \varphi_{W}^{I} p \tag{4}$$

由方程式(3)和(4)可得到:

$$y_{w} = \frac{f \Re \exp(-\Delta \mu^{H}/RT)}{g \Re p} \tag{5}$$

显然,如果利用方程式(5)计算给定天然气于一定温度T、压力p下的最大可容许水含量,必须由实验数据归纳得出水在 β 相中的逸度与体系温度T、压力p的关系式。

文献(2)用以归纳实验数据的温、压范围 比较宽,温度范围为 233~267K;压力范围为 2.736~12.058MPa。若已知与水合物呈平衡 的天然气中水含量的实测数据,则可由方程 式(1)、(2)算出方程式(5)中的 $-\Delta \mu^{\prime\prime}/RT$; 选用一状态方程算出天然气组分的逸度了 及水的逸度系数 0%。从而由天然气中最大可 容许水含量的实测数据 yu 估算出 fi 。文献 [2]以温度作参数将 m 型结构的 fk 与 v 在半 对数坐标纸上标绘,对不同温度可得到斜率 不同的直线。将直线外推至零压下,可得到不 同温度下的 fk.。。后者表示零压条件下 β相 水的逸度。再以 5%。与温度的倒数标绘,同样 得到一直线。以温度 T 作参变量的 m 型结构 fk与压力 ν 标绘的斜率对温度T进行标绘, 同样得到一很好的线性关系。于是,水在空的 结晶晶格(β相)中的逸度 β 可表示为:

$$f_{w}^{g} = f_{w,0}^{g} + \left(\frac{dLnf_{w}^{g}}{d\nu}\right)_{\tau} \rho \tag{6}$$

式中对结构 I型,有:

$$f_{\text{fin}} = 18.062 - 6512/T \tag{7}$$

$$\left(\frac{d \ln f_{T}^{g}}{d p}\right)_{\tau} = 0.0001109T - 0.03192(8)$$

对结构 I型,有:

$$f_{W,0} = 14.269 - 5393/T \tag{9}$$

$$\left(\frac{\mathrm{dLn}f_w^2}{\mathrm{d}p}\right)_{\tau} = 0.00036T - 0.1025 (10)$$

根据天然气中最大可容许水含量的实测数据,经过上述方法归纳得到的方程(6)、(7)、(8)、(9)、(10),与方程式(1)、(2)、(5)一起可外推用于其它条件下的最大可容许水含量的预测。

Kobayashi 模型

文献[3]也是从 Van der waals 和 Platteeuw 所提出的固体溶液理论出发,将方程式(1)写成逸度表示的形式:

$$\operatorname{Ln}\frac{f_{W}^{"}}{f_{W}^{\theta}} = \frac{-\Delta\mu^{"}}{RT} \tag{11}$$

式中符号同前。当水合物 H 相与天然气相达到平衡时,则有:

$$f_{w}^{\prime\prime} = f_{w} = y_{w} \varphi_{w} v \tag{12}$$

下式给出压力对空的水合物晶格(β 相)水的逸度的影响:

$$fk = pk \varphi k \exp\left(\int_{\mathbb{R}^d} \frac{\overline{V}}{RT} dp\right)$$
 (13)

式中 μ— 水在空的水合物晶格(β 相)的饱和蒸汽压;

φ4— 用以校正 β 相中水的饱和蒸汽压与理想状态的偏差,因为 φ4 相对较小,故 φ4 取为 1.0;

▽ — 水合物中水的偏摩尔体 积,取自文献(7)值。

联解方程(11)、(12)、(13)可得到:

$$y_{W} = p_{W}^{\beta} \exp\left(-\frac{\Delta \mu''}{RT} + \frac{\overline{V}(p - p_{W}^{\beta})}{RT}\right) / \varphi_{W}^{\beta} p$$
(14)

用方程式(14)计算天然气中最大可容许 的水含量 yw 需先由实验数据求出 p4 与体系

温度 T 间的关系。

Kobayashi 采用 Sloan 所给出的 ¾ 与温度关系式:

