
Theoretical Informatics and Applications
Theoret. Informatics Appl. 33 (1999) 309–328

MONOTONE (CO)INDUCTIVE TYPES
AND POSITIVE FIXED-POINT TYPES ∗

Ralph Matthes
1

Abstract. We study five extensions of the polymorphically typed
lambda-calculus (system F) by type constructs intended to model fixed-
points of monotone operators. Building on work by Geuvers concern-
ing the relation between term rewrite systems for least pre-fixed-points
and greatest post-fixed-points of positive type schemes (i.e., non-nested
positive inductive and coinductive types) and so-called retract types,
we show that there are reduction-preserving embeddings even between
systems of monotone (co)inductive types and non-interleaving positive
fixed-point types (which are essentially those retract types). The re-
duction relation considered is β- and η-reduction for system F plus
either (full) primitive recursion on the inductive types or (full) primi-
tive corecursion on the coinductive types or an extremely simple rule
for the fixed-point types. Monotonicity is not confined to the syntactic
restriction on type formation of having only positive occurrences of the
type variable α in ρ for the inductive type µαρ or the coinductive type
ναρ. Instead of that only a “monotonicity witness” which is a term
of type ∀α∀β.(α→ β)→ ρ→ ρ[α := β] is required. This term may al-
ready use (co)recursion such that our monotone (co)inductive types
may even be “interleaved” and not only nested.

AMS Subject Classification. 03B40, 68Q42, 68Q65.

Keywords and phrases: System F, monotonicity witness, monotone inductive type,
monotone coinductive type, retract type, primitive recursion, primitive corecursion, itera-
tion, coiteration.

∗ I am very thankful for support by the Volkswagenstiftung.

1 LFE für Theoretische Informatik, Institut für Informatik der Universität München, Oettin-
genstraße 67, 80538 München, Germany; e-mail: matthes@informatik.uni-muenchen.de

c© EDP Sciences 1999



310 R. MATTHES

1. Introduction

Our goal is to establish relations between extensions of system F (the polymor-
phic λ-calculus due to Girard [4] and Reynolds [10]) with
• inductive types,
• coinductive types and
• fixed-point types.

Why do we need to extend system F by these type constructs? The main problem is
that not (full) primitive recursion but only iteration on inductive types is modelled
by the impredicative encoding of inductive types in system F [5, 8]. Dually, only
coiteration on coinductive types but not (full) primitive corecursion is achieved by
the impredicative encoding of coinductive types.

In this paper, a “relation” shall mean a type-respecting reduction-preserving
embedding.

Definition 1.1. A type-respecting reduction-preserving embedding (embedding
for short) of a typed term rewrite system S into a typed term rewrite system S′
is a function −′ (the − sign represents the indefinite argument of the function ′)
which assigns to every type ρ of S a type ρ′ of S′ and to every term r of type ρ of
S a term r′ of the (image) type ρ′ of S′ such that the following implication holds:
if r→ s in S, then r′ →+ s′ in S′. (→+ denotes the transitive closure of →.)

In short, an embedding −′ is a pair of functions both denoted by −′ which are
compatible, and such that through −′ one rewrite step in the source system is sim-
ulated by at least one step in the target system. Obviously we have that a system
which embeds into a strongly normalizing system is itself strongly normalizing,
i.e., has no infinite reduction sequences. Setting up embeddings into strongly nor-
malizing systems is thus an efficient way of proving strong normalization for the
proposed extensions of system F which are
• the system NPI of non-interleaving positive inductive types,
• the system NPC of non-interleaving positive coinductive types,
• the system MI of monotone inductive types,
• the system MC of monotone coinductive types and
• the system NPF of non-interleaving positive fixed-point types.

In fact, we prove that all of them embed into each other which shows that w. r. t.
our notion of embedding, the above-mentioned defect of system F is overcome by
adding a subset of all possible positive fixed-point types and even arrive at full
primitive recursion and corecursion for any monotone (co)inductive type. More-
over, strong normalization for all the systems follows from strong normalization
of any of them. In [8] a direct proof of strong normalization is given for NPF,
and in [7] a direct proof for MI. It is an exercise to extend Takahashi’s confluence
proof [11] to these systems (see [7] for β-reduction in NPI; confluence is easy to
establish because of the absence of nontrivial critical pairs in all our systems; how-
ever, confluence is not inherited via embeddings). Hence, the equality theory of
all our extensions is decidable.



MONOTONE (CO)INDUCTIVE TYPES AND FIXED-POINT TYPES 311

2. The base system and its extensions

We introduce a version of system F and several extensions. They are typed
λ-calculi where every term has its type and the presentation of the term rules
strictly follows the idea of natural deduction proof systems.

2.1. System F

The version of system F we will use is in essence the same as in [5].
Types: We have infinitely many type variables (denoted by α, β, . . . ) and with

types ρ and σ we also have the product type ρ× σ and the function type ρ→ σ.
Moreover, given a variable α and a type ρ we form the universal type ∀αρ. The
quantifier ∀ binds α in ρ. The renaming convention for bound variables is adopted,
i.e., we syntactically identify types which only differ in the names of their bound
type variables. The result ρ[α := σ] of the substitution of σ for α in ρ is then
easily defined. Let FV(ρ) be the set of type variables occurring free in ρ.

The terms of F are presented without contexts and with fixed types (see [2]
p. 159 for comments on this original typing à la Church). We have infinitely many
term variables with types (denoted e.g. by xρ), pairing 〈rρ, sσ〉ρ×σ, projections
(rρ×σL)ρ and (rρ×σR)σ, λ-abstraction (λxρrσ)ρ→σ for terms, term application
(rρ→σsρ)σ, λ-abstraction (Λαrρ)∀αρ for types (under the usual proviso that α
does not occur free in the type of any variable free in r) and type application
(r∀αρσ)ρ[α:=σ]. We also write r : ρ for “the term r has type ρ”. We freely use the
(analogous) renaming convention for bound term and type variables of terms, e.g.
for defining the substitution of types for type variables in terms–written r[α := σ]–
and the substitution of terms for term variables of the same type in terms–written
r[xρ := s]–appropriately.

It turns out that a term variable in fact has to be defined as a pair consisting
of a variable name and a type. Hence, a slight ambiguity arises with the standard
practice of omitting type superscripts because the x in xρ is only an untyped
variable name. Nevertheless we follow the standard practice. The interested reader
may consult the discussion in [7], Sections 2.1.2 and 2.2.6. (In 2.1.2 the intricate
problem of dealing with terms having free variables of different types with the
same variable name is studied in great detail.) Let FTV(r) be the set of free type
variables in r and FV(r) be the set of term variables occurring free in r.

