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For the integrated design of composite material and structures, it is essential to have an effective micromechanical numerical
tool to link macroscopic material properties to microstructural configurations. In this paper, 3D computational grains (CGs)
with embedded fibers are proposed for the first time, for the direct micromechanical modeling of fiber composites. The
microstructure of a unidirectional lamina with random fibers can be assembled by many CGs, and the stiffness matrix of each
CG with an embedded fiber can be directly computed by combining two new algorithms. On one hand, a new kind of Trefftz
trial displacement field based on scaled cylindrical harmonics is independently assumed, in addition to inter-elemental
displacement interpolations with surface nodal degrees of freedom (DoFs). On the other hand, a new kind of multi-field
boundary variational principle is proposed to relate independently assumed Trefftz fields to nodal DoFs and to derive the
stiffness matrix. Numerical examples demonstrate that without the traditional fine meshing, accurate distribution of micro-
stresses in a representative volume element (RVE) with thousands of fibers can be directly computed, and the equivalent
orthotropic properties of fiber composites can be predicted. This is also the first time that a three-dimensional finite element
with an embedded fiber is developed.
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1. Introduction

During the past decades, fiber composites have been widely
used in lightweight structures in mechanical, automotive,
and aerospace engineering, due to their excellent mechanical
properties (e.g., specific stiffness and specific strength) and
the strong designability [1-3]. The weight-reduction poten-
tial of fiber composite structures can be better realized by
the integrated structure-material design and optimization
[4]. In order to achieve this goal, it is necessary to have an

accurate and efficient tool to model the micromechanical
behavior and to predict the equivalent properties of fiber
composites based on their microstructures.
Several analytical methods have been proposed for pre-

dicting the equivalent properties of fiber composites. To
name a few, Hill [5] and Hashin [6] derived the upper and
lower bounds of the five independent effective elastic
moduli of fiber composites; Hill [7] derived the expressions
of the overall moduli of fiber composites by the self-con-
sistent model; Benveniste et al. [8] proposed a micro-
mechanical model for predicting the micro stress fields and
the effective properties of fiber composites, based on the
“average stress in the matrix” concept of Mori and Tanaka
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[9] and the equivalent inclusion idea of Eshelby [10]. Such
analytical methods have advantages thanks to their explicit
or semi-expressions of the effective properties, while their
accuracies are not generally guaranteed. For example, the
moduli may be under-estimated for composites with high
volume fractions of fibers [11].
Numerical micromechanical methods have higher accu-

racy and better generality as compared to analytical meth-
ods. With a representative volume element (RVE),
microscopic stresses and overall material properties can be
computed by the finite element method (FEM) [12-16].
FEM is also employed in multi-scale analysis frameworks to
model the responses of composite structures (e.g., elastic
deformation [17], buckling [18], and damage [19-21]),
coupling the micro-, meso- and macro-scale FEM models.
However, in order to capture the fields around the interface
of the fiber and the matrix accurately, very fine FEM-dis-
cretization is needed, which necessitates considerable hu-
man-labors and leads to high computational costs [22]. Such
burden of meshing and computation will become highly
serious, when modeling a 3D RVE with a large number of
fibers [23,24].
To overcome such problems, Voronoi cell finite element

method (VCFEM) [25,26] has been proposed. VCFEMs are
based on the hybrid stress framework of Pian [27], with
independently assumed stress fields in each element. With
such an approach, a 2D RVE can be discretized into multi-
sided Voronoi cells, each of which contains one inclusion,
thus reducing the laborious FEM meshing process [28].
VCFEMs are also extended to 3D versions with embedded
inclusions, to model particulate-reinforced composites [29].
However, for fiber composites, only two-dimensional
VCFEMs are developed to simulate the transverse me-
chanical behavior [30,31], and no 3D VCFEMs with em-
bedded fibers have been reported heretofore.
Another numerical method, named computational grains

(CGs), has been developed by Dong and Atluri for the 3D
modeling of the micromechanical behaviors of particulate
composites [32,33], nanocomposites [34], three-phase ma-
terials [35], piezoelectric materials [36], and viscoelastic
behavior of composites [37]. In such a framework, in-
dependently assumed Trefftz trial displacement fields for
various physical problems are derived to satisfy the gov-
erning equations a-priori, so that the stress distribution can
be predicted more accurately. Moreover, only boundary in-
tegrals are needed to compute the stiffness matrix of each
CG, which significantly reduces the computational cost.
Based on extensive numerical experiments of various phy-
sical responses for various materials, CGs exhibit the high
computational efficiency and accuracy for the predictions of
not only homogenized moduli but also localized stress
concentrations even for RVEs with a large number of ran-
domly-distributed inclusions.