对结构 I型:

$$p_w^2(\text{atm}) = \exp(17.440 - 6003.93/T)$$
 (15)

对结构 Ⅰ型:

$$p_{W}(atm) = exp(17.332 - 6017.64/T)$$

(16)

选用 SRK 状态方程,以方程式(1)、(2)、(14)、(15)、(16)即可计算天然气中最大可容许的水含量。

模型计算与实测数据的比较

为了让比较的基础更接近一致,用同一 SRK 状态方程计算水合物生成组分与水的 逸度。水分子与天然气中其它组分的交互作 用系数取同一文献[8]值。模型一、二计算结 果与实测天然气中最大可容许水含量的比较,见表 1。

表 1 模型一、二的计算结果与实测值的比较

组成(mol%): CH₄ 75.02,C₂H₆ 7.95,C₃H₈ 3.99, CO₂ 13.04⁽²⁾

压力 kPa	温度 K	含水量,摩尔分率×105		
		实测值	模型一	模型二
4497. 72	267. 1	9. 89	3. 74	13. 30
5855. 14	267. 1	8. 71	/	/
12064. 83	267. 1	6. 30	5. 94	27. 13
4457. 2	260. 9	5. 88	2. 05	7. 84
5834. 88	261. 2	5. 67	2. 05	8. 26
12044. 57	260. 9	4. 16	3. 86	20. 05
5855. 14	251. 8	2. 52	0. 83	3. 83
4497. 72	249. 0	2. 06	0. 60	2. 68
12074. 96	249. 8	1. 84	1. 84	12. 11
4477. 46	243. 2	1. 05	0. 32	1. 54
5845. 01	243. 7	1. 03	0. 36	1. 84
12044. 57	243. 2	1. 05	1. 78	8. 98
12095. 09	237. 2	0. 452	0. 79	6. 85
12064. 83	233. 9	0. 250	0. 62	5. 84

续表1						
组成(mol) CH ₄ 87.0 CO ₂ 1.10	6,C₂H ₆ 7	′. 96 , C₃ H∎	3.88,			
10342. 73	277. 6	11.8	9. 97	35. 47		
3444. 2	277.6	25. 2	/	/		
10342.73	260. 9	2.84	2.67	12.93		
3444.2	260. 9	6.30	2. 27	8. 35		
10342.73	249.8	1.00	1.16	6.97		
3444. 2	249. 8	1.97	0.70	2. 93		
组成(mol)	%);CH4	94. 69,C ₃ 1	H ₈ 5.31 ^C	ı; *		
2067. 53	277. 15	42. 728	15. 860	47. 562		
2001100	266. 48	16. 199	5. 696	18.811		
	260. 04	8. 520	2.950	10.354		
	251.71	4. 154	1. 199	4. 572		
	246. 21	2. 428	0, 641	2. 587		
	234. 21	0.686	0.148	0.682		
3445.21	274. 65	18. 789	8. 431	26. 735		
	263. 15	7. 876	2.763	9.912		
	252. 04	2.750	0.861	3.506		
	246. 21	1.385	0.450	1.964		
	234. 21	0. 347	0.108	0.550		
6891.44	276. 15	10. 373	7. 290	24.612		
	263. 15	3. 578	2. 224	9.083		
	260.04	2.542	1.657	7.091		
	252.04	1. 225	0.765	3. 70		
	246. 21	0.703	0.431	2. 285		
	234. 21	0.192	0.133	0.859		
10336.75	277. 59	8.115	8.945	31.811		
	266. 48	2.675	3. 547	15. 483		
	260.04	1.467	2.067	10. 189		
	252.04	0.733	1.066	6.128		
	246. 21	0. 375	0.667	4. 304		
	234. 21	0.115	0. 272	2. 245		
组成(mol	%);CH,	100(1~2)				
3448. 25	240	1. 226	0.408	1. 37		
6895.49		0. 559	0. 244	1.47		
10342.73		0. 271	0. 228	2. 48		
3448. 25	250	3. 209	1.140	3. 747		
6895.49		1.541	0.674	3. 521		
10342.73		0.844	0.599	4.964		
3448.25	260	7. 804	2.990	9. 536		
6895.49		3.946	1.808	8. 094		
10342.73		2. 417	1.596	10.027		
3448. 25	270	17. 762	7.40	22.739		
6895.49		9.419	4.676	17. 822		
10342.73	[6. 405	4. 237	20.01		
	1	1	I	I		