Definition 2.1. Beta plus eta reduction 7→ for system F is as usual given by

(β×) 〈r, s〉 L 7→ r
〈r, s〉R 7→ s

(η×) 〈rL, rR〉 7→ r
(β→) (λxρr)s 7→ r[xρ := s]
(η→) λxρ.rx 7→ r if x is not free in r
(β∀) (Λαr)σ 7→ r[α := σ]
(η∀) Λα.rα 7→ r if α is not free in r.



312 R. MATTHES

The reduction relation → is defined as the term closure of 7→. Obviously, r[x :=
s] → r[x := s′] if s 7→ s′ and r has exactly one free occurrence of x. We denote
the reflexive transitive closure of → by →∗. It is well-known that F has subject
reduction, i.e., if r : ρ and r → r′, then r′ : ρ. This will also be the case for all of the
systems to be defined in the sequel. Strong normalization of F is a famous result
by Girard [4] (eta reduction requires but a modification of the proof for beta
only or, alternatively, the result follows from strong beta normalization by eta
postponement). As mentioned in the introduction, confluence is easily established
by Takahashi’s method [11]. The type former → is assumed to associate to the
right and application to the left which fits well: ρ → σ → τ := ρ→ (σ → τ) and
rρ→σ→τ sρtσ := (rs)t.

2.2. Non-interleaving positive inductive types

The system which will be called NPI moreover has inductive types µαρ for α
only occurring positively (not necessarily strictly positively–i.e., we define nega-
tive occurrences in parallel with positive occurrences) in ρ and not free in some
subexpression µα′ρ′ of µαρ.

We now give a precise definition of the type system.

Definition 2.2. Inductively define the set NPTy of non-interleaved positive types
and simultaneously for every ρ ∈ NPTy the set NPos(ρ) of type variables which only
occur free at positive positions in ρ and are not in the scope of an application of
the µ-rule and the set NNeg(ρ) of type variables which only occur free at negative
positions in ρ and are not in the scope of an application of the µ-rule as follows:

(V) α ∈ NPTy and NPos(α) := all type variables, and NNeg(α) := all type
variables except α.

(×) If ρ ∈ NPTy and σ ∈ NPTy, then ρ× σ ∈ NPTy.
NPos(ρ× σ) := NPos(ρ) ∩ NPos(σ).
NNeg(ρ× σ) := NNeg(ρ) ∩ NNeg(σ).

(→) If ρ ∈ NPTy and σ ∈ NPTy, then ρ→ σ ∈ NPTy.
NPos(ρ→ σ) := NNeg(ρ) ∩ NPos(σ).
NNeg(ρ→ σ) := NPos(ρ) ∩ NNeg(σ).

(∀) If ρ ∈ NPTy, then ∀αρ ∈ NPTy.
NPos(∀αρ) := NPos(ρ) ∪ {α} and NNeg(∀αρ) := NNeg(ρ) ∪ {α}.

(µ) If ρ ∈ NPTy and α ∈ NPos(ρ), then µαρ ∈ NPTy.
NPos(µαρ) := NNeg(µαρ) := all type variables except those in FV(µαρ).

It is not hard to show that α ∈ NPos(ρ) ∩ NNeg(ρ) whenever α /∈ FV(ρ) and that
type substitution (with terms from NPTy) does not lead out of the set NPTy.

Intuitively, µαρ is the least fixed-point of the mapping σ 7→ ρ[α := σ].

Examples 2.3. Assume the canonical impredicative encodings 1 := ∀α.α → α
and ρ + σ := ∀β.(ρ → β) → (σ → β) → β (for β /∈ FV(ρ) ∪ FV(σ); ρ and σ
are at non-strict positive positions in ρ + σ which amounts to saying that α′,
α ∈ NPos(α′ + α); clearly, β /∈ NPos((ρ→ β)→ (σ → β)→ β)). Then the natural



MONOTONE (CO)INDUCTIVE TYPES AND FIXED-POINT TYPES 313

numbers are modelled by
nat := µα.1 + α

and the ρ-branching well-founded trees have the type (with β /∈ FV(ρ))

tree(ρ) := µβ.1 + (ρ→ β).

Hence, tree(nat) is the nested inductive type of “ordinals”. We rule out interleaving
of µ: writing list(ρ) := µβ.1 + ρ×β we do not have the type µα.list(α) in our type
system (although the dependency is only strictly positive): list(α) ∈ NPTy (every
type variable is in NPos(1 + α × β)), but α /∈ NPos(list(α)) = all type variables
except α.

For the same reason we do not have the type µα.1 + (tree(α) → α) which is
non-strictly positive and interleaving.

Obviously, also µα.α → α does not fit into the type system (NPos(α → α)
= all type variables except α).

How do we introduce (full) primitive recursion? Given a type µαρ ∈ NPTy
and a term s of type ρ[α := µαρ × σ] → σ, we follow [3] (taking its motivation
from initial algebras of functors in category theory) and postulate the existence
of a term Recµαρs such that the diagram in Figure 1 commutes. (Explanation:
Cµαρ “folds” ρ[α := µαρ] into µαρ and establishes one direction of the intuitive
isomorphism ρ[α := µαρ] ∼= µαρ, Id denotes the identity λxµαρx on µαρ, 〈·,·〉 is
pairing defined pointwise and ρ[·] shall mean the canonical lifting of λαρ to terms
discussed below. Composition is taken from simply-typed lambda-calculus.)

�[� := ���]
C���

//

�[hId;Rec���si]

��

���

Rec���s

��
�[� := ���� �]

s

// �

Figure 1. (full) primitive recursion.

In this preliminary version we would assume a constant Cµαρ having the type
ρ[α := µαρ] → µαρ and a term former Recµαρ such that for terms s of type
ρ[α := µαρ × σ] → σ, Recµαρs is a term of type µαρ → σ, and introduce the
equality axiom

(Recµαρs) ◦ Cµαρ = s ◦ ρ[〈Id,Recµαρs〉].
(We do not require Recµαρs to be unique with this property since we study
intensional equality.)

However, since our goal is the study of rewrite systems we have to direct this
equation. Moreover, some care has to be taken in order to get embeddings instead
of only equation-preserving translations. We therefore strictly adhere to a natural
deduction formulation. This directly leads to the following term formation rules
for NPI:



314 R. MATTHES

(µ-I) If t is a term of type ρ[α := µαρ], then Cµαρt is a term of type µαρ.
(µ-E) If r is a term of type µαρ and s is a term of type ρ[α := µαρ× σ]→ σ,

then rEµs is a term of type σ.
Hence, Cµαρ is not a constant but a term former (a unary function symbol) and
the infix notation rEµs is used in place of Recµαρsr.