However, no previous studies have been reported before
for developing FEMs with embedded fibers, which can be
quite useful for the micromechanical modeling of fiber
composites, based on the experiences to our previous works.
For this reason, in this study, 3D CGs with embedded fibers
are developed for the first time, and verified by a large
number of numerical examples.
In order to extend CGs with embedded particles to ones

with embedded fibers, two problems need to be solved.
Firstly, when the Trefftz trial displacement fields in the
matrix and in each fiber are assumed in terms of Papkovich-
Neuber (P-N) solutions, the spherical harmonics or ellip-
soidal harmonics used for particulate composites are not
suitable anymore. Instead, cylindrical harmonics are em-
ployed herein as the P-N potentials for fiber composites. It
should be noticed that the cylindrical harmonics contain
severely ill-conditioned terms, such as Bessel functions,
power functions, and hyperbolic functions. In this study, a
new scheme of scaling the cylindrical harmonics is also
proposed which can effectively avoid the ill-conditioning
problems.
On the other hand, the compatibility condition between

the independent assumed fields in the CGs of fiber com-
posites is not the same as that in particulate composites. In
particulate composites, the inclusions are completely
wrapped in the matrix, thus at the matrix/inclusion inter-
faces, only the displacement continuity and the traction re-
ciprocity conditions need to be considered. However, in
fiber composites, the upper and lower surfaces of the em-
bedded fibers are not covered by the matrix. Thus, on the
upper and lower surfaces, in addition to the inter-CG dis-
placement continuity and the traction reciprocity conditions,
the prescribed displacement/traction boundary conditions
should also be satisfied. Therefore, for CGs with embedded
fibers, a new multi-field boundary variational principle has
been developed in this paper, the stationarity of which leads
to the revised interface/boundary conditions, to derive the
stiffness matrix of each CG with an embedded fiber.
Verified by several typical numerical examples, the pro-

posed CGs have been proved to be an efficient and accurate
numerical method for predicting the equivalent material
properties and the stress fields of fiber composites. More-
over, the computational efficiency of the proposed CGs is
further enhanced by using parallel computation techniques,
by which a RVE with thousands of fibers can be solved
within hours on a regular desktop PC. In the future, in a
multi-scale analysis framework, the CGs in the micro-scale
can be coupled with FEMs at the laminate and structural
scale, for the integrated modeling and design of composite
material and structures. This will be demonstrated in our
future studies.
The rest of this paper is organized as follows: Sect. 2

introduces the governing equations for both the fibers and
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the matrix in the CGs of fiber composites. In Sect. 3, Trefftz
trial displacement fields with scaled cylindrical harmonics
as P-N potentials are derived. Section 4 introduces the new
multi-field boundary variational principle developed in this
work and the element stiffness matrices derived accordingly.
In Sect. 5, the accuracy and efficiency of the proposed CGs
are discussed with comparisons with exact solutions and
experimental results. The efficiency of CGs with simple
parallelization is also discussed. In Sect. 6, this study is
completed with some conclusion remarks.

2. Governing equations for the matrix and the
fiber of a CG

For a RVE containing a large number of fibers, as shown in
Fig. 1(a), it can be discretized into CGs by Voronoi diagram,
and each of the CGs contains a fiber in its domain, as shown
in Fig. 1(b).
As shown in Fig. 1(c), an arbitrary CG e with its outer

boundary e is considered. The outer boundary of the CG
can be further classified as S S,  ,  u

e
t
e e, which represent the

displacement-prescribed boundary, the traction-prescribed
boundary, and the inter-CG boundary, respectively. f

e and

m
e denote the domains of the fiber and the matrix, and f

e,

m
e denote the boundaries of f

e and m
e, respectively. e is

the fiber/matrix interface. Thus, we have the following re-
lationship: =f

e
m
e e, and =f

e
m
e e.