续表 1

6964. 41	279. 59	22. 05	11. 19	36. 41
7067.77	280. 02	21.80	11.57	37. 49
7012.04	265.76	7. 39	3. 12	12.84
7033. 32	265. 65	7. 39	3.08	12. 73
6901.59	249. 98	2. 16	0.67	3. 52
6901.59	249.96	1.995	0.67	3.51
10301.21	277. 32	13. 59	8. 57	32.71
10239.40	277. 18	12.85	8.46	32. 33
10190.76	266. 07	4. 52	2.90	15. 14
10268.78	265. 93	4.31	2. 85	15. 07
10232.30	249.68	1.03	0.58	4. 79
10439, 02	249, 26	1.13	0. 56	4.77

* 此例中烃与水的交互作用系数采用文献[3] 值。

计算结果分析与讨论

对 2068~12065kPa 和 234~280K 范围 内四种组成气体 65 个数据点的考核计算表 明,模型一预测的最大可容许水含量与实测 值的平均偏差为 2.44×10⁻⁵(摩尔分率);模 型二的预测值与实测值平均偏差为 5.99× 10-5(摩尔分率)。可见,无论应用模型一或模 型二预测天然气中最大可容许的水含量,模 型参数均需作少量的修正。综上所述,可归纳 得出,用于预测天然气中最大可容许水含量 的计算模型,均是基于 Van der waals 和 platteeuw 所提出的固体溶液理论,应用热力学基 本原理推导得出算式。再以实测最大可容许 气体水含量的数据,归纳公式,确定计算式所 需的参数。归纳实验数据的方式也因推导公 式的不同而异。然后,再将有限实验数据范围 内所得到的参数,外推用于更广的天然气条 件。显然,计算模型的准确性除了与自身归纳 数据的可靠性有关外,还依赖于 Van der waals 理论及其 Kihara 分子势能参数的准确 性。但是,由于天然气中最大可容许水含量的 数值很小,常常低至10-5~10-6摩尔分率,精

确地测定数据报道不多。即使如此,以上述两 种模型规划实验,确定预测模型参数的方法, 将会显著地减少实验工作量;且在归纳实验 数据的温度 T、压力 p 范围内用以预测最大可 容许水含量也是较可靠的。我们的工作表明, 若在 ¼ 的算式中引入压力校正项,将会显著 改善计算结果的准确度。此外,基于固体溶液 理论,以 $\Delta \mu''$ 的算式出发推得的天然气中最 大可容许水含量的预测模型,只考虑了天然 气水合物牛成时 H 相与气相间的平衡关系, 这显然是 Robinson 和 Kobayashi 两个模型的 理论局限性。因此,可否直接由水合物生成条 件的计算模型出发,来开发计算天然气最大 可容许水含量的模型,是一个值得探讨的课 题。为此,我们从改进的 Holder—John 模型⁽⁶⁾ 出发,已开发出一种预测天然气中最大可容 许水含量的算法,将另文讨论。

参考文献

- J Dendy Sloan E, Fouad M Khoury, Rikl Kobayashi. Ind Eng Chem Fundam 1976; 15(4):318
- 2 Ng H J, Robinson D B. Ind Eng Chem Fundam, 1980, 19:33
- 3 Kyoo Y. Song, Rikl Kobayashi. Ind Eng Chem Fundam 1982;21:391
- 4 Parrish W R, Prausnitz J M. Ind Eng Chem Process Des Dev 1972; 11:1
- 5 John V T, Papadopoulos K D, Holder G D. AICHE J 1985;31:252
- 6 杜亚和,郭天民. 石油加工. 石油学报,1988; 4(3):82
- 7 Von Stackelberg M, Muller H R. Elektrochem, 1954;58:25
- 8 Jan Munck, Steen Sjold-Jorgensen etal. Chem Eng Sci 1988;43(10):2661

(本文收稿 1993-07-20)

calculate condenate content and the geological reserves of condensate and dry gas in gas condensate reservoir.