The lifting ρ[·] of λαρ to terms deserves some attention:

Definition 2.4. Instead of defining a term ρ[r] of type ρ[α := σ]→ ρ[α := τ ] for
r : σ → τ we define a closed term lift+liftλαρ of type ∀α∀β.(α→ β)→ ρ→ ρ[α := β]
(for β /∈ {α} ∪ FV(ρ)) whenever µαρ is in NPTy, i.e., ρ ∈ NPTy and α ∈ NPos(ρ).
Because positivity and negativity are defined simultaneously, we have to define
in parallel auxiliary terms lift−liftλαρ : ∀α∀β.(α→ β)→ ρ[α := β]→ ρ for ρ ∈ NPTy
and α ∈ NNeg(ρ). The definition is straightforward by structural induction on ρ
thanks to the absence of interleaving. Throughout we assume that the variable f
has type α→ β (corresponding to the functional to be lifted).

(triv) If α /∈ FV(ρ), then lift+liftλαρ := lift−liftλαρ := ΛαΛβλfλxρx. All the other cases
are under the proviso “otherwise” (this is why there is no clause pertaining
to µ).

(V) lift+liftλαα := ΛαΛβλff . (Because α /∈ NNeg(α), there is no clause for lift−liftλαα.)
(×) lift+liftλα.ρ1×ρ2 := ΛαΛβλfλxρ1×ρ2 .

〈
lift+liftλαρ1

αβf(xL), lift+liftλαρ2
αβf(xR)

〉
.

lift−liftλα.ρ1×ρ2 := ΛαΛβλfλx(ρ1×ρ2)[α:=β].
〈

lift−liftλαρ1
αβf(xL), lift−liftλαρ2

αβf(xR)
〉

.

(→) lift+liftλα.ρ1→ρ2 := ΛαΛβλfλxρ1→ρ2λyρ1[α:=β].lift+liftλαρ2
αβf

(
x(lift−liftλαρ1

αβfy)
)

.

lift−liftλα.ρ1→ρ2 := ΛαΛβλfλx(ρ1→ρ2)[α:=β]λyρ1 .lift−liftλαρ2
αβf

(
x(lift+liftλαρ1

αβfy)
)

.

(∀) lift+liftλα∀γτ := ΛαΛβλfλx∀γτΛγ.lift+liftλαταβf(xγ).
lift−liftλα∀γτ := ΛαΛβλfλx∀γτ [α:=β]Λγ.lift−liftλαταβf(xγ).
(We may assume that γ 6= β.)

A definition which yields normal terms is shown in [7] pp. 73–75. Because we do
not allow for interleaving one only has to omit the case (µ). The reader also finds
a definition in [6] p. 311. Again one has to omit the µ-clause. Another place is [3]
p. 206 which essentially contains the definitions. Note that with interleaving the
definition would be much more involved as shown in [7] p. 78.

We are now in the position to extend 7→ by beta reduction for inductive types:

(βµ) (Cµαρt)Eµs 7→ s
(

lift+liftλαρ(µαρ)(µαρ× σ)(λxµαρ. 〈x, (λxµαρ.xEµs)x〉)t
)
.

The reason for writing (λxµαρ.xEµs)x instead of xEµs is only technical as will be
clear from the following

Example 2.5. Gödel’s system T in the variant with the initial term and the step
term as indices of the recursor may be embedded into NPI: some calculation will
show that

lift+liftλα.1+α →∗ ΛαΛβλfα→βλx1+αΛδλz1→δλzβ→δ1 .xδz(λzα2 .z1(fz2)).



MONOTONE (CO)INDUCTIVE TYPES AND FIXED-POINT TYPES 315

Define

0 := Cnat(Λδλx1→δλynat→δ.x(Λγλzγz)) : nat
S := λznat.Cnat(Λδλx1→δλynat→δ.yz) : nat→ nat.

Given terms a : σ and b : nat→ σ → σ we define Ra,b := λxnat.xEµs : nat→ σ with
s := λx1+nat×σ.xσ(λy1.a)(λynat×σ.b(yL)(yR)), where x, y /∈ FV(a)∪ FV(b). We get
the following reduction behaviour: Ra,b0→+ a and Ra,b(St)→+ bt(Ra,bt), where
the term Ra,b is indeed a subterm of the reduct. Therefore, primitive recursion
on naturals in all finite types is present in our system. Note that the embedding
would be easier to read if there were sum types in our system. They are coded
due to problems with Lemma 3.6 we want to avoid.

An elaborate comment concerning the relation to iteration is in order. Assuming
a term s of type ρ[α := σ] → σ we could introduce a term Itµαρs such that the
diagram in Figure 2 commutes.

�[� := ���]
C���

//

�[It���s]

��

���

It���s

��
�[� := �]

s
// �

Figure 2. Iteration.

More precisely, keep (µ-I) but replace the term formation rule (µ-E) by

(µ-E)i If r is a term of type µαρ and s is a term of type ρ[α := σ] → σ, then
rEiµs is a term of type σ.

The beta rule becomes

(βµ)i (Cµαρt)Eiµs 7→ s
(

lift+liftλαρ(µαρ)σ(λxµαρ.xEiµs)t
)
.

However, it is well-known that this reduction may be simulated within system F:
if ρ is mapped to ρ′, then µαρ will be mapped to (µαρ)′ := ∀α.(ρ′ → α) → α.
If σ, r and s are already mapped to σ′, r′ and s′, respectively, then rEiµs is
mapped to r′σ′s′. (In a sense, this easy encoding is built into (µαρ)′.) Finally, if
t : ρ[α := µαρ] is already mapped to t′ : ρ′[α := (µαρ)′], then Cµαρt is mapped to

Λαλzρ
′→α.z

(
lift+liftλαρ′(µαρ)′α(λx(µαρ)′ .xαz)t′

)
.

The translation of nat would be nat′ := ∀α.((1 + α) → α) → α. Intuitively, the
type ((1 + α) → α) → α is isomorphic to α → (α → α) → α. In order to get rid
of the coded sum type, we only show how the type natF := ∀α.α→ (α→ α)→ α



316 R. MATTHES

models iteration on naturals (we closely follow [5] Sect. 11.5.1). Set

0F := Λαλyαλzα→α.y : natF

SF := λxnatF Λαλyαλzα→α.z(xαyz) : natF → natF.

If a : σ and b : σ → σ, then 0Fσab →+ a and (SFt)σab →+ b(tσab). Hence, rσab
describes the function defined by iteration with initial value a and step function b
at the argument r. Modulo the sum types this is also the behaviour of (βµ)i for
nat. (Clearly, the pair of a and b corresponds to s(1+σ)→σ.)

Why do we get iteration via the above encoding? Set n := SF(. . . (SF︸ ︷︷ ︸
n

0F) . . . )

for n ∈ N. Clearly, n →∗ Λαλyαλzα→α. z(. . . (z︸ ︷︷ ︸
n

y) . . . ). Hence, the underlying

untyped lambda term of the numeral n is simply the n-th Church numeral and by
itself the iterator.