A linear elastic CG is considered in the Cartesian co-
ordinates. ij, ij, ui denote the components of the stress
tensor, strain tensor, and displacement vector, respectively.
f i, ui, ti are the components of the body force, boundary
displacement, and boundary traction vector.Cijkl, Sijkl denote
the components of the stiffness tensor and the flexibility
tensor respectively. The equilibrium equations, constitutive
equations, strain-displacement relationship, as well as
boundary conditions, can be expressed as

f+ = 0, (1)ij j
k

i
k

,

C S= = , (2)ij
k

ijkl
k

kl
k

ij
k

ijkl
k

kl
k

( )u u u= 1
2 + , (3)ij

k
i j
k

j i
k

i j
k

, , ( , )

u u S=  at , (4)i
k

i u

n t S=  at , (5)j ij
k

i t

Figure 1 Illustrations of (a) a RVE with many fibers; (b) the RVE discretized into CGs; (c) an arbitrary CG containing a fiber.
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where the superscript k m f= ,  denotes the domain of the
matrix and the fiber respectively, and () i, denotes the dif-
ferentiation with respect to xi.
For 3D isotropic materials in which body force is negli-

gible, equilibrium equations (Eq. (1)) can be re-expressed as
the Navier’s equation, by combining constitutive equations
(Eq. (2)) and geometric equations (Eq. (3)):

µ u µ u( + ) + = 0, (6)k k
j ji
k k

i
k

,

where ( )( )
E v

v v= 1 + 1 2
k k k

k k , ( )µ G E
v= = 2 1 +

k k k

k denote

the Lame constants for the matrix/fiber in the CG.
It should also be noted that the displacement continuity

and traction reciprocity need to be implemented at e and e

in each CG:

u u=  at , (7)i
m

i
f e

n n+ = 0 at , (8)j ij
m

j ij
f e

( ) ( )u u=  at , (9)i
m

i
m e+

( ) ( )n n+ = 0 at , (10)j ij
m

j ij
m e+

where nj is the unit outer normal vector of the surface.

3. Trefftz trial displacement fields within CGs

3.1 Papkovich-Neuber solutions

To satisfy the Navier’s equation shown in Eq. (6), the trial
displacement fields in each CG can be assumed in the form
of PN solutions [38]:

v Gu B R B B= [4(1 ) ( + )]/(2 ), (11)0

where xR e= i i denotes the position vector, and B, B0 are
harmonic vectors and scalars, which are also named as PN
potentials, whose Laplace operator vanishes.
It has been proven by M. G. Slobodyansky that for a

simply-connected domain:

v Gu B R B R B= [4(1 ) + ]/(2 ) (12)
is a complete trial displacement field for any v, without the
use of harmonic scalars.
Besides, it is also proven that

v Gu B R B= [4(1 ) ]/(2 ) (13)
is complete for the external region to a closed surface for
any v, and for the simply-connected domain when v 0.25.
Readers can refer to Ref. [38] for the detailed explanation of
the completeness of the P-N solutions.
The harmonic vector B needs to be further represented

using cylindrical harmonics for the convenience of further
calculations, which will be introduced in the next sub-
section.

3.2 Cylindrical harmonics as Papkovich-Neuber po-
tentials

As shown in Fig. 2, consider a position vector in Cartesian
coordinate x x x[ , , ]1 2 3 and the corresponding cylindrical co-
ordinate q q q r z[ , , ] = [ , , ]1 2 3 , and they have the relation-
ship as
x r x r x z= cos ,  = sin ,  = . (14)1 2 3

The base vectors e e e e e e= ,  = ,  =r z1 2 3 are in the di-
rections of the radius of circles, the tangents to circles and z
axis, respectively. xR e= i i denotes the position vector. Now
we have

x
r

x r x
z

x
r

x r x
z

x
r

x x
z

= cos ,  = sin ,  = 0,

= sin ,  = cos ,  = 0,

= 0,  = 0,  = 1,

(15)

1 1 1

2 2 2

3 3 3

and

q
x H

x
q

q q H HR R

= 1 ,

= ,
(16)

s

k s

k
s

s t st s t

2

where H H= = 1r1 , H H r= =2 , H H= = 1z3 . These para-
meters are called Lame’s coefficients. The orthonormal base
vectors of the cylindrical coordinates can be defined as

H qa R= 1 , (17)s s s

Figure 2 Schematic diagram of cylindrical coordinates.
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we have

r z

r z

r z

a a a a

a a a a

a a a

= 0,  = ,  = 0,

= 0,  = ,  = 0,

= 0,  = 0,  = 0.