Subject Headings: gas condensate reservoir, condensate, dry gas, content, equivalent, reserve.

STORAGE/TRANSPORTATION/SURFACE CONSTRUCTION

Ni Junile : Solar Energy Cooldown System of Liquified Petroleum Gas Storage Tank , NGI 13(6) , $1993:60\sim63$

Aimed at the defects of liquified petroleum gas storage tank with drenching cooldown system at home at present, and the features of long sunshine time in high temperature & rainless area, it is put forward to replace drenching cooldown system by solar energy cooldown system. Its composition, principle, working process, main equipments and the method of designing-calculating parameters are also introduced in this paper.

Subject Headings: liquified petroleum gas, storage tank, solar energy, cooldown system, design method.

Wang Yuchan: A New Method of Optimally Designing Transmission Line, NGI 13(6), 1993: $64 \sim$

Combining Signomial geometry program method with grey correlation analysis method, a new calculation method of optimally designing transmission line is set up and the computation software GPGR is worked out in this article. The calculation shows that the method can optimally seek out the best scheme which not only satisfies the technological requirements but is economical and reasonable. It is superior to the traditional comparison method and has application value.

Subject Headings: transmission line, optimal design, Signomial geometry program, grey correlation analysis method, compulation software.

GAS PROCESSING AND CHEMICAL TECHNOLOGY

Zhang Juan seng and Zhang Huae: Super Claus Sulfur Recovery Technique, NGI 13(6), 1993; 70.

Based on introducing the principle and feature of super Claus sulfur recovery technique, this paper expounds the construction and moving situation of super Claus device abroad. It is shown changing the instruments, equipments, pipeline and control system of conventional Claus device into those of super Claus device to provide a reference for importing and transforming the existing Claus devices at home.

Subject Headings; sulfur recovering, super Claus, catalyst, device transforming.

Zhou An and Luo Guangai; Comparing the Forecast Ways of Maximum Water Content in Natural Gas, NGI 13(6), 1993:75~78

The data from testing the hydrate balancing with natural gas water content are used to verify the

two models of forecosting the maximum water content in natural gas. The result shows that in order to more accurately forecast the water content in natural gas by the two models, the model parameters should be slightly corrected.

Subject Headings: natural gas, saturated water content, maximum value, forecast.

Zhou An and Luo Guangzi: Calculating Natural Gas Water Content Balancing with Hydrate, NGI 13 (6), 1993: 79~83

The method of forecasting natural gas water content balancing with hydrate is described in this paper. Either the gas generated from hydrate is pure CH₄ or natural gas mixture. The forecast value tallies with the tested one by verifying the tested data of natural gas water content balancing with hydrate.

Subject Headings: natural gas, hydrate formation, gas-solid balance, saturated water content, mathematics model, calculation method.

REFORMS AND MANAGEMENT

Zhang Xiaosong: Developing China's Natural Gas Industry by Paying Equal Attention to Both Oil and Gas, NGI 13(6), 1993:83~85

The author considers the basic reasons why China's natural gas industry has been developing slowly are putting gas to attach to oil stressing the general characters of oil-gas but neglecting the differences of them. So only paying more attention to oil is also a important reason besides the adminstrive system price and related policies. On the basis of analysing the different characters of oil and gas, the countermeasures and advices of developing China's natural gas industry are put forward in this paper.

Subject Headings; oil, development, natural gas industry, advices.

Zeng Xudong: A Discussion on the Formation of Natural Gas Market, NGI 13(6), 1993:86~88

Natural gas should enter Market as a kind of commodities. It is the only way to set up and enter natural gas market for national gas production enterprises to change the management system. This paper discusses the market formation conditions, structure and functions and points out the several jobs which should be done for setting up the market.

Subject Headings: natural gas, commodity, market, management system.

EXAMPLE OF GAS WELL MANAGEMENT ON THE PRODUCTION FRONT NEWS IN BRIEF