The term Ra,b from the previous example was more powerful in that b had the
type nat → σ → σ which allowed to access also the argument in the recursion.
We may try to produce an analogous term R′a,b within system F. The idea is to
define the identity on natF and the sought functional simultaneously by iteration:
R′a,b := λxnatF .xσa′b′R with a′ := 〈0F, a〉 and b′ := λznatF×σ. 〈SF(zL), b(zL)(zR)〉.

By induction on n we may show that nσa′b′L =β n and R′a,bn =β Ra,bn. Neither
do we see the correct reduction behaviour (only the correct equality), nor do we get
the desired equality for arbitrary terms of the form SFt. One might be interested
in numerals only. However, already the type tree(nat) cannot be understood by
confining the study to canonical inhabitants. Moreover–as pointed out in [5]–the
iteratively defined predecessor function would be linear in the input number!

It is generally believed that there will not be any other computable encoding
of nat in system F such that primitive recursion is simulated by F’s rewrite rules.

2.3. Non-interleaving positive coinductive types

For the system NPC we simply have to dualize the defining diagram of NPI.
This time we use the binder ν to form coinductive types of the form ναρ if α
occurs only positively in ρ and not free in any subexpression of ναρ of the form
να′ρ′. The type system hence is the same as for NPI but with a different name for
the binder. The intuition behind ναρ, however, is the greatest fixed-point of the
mapping σ 7→ ρ[α := σ].

Full primitive corecursion is again introduced as in [3] (now taking the
motivation from final coalgebras of functors): assume a (legal) type ναρ and a
term s of type σ → ρ[α := ναρ + σ] (we encode sum types impredicatively as
in NPI). Then as a first approximation to the syntax of NPC we postulate the
existence of a term CoRecναρs making the diagram in Figure 3 commute. (Eναρ
“unfolds” ναρ into ρ[α := ναρ] and establishes part of the intuitive isomorphism
ρ[α := ναρ] ∼= ναρ. Id, composition and ρ[·] are as before. [·,·] denotes case
distinction coded impredicatively.)



MONOTONE (CO)INDUCTIVE TYPES AND FIXED-POINT TYPES 317

�[� := ���] ���
E���

oo

�[� := ���+ �]

�[[Id;CoRec���s]]

OO

�
s

oo

CoRec���s

OO

Figure 3. (full) Primitive corecursion.

We would have a constant Eναρ of type ναρ → ρ[α := ναρ], a term former
CoRecναρ such that for terms s of type σ → ρ[α := ναρ+σ], CoRecναρs is a term
of type σ → ναρ, and the equality axiom

Eναρ ◦ (CoRecναρs) = ρ[[Id,CoRecναρs]] ◦ s.

Again, we prefer another syntax for NPC and extend the definition of the term
system of F by:

(ν-E) If r is a term of type ναρ, then rEν is a term of type ρ[α := ναρ].
(ν-I) If s is a term of type σ → ρ[α := ναρ+ σ] and t is a term of type σ, then

Ωναρst is a term of type ναρ.

Hence, we adopt a postfix notation rEν instead of the application of a constant
Eναρ to r and introduce Ωναρ as binary function symbol with result type ναρ
instead of the unary CoRecναρ of function type. (ν-E) is an elimination rule for
ναρ because a term of this type is fed in and (ν-I) is an introduction rule for ναρ
because a term of this type is generated.

The terms lift+liftλαρ and lift−liftλαρ are defined as before. (They are the same modulo
the new name ν for the binder because of the absence of interleaving which allows
to define the terms without reference to the new term rules.)

The relation 7→ of F is extended by beta conversion (βν) for coinductive types
as follows:

(Ωναρst)Eν 7→ lift+liftλαρ(ναρ+ σ)(ναρ)
(
λzναρ+σ.z(ναρ)Id(λxσ.Ωναρsx)

)
(st).

Note that the impredicative encoding of ναρ + σ enters the definition when the
variable z of sum type gets a type and two terms as arguments.

Example 2.6. A typical example would be the type stream := να.ρ × α (with
α /∈ FV(ρ) for some fixed type ρ) modeling streams of elements of ρ. Why streams?
Because we can associate with any term r of type stream an infinite sequence
(rn)n∈N of terms of type ρ. Simply set rn := rEνR . . .EνR︸ ︷︷ ︸

n

EνL. We first study

coiteration. For this we keep (ν-E) and change (ν-I) to

(ν-I)i If s is a term of type σ → ρ[α := σ] and t is a term of type σ, then
Ωiναρst is a term of type ναρ.



318 R. MATTHES

The beta rule becomes

(βν)i (Ωiναρst)Eν 7→ lift+liftλαρσ(ναρ)(λxσ.Ωiναρsx)(st).

We have lift+liftλα.ρ×α →∗ ΛαΛβλfα→βλxρ×α. 〈xL, f(xR)〉. Therefore, our coiteration
rule (βν)i gives us

(Ωistreams
σ→ρ×σtρ)Eν →+

〈
stL,Ωistreams(stR)

〉
·

We now exploit the type isomorphism between σ → ρ× σ and (σ → ρ)× (σ → σ)
and change the syntax to

(s-I) If s1 is a term of type σ → ρ, s2 is a term of type σ → σ and t is a term
of type σ, then Ωs1s2t is a term of type stream.

(βs) (Ωs1s2t)Eν 7→ 〈s1t,Ωs1s2(s2t)〉 .
This will give in essence the same behaviour of stream. Now, if r := Ωs1s2t, then
rn →∗ s1(s2(. . . (s2︸ ︷︷ ︸

n

t) . . . )).

Interpretation: the type σ represents the internal state space, s1 is the output
function and s2 the transition function while t is the initial state.

In [3] we find a general translation of coiteration (for “positive type schemes”)
into system F: if ρ is already translated into ρ′, then ναρ is translated into

(ναρ)′ := ∀β.(∀α.(α→ ρ′)→ α→ β)→ β.

For our example with (βs) we may modify this to

stream′ := ∀β.
(
∀α.(α→ ρ′)→ (α→ α)→ α→ β

)
→ β,

(Ωs1s2t)′ := Λβλz∀α.(α→ρ
′)→(α→α)→α→β .zσ′s′1s

′
2t
′ and

(rstreamEν)′ := r′(ρ′ × stream′)
(

Λαλyα→ρ
′

1 λyα→α2 λzα.

〈
y1z,

(
Ωy1y2(y2z)

)′〉)
.

Clearly, the primed types and terms are assumed to be already translated. Note
that the last clause refers to the last but one. All the other type rules and term
rules shall be given homomorphically.

It is easy to see that (Ωs1s2tEν)′ →+ 〈s1t,Ωs1s2(s2t)〉′. This shows the
embedding of coiteration into F for this example.