(18)

r r r

r

z z z

The Laplace operator of a scalar in cylindrical co-
ordinate can be obtained as

H q H q

r r r r r z

a a= = 1 1

= 1 + 1 + = 0. (19)

s s s t t t
2

2

2

2

2

2

The above Laplace equation can be simplified with the use
of the separation of variables, by assuming

r z f r g h z( , , ) = ( ) ( ) ( ) with and as separating con-

stants, the details of which can be found in Appendix. The
following three equations should be satisfied:

h z
z h z( )+ ( ) = 0, (20)

2

2

g g( ) + ( ) = 0, (21)
2

2

( )f r
r r

f r
r r f r( ) + 1 ( ) + ( ) = 0. (22)

2

2 2

Equations (20)-(22) can be solved separately depending
on the values of and . By letting m= ± 2 and n= ± 2,
where m and n are positive integers, the general solutions of
the Laplace equation can be divided into the non-singular
form r z( , , )in and singular form r z( , , )ex for the pro-
gramming of CGs.
The non-singular solution of a cylinder is shown as

{ }

{ }

{

}

r z a a z e r m e r m e zr m e zr m

c nz J nr c nz J nr c nz I nr c nz I nr

d m nz J nr d m nz J nr d m nz J nr

d m nz J nr d m nz I nr d m nz I nr
d m nz I nr d m nz I nr

( , , ) = + + cos( ) + sin( ) + cos( ) + sin( )

+ cosh( ) ( ) + sinh( ) ( ) + cos( ) ( ) + sin( ) ( )

+ cos( )cosh( ) ( ) + sin( )cosh( ) ( ) + cos( )sinh( ) ( )

+ sin( )sinh( ) ( ) + cos( )cos( ) ( ) + sin( )cos( ) ( )
+ cos( )sin( ) ( ) + sin( )sin( ) ( ) ,

(23)

m
m

m
m

m
m

m
m

m

n
n n n n

n m
mn m mn m mn m

mn m mn m mn m

mn m mn m

in 01 02
=1

1 2 3 4

=1
1 0 2 0 3 0 4 0

=1 =1
1 2 3

4 5 6

7 8

where Jm and Im are the mth order Bessel function of the
first kind and the modified Bessel function of the first kind,

respectively.
And the singular solution is written as

{ }

{ }

{

}

r z a r a z r e r m e r m e zr m e zr m

c nz Y nr c nz Y nr c nz K nr c nz K nr

d m nz Y nr d m nz Y nr

d m nz Y nr d m nz Y nr
d m nz K nr d m nz K nr
d m nz K nr d m nz K nr

( , , ) = ln + ln + cos( ) + sin( ) + cos( ) + sin( )

+ cosh( ) ( ) + sinh( ) ( ) + cos( ) ( ) + sin( ) ( )

+ cos( )cosh( ) ( ) + sin( )cosh( ) ( )

+ cos( )sinh( ) ( ) + sin( )sinh( ) ( )
+ cos( )cos( ) ( ) + sin( )cos( ) ( )
+ cos( )sin( ) ( ) + sin( )sin( ) ( ) ,

(24)

m
m

m
m

m
m

m
m

m

n
n n n n

n m
mn m mn m

mn m mn m

mn m mn m

mn m mn m

ex 03 04
=1

5 6 7 8

=1
5 0 6 0 7 0 8 0

=1 =1
9 10

11 12

13 14

15 16

where Ym and Km are the mth order Bessel function of the
second kind and the modified Bessel function of the second
kind, respectively. The Bessel functions are shown in Fig. 3.

3.3 Scaling cylindrical harmonics to avoid Ill-conditioning

Several terms in the cylindrical harmonics in Eqs. (23) and
(24), such as r m, r m, nzsinh( ), nzcosh( ), I nr( )m ,K nr( )m , will
cause the ill-conditioning of the resulting system of equa-
tions. In order to avoid solving ill-conditioned equations,

three characteristic lengths rmax, rmin, and z0 are introduced.
With a local cylindrical coordinate system with its origin
located at the mid-height on the axis of the cylindrical fiber,
rmax and rmin denote the maximum and minimum values of
the cylindrical coordinate r, and z0 is half of the height of
the fiber embedded in the CG, as shown in Fig. 4.

Thus, in the case of the scaled cylindrical harmonics z
z0
,

( )r
r

m

max
, ( )r

r
m

min
, nz

nz
sinh( )
sinh( )0

, nz
nz

cosh( )
cosh( )0

, I nr
I nr

( )m
m( max)

, and
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K nr
K nr

( )m
m( min)

are all limited to values between 0 to 1 for any

point in the matrix, and ( )r
r

m

min
, I nr

I nr
( )m

m( min)
are limited to

values between 0 to 1 for any point in the fiber, as shown in
Tables 1 and 2.