An example for the use of coiteration would be with σ := stream × stream,
s1 := λxσ.xLEνL : σ → ρ and s2 := λxσ. 〈xR, xLEνR〉 : σ → σ. Set r :=
Ωs1s2 〈a, b〉 for a, b : stream. Then r2n →∗ an and r2n+1 →∗ bn.



MONOTONE (CO)INDUCTIVE TYPES AND FIXED-POINT TYPES 319

For corecursion we similarly change the syntax to
(s-I)r If s1 is a term of type σ → ρ, s2 is a term of type σ → stream + σ and t

is a term of type σ, then Ωrs1s2t is a term of type stream.
(βs)r (Ωrs1s2t)Eν 7→ 〈s1t, s2t stream(λxstreamx)(λxσ .Ωrs1s2x)〉.

Hence, if s2 = λyσΛβλzstream→β
1 λzσ→β2 .z2(ŝ2y) for some ŝ2 : σ → σ, i.e., for s2

being the composition of the encoded right injection with ŝ2, we get the reduction
behaviour of iteration.

However, we may not only calculate a new state via s2 but also initiate an
arbitrary stream (in case s2 applied to the actual state happens to be in the
stream part of stream + σ): “the machine executes a new program”. In [3] we find
a very simple example with corecursion for inhabited types ρ, i.e., if there is a
closed term a : ρ. Set σ := stream, let t : σ. Set

r := λxσ.Ωr(λyσ.a)
(
λyσΛβλzstream→β

1 λzσ→β2 .z1(yEνR)
)
x.

The second argument to Ωr is the composition of the left injection into our sum
type with λystream.yEνR. Then (rt)0 →∗ a and for all n we have (rt)n+1 →∗ tn+1.
Hence, rt outputs the same stream as t but for the first element which is set to a.

If in general corecursion could be embedded into coiteration, then also into
system F and by the results of this paper (and also already by [3]) recursion would
also embed into system F and this is extremely unlikely.

2.4. Monotone (co)inductive types

We now abstract away from the canonically defined terms lift+liftλαρ whose types
∀α∀β.(α→ β)→ ρ→ ρ[α := β] simply express the monotonicity of λαρ internally.
Their existence previously has been guaranteed by the syntactic condition of pos-
itivity and absence of interleaving (the second of which is for reasons of simplic-
ity). We drop these conditions on formation of µαρ and ναρ and instead require a
monotonicity witness in the term formation rules (µ-E) and (ν-I) where a mono-
tonicity witness is simply an already generated term in the system having type
∀α∀β.(α→ β)→ ρ→ ρ[α := β]. This term is then used for the formulation of the
beta reduction rules (βµ) and (βν).

In this manner we arrive at the systems MI and MC of monotone inductive types
and of monotone coinductive types. More precisely, the types of MI are defined by
adding the quantifier µ (without restriction–i.e., any µαρ is a type if ρ is a type
and α is a type variable) to the type system of F. The term formation rules of F
are supplemented by

(µ-I) as for system NPI.
(µ-E) If r : µαρ, m : ∀α∀β.(α→ β)→ ρ→ ρ[α := β] and s is a term of type
ρ[α := µαρ× σ]→ σ, then rEµms is a term of type σ.

The new beta reduction clause:

(βµ) (Cµαρt)Eµms 7→ s
(
m(µαρ)(µαρ× σ)(λxµαρ. 〈x, (λxµαρ.xEµms)x〉)t

)
.



320 R. MATTHES

The witnessing term m need not be closed. If m is open, this becomes conditional
monotonicity or even hypothetical monotonicity (in case m is a variable). More
interesting are non-positive λαρ with closed witnesses as in the following

Example 2.7. As an example for a monotone inductive type we give

µα.1 + ((((α→ ρ)→ α)→ α)→ α)

for α /∈ FV(ρ) (an invention by Berger). It is quite easy to find a monotonicity
witness for λα.1 + (((α→ ρ)→ α)→ α)→ α although we do not have a positive
dependency due to the last but one occurrence of α (we omit type information):

ΛαΛβλfλxΛγλzλz1.xγz(λz2.z1(λz3.z3(λz4.f(z2(λz5.z5(λz6.z4(fz6))))))).

The types of MC are the same as those of MI but with the binder µ replaced
by ν. The corresponding term rules are as follows:

(ν-E) as for system NPC.
(ν-I) If m : ∀α∀β.(α→ β)→ ρ→ ρ[α := β], s : σ → ρ[α := ναρ+ σ] and t is a

term of type σ, then Ωναρmst is a term of type ναρ.

Accordingly, the rule (βν) of corecursion is

(Ωναρmst)Eν 7→ m(ναρ + σ)(ναρ)
(
λzναρ+σ.z(ναρ)Id(λxσ.Ωναρmsx)

)
(st).

2.5. Non-interleaving positive fixed-point types

The idea (according to [3], p. 214, due to Paulin-Mohring) is to take the simple
term formation rules (µ-I) and (ν-E), merge µαρ and ναρ to fαρ, and leave out
minimality and maximality altogether. The system NPF has the same type system
as NPI but with binder f (for fixed-point) instead of µ, i.e., fαρ is only allowed if
α occurs only positively in ρ and there is no interleaving. The term rules of NPF
extend F by:

(f -I) (Cfαρtρ[α:=fαρ]) : fαρ
(f -E) (rfαρEf ) : ρ[α := fαρ].

The beta rule expresses one half of the intuition that fαρ denotes a fixed-point of
σ 7→ ρ[α := σ]:

(βf ) (Cfαρt)Ef 7→ t.

As we only study this additional rule the name retract types as used in [3] would
be more appropriate. However, the canonical eta rule would be

(ηf ) Cfαρ(rEf ) 7→ r,

reflecting the other half of the above intuition. (In [8] it is shown that the system
with (ηf ) is strongly normalizing.)



MONOTONE (CO)INDUCTIVE TYPES AND FIXED-POINT TYPES 321

3. The embeddings

We have defined 5 extensions of system F (with eta rules) by type constructs,
corresponding term rules and beta reduction rules designed for the study of inten-
sional properties of fixed-points of monotone operators. We list them with a one
line description.

NPF Fixed-point types fαρ with α only positively in ρ and no interleaved f .
NPI Inductive types µαρ with α only positively in ρ and no interleaved µ.
MI Inductive types with arbitrary monotonicity witnesses and interleaving.
NPC Coinductive types ναρ with α only positively in ρ and no interleaved ν.
MC Coinductive types with arbitrary monotonicity witnesses and interleaving.

(N = no interleaving, P = positivity, M = monotonicity witness, F = fixed-point,
I = inductive, C = coinductive.)

Theorem 3.1. The systems NPF, NPI, MI, NPC, MC in the preceding section
embed into each other.

(See the definition of embedding in the introduction.)
The main corollary is strong normalization for all of them since NPF (and MI)

has been shown to be strongly normalizing before (again refer to the introduction).
Confluence for all of them holds but is no consequence of the embeddings (cf. the
introduction).

The proof will be organized as follows:

• NPF embeds into NPC because the canonical corecursive definition of the
constructor is well-behaved. In order to check that, we have to prove some
restricted version of functoriality of the terms lift+liftλαρ which in turn shows
the necessity of eta rules and explains why we restrict to non-interleaving
fixed-point types and do not include sum types explicitly in our systems.
• NPF embeds into NPI because we have a predecessor function (i.e., a

destructor) in NPI and also some functoriality of lift+liftλαρ.
• NPC embeds into MC, and NPI embeds into MI, because we may simply

take the canonical monotonicity witnesses lift+liftλαρ as the monotonicity witness
required in the term formation rules (µ-E) and (ν-I). We again profit from
the absence of interleaving.
• MC and MI embed into NPF: we first embed the systems into the extension

NPFex of NPF by the second-order existential quantifier. E.g., we translate
the types of MC via:

(ναρ)′ := fβ∃γ.(∀α.(β + γ → α)→ γ → ρ′)× γ,

where ρ′ is the translation of ρ. The additional quantifier for α does the
positivization and removes the interleaving of type variables.

The embedding of NPFex into NPF is done by the standard encoding of
the second-order existential quantifier in system F.



322 R. MATTHES

3.1. Embedding NPF into NPC

In order to embed the system with fixed-point types into that of coinductive
types, we have to encode the constructor via corecursion, i.e., we have to define a
closed term C : ρ[α := ναρ]→ ναρ such that for every term t of type ρ[α := ναρ],
we have that CtEν →+ t. Writing

r := lift+liftλαρ(ναρ)(ναρ+ ρ[α := ναρ])(λxναρΛαλyναρ→αλzρ[α:=ναρ]→α.yx)

which is nothing but the lifted left injection into the impredicatively encoded sum,
the solution is C := λxρ[α:=ναρ].Ωναρrx: We calculate (setting σ := ρ[α := ναρ])

CtEν →β→→βν lift+liftλαρ(ναρ + σ)(ναρ)
(
λzναρ+σ.z(ναρ)Id(λxσ.Ωναρrx)

)
(

lift+liftλαρ(ναρ)(ναρ+ σ)(λxναρΛαλyναρ→αλzσ→α.yx)t
)
.

We observe that(
λzναρ+σ.z(ναρ)Id(λxσ.Ωναρrx)

)
◦
(
λxναρΛαλyναρ→αλzσ→α.yx

)
= Idναρ,

where we write = for the transitive, reflexive and symmetric closure of → which is
the equality relation induced by→. The equation does not come as a surprise since
the left side is the composition of the left injection with a case construct which in
the left case reproduces its argument. Clearly, we now want lift+liftλαρ to fulfill the
functor laws, i.e., it should “map the identity to the identity and commute with
composition”. For our purposes we do not need full functoriality but we have to
consider reduction instead of the induced equality relation.

Lemma 3.2 (Restricted functoriality for sums).

lift+liftλαρ(σ + τ)σ(λzσ+τ .zσIdσr)
(

lift+liftλαρσ(σ + τ)(λxσΛαλyσ→αλzτ→α.yx)t
)
→∗ t

for any types σ and τ and terms r : τ → σ and t : ρ[α := σ].

Proof. By an easy induction on ρ. Simultaneously one has to prove a similar
statement on lift−liftλαρ for α only negative in ρ, namely

lift−liftλαρσ(σ + τ)(λxσΛαλyσ→αλzτ→α.yx)
(

lift−liftλαρ(σ + τ)σ(λzσ+τ .zσIdσr)t
)
→∗ t.

It is crucial that we included eta rules in our system. Moreover, if we had sum
types directly in our system, we would have to include permutative conversions
for them in order to cover the case that ρ is a sum type. Although permuta-
tive conversions do no harm to strong normalization, the proof of this fact has
some subtleties in it (see [9] for the case of simply-typed lambda-calculus). If we



MONOTONE (CO)INDUCTIVE TYPES AND FIXED-POINT TYPES 323

allowed interleaving, it would be even worse: we would be in need of permutative
conversions for coinductive types which seem to be completely unknown.

As an instance of the lemma we get that C serves as a constructor.

Definition 3.3 (Embedding NPF into NPC). Let ρ′ be ρ after replacing every
binder f by ν. Obviously, (ρ[α := σ])′ = ρ′[α := σ′] and FV(ρ′) = FV(ρ). For
every term rρ of system NPF define the term r′ of system NPC by recursion on
r and simultaneously prove (the proofs are omitted due to their simplicity) that
r′ : ρ′ and FTV(r′) = FTV(r) and FV(r′) = {xσ′ |xσ ∈ FV(r)} as follows:
(V) (xρ)′ := xρ

′
.

(×-I) 〈r, s〉′ := 〈r′, s′〉.
(×-E) (rL)′ := r′L. (rR)′ := r′R.
(→-I) (λxρr)′ := λxρ

′
r′, where we may assume due to the renaming convention

that for every xσ ∈ FV(r) we have σ = ρ.
(→-E) (rs)′ := r′s′.
(∀-I) (Λαr)′ := Λαr′. (Well-definedness follows from the claim on FV(r).)
(∀-E) (rσ)′ := r′σ′.
(f -I) (Cfαρt)′ := Ωναρ′rt′ with

r := lift+liftλαρ′(ναρ′)(ναρ′ + ρ′[α := ναρ′])(λxναρ
′
Λαλyναρ

′→αλzρ
′[α:=ναρ′]→α.yx).

(Recall that ρ′[α := ναρ′] = (ρ[α := ναρ])′).
(f -E) (rfαρEf )′ := r′Eν .

Lemma 3.4. (r[xρ := s])′ = r′[xρ
′

:= s′] and (r[α := σ])′ = r′[α := σ′].

Proof. By induction on r.

Lemma 3.5. If r → r̂ in NPF, then r′ →+ r̂′ in NPC.

Proof. First show it for r 7→ r̂, then infer it generally by help of the previous
lemma. The rules β→ and β∀ are clear because of the previous lemma, the rules
for product types are clear, the eta rules go through because of the properties of
free type and term variables of r′ proved with the definition of r′. Finally, βf is
dealt with in our introductory discussion of the constructor.

3.2. Embedding NPF into NPI

The embedding of NPF into NPI is dual to the preceding embedding of NPF
into NPC: For an embedding of the system with fixed-point types into that with
inductive types, we have to define a (generalized) predecessor function (more pre-
cisely: a destructor) in NPI, i.e., a closed term P of type µαρ→ ρ[α := µαρ] such
that P (Cµαρt)→+ t for every term t of type ρ[α := µαρ]. As a solution we set

P := λxµαρ.xEµ
(

lift+liftλαρ(µαρ× ρ[α := µαρ])(µαρ)(λzµαρ×ρ[α:=µαρ].zL)
)
.