3.4 Trefftz trial displacement fields within the fiber
and the matrix

Consider a CG with an embedded unidirectional fiber, with
the local cylindrical system given in Fig. 4. The displace-

ment field in the fiber can be assumed in the form of P-N
solutions:

( )v Gu B R B R B= [4(1 ) + ]/ 2 , (25)f f f f f f

where the P-N potential Bf is expressed in the form of non-
singular cylindrical harmonics given in Eq. (23) and scaled
as in Table 2. And the displacement field in the matrix is a
combination of both singular and non-singular solutions:
u u u= + , (26)m mi me

v Gu B R B R B= [4(1 ) + ]/(2 ), (27)mi m mi mi mi m

v Gu B R B= [4(1 ) ]/(2 ), (28)me m me me m

where Bmi is expressed in the form of non-singular cylind-
rical harmonics given in Eq. (23) scaled as in Table 1, and
Bme is expressed in the form of singular cylindrical har-
monics given in Eq. (24) scaled as in Table 1.
After defining the displacement fields, the strain and

stress expressions can be determined from Eqs. (2) and (3).
The derivations of the displacements and stresses are very
complicated, and hence are performed using the Wolfram
Mathematica 8.0.
It should be noted that the following six rigid-body modes

should be deleted in the assumed displacement field:

a

a

a

a e

a e

e e

= {1 0 0} ,

= {0 1 0} ,

= {0 0 1} ,

= {1 0 0} , = { 0 0 1} ,

= {0 1 0} , = { 0 0 1} ,

= {0 1 0} , = { 1 0 0 } , (29)

01
T

01
T

01
T

02
T

11
T

02
T

21
T

11
T

21
T

where a a e e,  ,  ,  01 02 11 21 are the coefficients of the cylindrical
harmonics shown in Eq. (23).
Moreover, the truncation orders M = 3, N = 1 are always

employed for the singular and non-singular solutions in this
study.

Figure 3 Schematic diagrams of (a) the modified Bessel function of the first kind, (b) the modified Bessel function of the second kind.

Figure 4 Schematic diagram of the characteristic lengths in a CG.
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4. A new multi-field boundary variational
principle and the derived stiffness matrices of CGs

For each CG, by dividing the surfaces into boundary ele-
ments, as shown in Fig. 5, the compatible displacement field
on m

e and f
e can be assumed using the conventional

nodal shape functions:

u Nq= . (30)e

Therefore, a new type of boundary variational functional
is developed for the CGs with cylindrical elastic fibers:

S S S

S S

u u u t u t u t u

t u t u

( , , ) = 1
2 d d + d

+ 1
2 d d , (31)

e
S

e

m f m m m

f f f

m
e

m
e

t

f
e

f
e

in which u is the assumed compatible displacements at m
e

and f
e given in Eq. (30), um and uf are the independently

assumed Trefftz displacement fields in terms of the P-N
solutions given in Eqs. (25)-(28), and t m and t f are the
surface tractions from um and uf .
By setting the variation of the functional in Eq. (31) to

zero, we can get

t t=   at S , (32)t
e

m

t t=   at S , (33)t
e

f

u u=   at , (34)e
m m

u u=   at , (35)e
f f

t t 0+ =   at , (36)e
m f

t t 0+ =   at . (37)e
m
+

m

Using a matrix and vector notation, the displacement field
um in e

m and the traction field t m at e
m can be expressed

in terms of the unknown coefficients in the P-N potentials:

Nu =   in , (38)e e
m m m

t R=   at . (39)e e
m m m

Similarly, the displacement field uf in e
f and the traction

field t f at e
f can be expressed as

Nu =   in , (40)e e
f f f

t R=   at . (41)e e
f f f

Substituting Eqs. (38)-(41) into the boundary variational
principle Eq. (31), we have

{
}

q H G q q Q

H G q

( , , ) = 1
2

+

+1
2 , (42)

e

e e e e e e e e

e e e e e e

T T
q

T

T T
q

where

Table 1 Scaling of the cylindrical harmonics in the matrix

Non-scaled z r m r m nzsinh( ) nzcosh( ) I nr( )m K nr( )m

Scaled
z
z0 ( )r

r
m

max

r
r

m

min

nz
nz

sinh( )
sinh( )0

nz
nz

cosh( )
cosh( )0

I nr
I nr

( )m

m ( max)

K nr
K nr

( )m

m ( min )

Table 2 Scaling of the cylindrical harmonics in the fiber

Non-scaled z r m nzsinh( ) nzcosh( ) I nr( )m

Scaled
z
z0

r
r

m

min

nz
nz

sinh( )
sinh( 0)

nz
nz

cosh( )
cosh( 0)