Again we need some restricted form of functoriality of lift+liftλαρ:



324 R. MATTHES

Lemma 3.6 (Restricted functoriality for products).

lift+liftλαρ(σ × τ)σ(λzσ×τ .zL)
(

lift+liftλαρσ(σ × τ)(λxσ . 〈x, r〉)t
)
→∗ t and

lift−liftλαρσ(σ × τ)(λxσ . 〈x, r〉)
(

lift−liftλαρ(σ × τ)σ(λzσ×τ .zL)t
)
→∗ t

for r : τ and t : ρ[α := σ] (and α positive in ρ for the statement on lift+liftλαρ and α

negative in ρ for that on lift−liftλαρ).

Proof. Again by induction on ρ, and an easy calculation shows that P is indeed a
predecessor function.

The formal embedding and its justification may be given in the same fashion
as in the preceding section.

3.3. Embedding NPC into MC and NPI into MI

Clearly, one expects the embedding of positive (co)inductive types into
monotone (co)inductive types to be an easy task. In our setting it is indeed very
easy because there is no interleaving in NPC and NPI and hence the terms lift+liftλαρ
are built without the help of (ν-E), (ν-I), (µ-I) and (µ-E). Otherwise one would
have to find an appropriate induction measure to define the embeddings (see [7]
for the inductive case) but here recursion on the term structure suffices. We only
consider the embedding of NPC into MC.

Definition 3.7 (Embedding of NPC into MC). The embedding of the types will
be the trivial one, i.e., ρ′ := ρ for every type ρ in NPC.

For every term rρ of system NPC define the term r′ of MC by recursion on
r and simultaneously prove (not shown) that r′ : ρ and FTV(r′) = FTV(r) and
FV(r′) = FV(r) as follows:

(F) the homomorphic term rules for F as in Section 3.1. (Because of ρ′ = ρ
the rule (→-I) may be simplified to (λxρr)′ := λxρr′ without the additional
assumption.)

(ν-E) (rEν)′ := r′Eν .
(ν-I) (Ωναρst)′ := Ωναρlift+liftλαρs′t′.

Note again that lift+liftλαρ already is a term of MC because there is no interleaving.
Therefore, (lift+liftλαρ)′ = lift+liftλαρ.

Lemma 3.8. (r[xρ := s])′ = r′[xρ := s′] and (r[α := σ])′ = r′[α := σ].

Proof. By induction on r. In the crucial case (ν-I) we use that lift+liftλαρ is closed and
that lift+liftλαρ[β := σ] = lift+lift(λαρ)[β:=σ] which is easily proved by induction on ρ (and
requires the analogous statement on lift−liftλαρ to be proved simultaneously).

It is now quite easy to verify that ′ is indeed an embedding of NPC into MC.
The embedding of NPI into MI is defined analogously.



MONOTONE (CO)INDUCTIVE TYPES AND FIXED-POINT TYPES 325

3.4. Embedding MC and MI into NPF

This section is devoted to the proof of the collapse of monotone (co)inductive
types into non-interleaving positive fixed-point types. It shows the strength of
impredicative constructions.

In order to better display the construction for MC we define an embedding into
the system NPFex which is NPF enriched with existential types. The standard
encoding of existential types in system F with essential clause

(∃αρ)′ := ∀β.(∀α.ρ′ → β)→ β, β /∈ {α} ∪ FV(ρ)

(see [5] p. 86 for the encoding and [7] for a careful proof in the style of Sect. 3.1
that this indeed gives an embedding) trivially carries over to NPF (but not to NPI
or NPC because formation of lift+liftλαρ and the encoding of the existential do not
commute!). Therefore, also NPFex embeds into NPF.

We define NPFex: the type system is that of NPF where instead of one unre-
stricted quantifier ∀ we have two of them: ∀ and ∃. The term formation rules now
range over the extended type system. Moreover, we have the new term formation
rules

(∃-I) If t is a term of type ρ[α := τ ], then C∃αρ,τ t is a term of type ∃αρ.
(∃-E) If r is a term of type ∃αρ and s is a term of type ∀α.ρ → σ with
α /∈ FV(σ), then rE∃s is a term of type σ.

This definition follows the standard natural deduction formulation of the second-
order existential quantifier but with proof terms included.

The new beta rule is
(β∃) C∃αρ,τ tE∃s 7→ sτt.

We now give the crucial clauses of the definition of ρ′ for the two embeddings (all
the other clauses are homomorphic):

(MC) (ναρ)′ := fβ∃γ.(∀α.(β + γ → α)→ γ → ρ′)× γ.
(MI) (µαρ)′ := fβ∀γ.(∀α.(α→ β × γ)→ ρ′ → γ)→ γ.

(Of course, we choose β 6= γ and β, γ /∈ {α} ∪ FV(ρ).)
Clearly, these definitions yield types of system NPFex (and even in NPF for MI).

In both cases we have a non-strict positive dependency on β (of the type’s kernel).

Example 3.9. Setting σ := 1 + ((((α → ρ)→ α) → α) → α), we translate µασ:
ρ′ is the translation of ρ and has FV(ρ′) = FV(ρ) (see below). Our system F
encodings of 1 and + are not affected by the embedding. Therefore,

(µασ)′ = fβ∀γ.
(
∀α.(α→ β×γ)→

(
1+((((α→ ρ′)→ α)→ α)→ α)

)
→ γ

)
→ γ.

Because β 6= γ and β /∈ {α} ∪ FV(ρ′), there is only one occurrence of β to look at.
We reach β by passing ∀γ, going once to the left of →, passing ∀α, going again to
the left of→ and then to the right of→ and finally to a part of ×. Two times left
is non-strictly positive!



326 R. MATTHES

Note that we do not get dual constructions because we cannot set

(µαρ)′ := fβ∀γ∃α.((α→ β × γ)→ ρ′ → γ)→ γ

which should be compared with the slight variant of (MC) which would work :

(ναρ)′ := fβ∃γ∀α.((β + γ → α)→ γ → ρ′)× γ.

This setting for (µαρ)′ would only classically give an isomorphic type to the pre-
viously defined (MI) but not constructively and–much more important–there is
simply no reasonable clause for (Cµαρt)′ fitting to this definition.

Let us compare the definitions with those in [3] for embeddings of systems with
positive type schemes (which are a restriction of non-interleaved positivity) instead
of arbitrary monotonicity. In our notation they read:

(NPC) (ναρ)′ := fβ∃γ.(γ → ρ′[α := β + γ])× γ.
(NPI) (µαρ)′ := fβ∀γ.(ρ′[α := β × γ]→ γ)→ γ.

We recognize that the additional quantifier for α is responsible for the positiviza-
tion and the removal of the interleaving of type variables.

For (MC) and (MI) we have that (ρ[α := σ])′ = ρ′[α := σ′] and FV(ρ′) = FV(ρ).
Setting τ := (∀α.((ναρ)′ + γ → α) → γ → ρ′) × γ, the crucial clauses of the

definition of r′ for the embedding of MC into NPFex are:
(ν-E) (rEν)′ := r′EfE∃

(
Λγλuτ .uL(ναρ)′(

λz(ναρ)′+γ .z(ναρ)′Id(ναρ)′

(
λxγ .C(ναρ)′C∃γτ,γ 〈uL, x〉

))
(uR)

)
.

(ν-I) (Ωναρmst)′ := C(ναρ)′C∃γτ,σ′
〈

Λαλz(ναρ)′+σ′→αλxσ
′
.m′(ναρ+σ)′αz(s′x), t′

〉
·

The other rules are again the homomorphic ones, and we have to prove
simultaneously with the definition that if r : ρ, then r′ : ρ′, FTV(r′) = FTV(r) and
FV(r′) = {xσ′ |xσ ∈ FV(r)}.

After having proved Lemma 3.4 for this situation the main task is to verify

(ΩναρmstEν)′ →+
(
m(ναρ+ σ)(ναρ)

(
λzναρ+σ.z(ναρ)Id(λxσ.Ωναρmsx)

)
(st)

)′
.

It is a calculation which is not affected by an unfortunate reduction strategy and
therefore left to the reader.

For the embedding of MI into NPF the non-trivial clauses are
(µ-I) (Cµαρt)′ := C(µαρ)′

(
Λγλu∀α.(α→(µαρ)′×γ)→ρ′→γ .u(µαρ)′(
λx(µαρ)′ .

〈
x, (λx(µαρ)′ .xEfγu)x

〉)
t′
)

.

(µ-E) (rEµms)′ := r′Efσ′
(

Λαλvα→(µαρ)′×σ′λwρ
′
.s′
(
m′α((µαρ)′ × σ′)vw

))
.

For showing that

(CµαρtEµms)′ →+
(
s
(
m(µαρ)(µαρ× σ)(λxµαρ. 〈x, (λxµαρ.xEµms)x〉)t

))′



MONOTONE (CO)INDUCTIVE TYPES AND FIXED-POINT TYPES 327

we need six beta reduction steps. The usual machinery then allows to conclude
that ′ in fact embeds MI into NPF.

4. Concluding remarks

We have seen that the algorithmic weakness of system F w. r. t. (co)inductive
data types (only (co)iteration is modelled) is removed by adding fixed-points for
non-interleaving positive λαρ. Further extensions by stipulating weak initiality or
weak finality even for interleaved use of parameters and arbitrary monotonicity
witnesses could then be encoded in a reduction-preserving way and hence did not
give additional algorithmic power.

Without any difficulty one could also combine NPI and NPC to a system of
non-interleaving positive inductive and coinductive types. Due to the absence of
interleaving this would hardly allow more than the study of hierarchical alternation
of µ and ν (which is e.g. needed for the type να.nat × α of streams of naturals).
But we may as well combine MI and MC where we e.g. may reason by coinduction
when establishing the monotonicity of some inductive type. It is fairly obvious
that only the embeddings shown for the constituent systems have to be merged in
order to embed the combined systems e.g. into NPF.

The inclusion of product types into our base system F is only done for
convenience. We could also take the standard impredicative encoding in the
formulation of the beta rule of primitive recursion.

One may also study systems of interleaving positive inductive and coinductive
types. A concise definition of the terms lift+liftλαρ may only be given by help of
iteration/coiteration which justifies to work with systems having both iteration and
recursion (and coiteration and corecursion) as primitives (see [7] for the inductive
case). Establishing functoriality properties of those lift+liftλαρ is much harder and
requires at least an eta rule for (co)iteration. For a proof of functoriality w. r. t.
some parametric equality theory see [1].

Acknowledgements to F. Joachimski and to the anonymous referee for their valuable
remarks on preliminary versions of this text.

References

[1] T. Altenkirch, Logical relations and inductive/coinductive types, G. Gottlob, E. Grandjean
and K. Seyr, Eds., Computer Science Logic, 12th International Workshop, Brno, Czech
Republic, August 24–28, 1998, Proceedings, Springer Verlag, Lecture Notes in Comput. Sci.
1584 (1999) 343–354.

[2] H.P. Barendregt, Lambda calculi with types, S. Abramsky, D.M. Gabbay and T.S.E.
Maibaum, Eds., Background: Computational Structures. Oxford University Press, Handb.
Log. Comput. Sci. 2 (1993) 117–309.

[3] H. Geuvers, Inductive and coinductive types with iteration and recursion, B. Nordström,
K. Pettersson and G. Plotkin, Eds., Proceedings of the 1992 Workshop on Types for
Proofs and Programs, B̊astad, Sweden, June 1992, pages 193–217, 1992. Only published
via ftp://ftp.cs.chalmers.se/pub/cs-reports/baastad.92/proc.dvi.Z



328 R. MATTHES

[4] J.-Y. Girard, Interprétation fonctionnelle et élimination des coupures dans l’arithmétique
d’ordre supérieur. Thèse de Doctorat d’État, Université de Paris VII (1972).

[5] J.-Y. Girard, Y. Lafont and P. Taylor, Proofs and Types. Cambridge University Press,
Cambridge Tracts Theoret. Comput. Sci. 7 (1989).

[6] D. Leivant, Contracting proofs to programs, P. Odifreddi, Ed., Logic and Computer Science.
Academic Press, APIC Studies in Data Processing 31 (1990) 279–327.

[7] R. Matthes, Extensions of System F by Iteration and Primitive Recursion on Monotone
Inductive Types. Doktorarbeit (PhD thesis), University of Munich (1998). Available via the
homepage http://www.tcs.informatik.uni-muenchen.de/̃ matthes/

[8] R. Matthes, Monotone fixed-point types and strong normalization, G. Gottlob, E. Grandjean
and K. Seyr, Eds., Computer Science Logic, 12th International Workshop, Brno, Czech
Republic, August 24–28, 1998, Proceedings, Springer Verlag, Lecture Notes in Comput. Sci.
1584 (1999) 298–312.

[9] R. Matthes and F. Joachimski, Short proofs of normalization for the simply-typed lambda-
calculus, permutative conversions and Gödel’s T. Arch. Math. Logic, submitted.

[10] J.C. Reynolds, Towards a theory of type structure, B. Robinet, Ed., Programming Sympo-
sium, Springer-Verlag, Lecture Notes in Comput. Sci. 19 (1974) 408–425.

[11] M. Takahashi, Parallel reduction in λ-calculus. Inform. and Comput. 118 (1995) 120–127.

Received November 15, 1998. Revised June 2, 1999.