I nr
I nr

( )m

m ( min )

Figure 5 Division of the surface by boundary elements for one CG.
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SH R N= d , (43)e
m
T

me
m

SH R N= d , (44)e
f
T

fe
f

SG R N= d , (45)q
e

m
T

e
m

SG R N= d , (46)q
e

f
T

e
f

SQ N t= d . (47)e
S

T
e

t

The vanishing of the first variation of the functional in Eq.
(42) leads to

{
})

( )
( )

(q H G q q Q G

G H G q

( , , ) = +

+ = 0,
(48)e

e e e
q

e e e e
q

e e

q
e e e e e

q
e e

T T T

T T

which can be re-written as

q 0 G G

G H 0

G 0 H

q q Q
0
0

= . (49)

e

e

e

q
e

q
e

q
e e

q
e e

e

e

e

e

e

e

eT T T T

The finite element equations are thus derived as

( )q G H G + G H G q

q Q= , (50)
e

e e e e e e e e

e

e e

T
q
T 1

aq q
T 1

q

T

where denotes the assembly of stiffness matrices.
And the following equations can be used to compute the

coefficients in the matrix and in the fiber:

H G q

H G q

= ,

= .
(51)

e e
q

e e

e e
q

e e

1

1

5. Numerical examples

In this section, numerical examples are given to test the
performance of the CGs developed in this study. All the
examples were run on a desktop PC with a AMD R7 pro-
cessor and a 16G RAM.

5.1 Verifying the effects of scaling the Trefftz functions

Firstly, the necessity for scaling the P-N potentials by using
characteristic lengths is studied. Figure 6 shows the geo-
metry of the CG. The dimension of the CG considered here
is L W H× × = 40 × 40 × 60 µm, and the radius of the fiber is
R = 2 µm. The material properties of matrix and fiber are
E = 1 GPa,  = 0.2m m , E = 2 GPa,  = 0.3f f , respectively.

The stiffness matrix is calculated with and without the
scaling of the Trefftz trial functions by characteristic
lengths. The condition numbers of the coefficient matrices
used to relate e and e to qe, i.e., of the matrices H e and
H e given in Eqs. (43) and (44), which need to be inverted
to calculate the stiffness matrix, are listed in Table 3. It can
be noticed that the condition numbers are reduced sig-
nificantly by scaling the cylindrical harmonics with the use
of characteristic lengths.

5.2 The objectivity test and the patch test

For the same CG as given in Fig. 6, the objectivity test and
the Patch test are conducted. The objectivity of the stiffness
matrix of the derived CGs is verified by checking that the
eigenvalues of the stiffness matrices stay the same with
rotated coordinate systems. And the Patch test is performed
by specifying the same material properties for the matrix
and the fiber (E = 1,  = 0.25), and applying a tensile/shear
load. The computed solution by the CG can reproduce the
analytical linear displacement field with a relative error of
less than 10 10.

5.3 Verifying the accuracy of the computed micro-
scopic stresses

Consider that an infinite domain with an infinitely long fiber
is subjected to a transverse remote tension. The exact so-

Figure 6 CG used for the test of condition numbers.

Table 3 Condition numbers of the coefficient matrices H e and H e

H e H e

Not scaled 1.9642×1029 1.9981×1027

Scaled 8.6089×104 3.7710×105
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lutions can be found in Refs. [10,39]. A single CG with the
same geometry as that in Fig. 6 is used. The material
properties of matrix and fiber are E = 1 GPa,  = 0.25m m ,
E = 2 GPa,  = 0.3f f , respectively. A remote tension is ap-
plied in x2 direction, i.e., P = 100 MPa . The computed 22
and 33 are in good agreement with those by the exact so-
lutions, as shown in Figs. 7 and 8.

Additionally, a fiber embedded in an infinite domain that
is subjected to a longitudinal remote tensile strain is also
studied. The exact solutions in the fiber and the matrix are
given in Ref. [40]. A CG which is the same as that in the
above example is used, and the radius of the fiber is
R = 4 µm. A longitudinal uniform strain field = 0.1%11 is
applied in x1 direction. Figures 9 and 10 show that the CG

Figure 7 P/22 generated by (a) the CG and (b) the exact solutions, and (c) the errors between the CG results and the exact solutions, for a fiber embedded
in an infinite domain under remote transverse tension.

Figure 8 P/33 generated by (a) the CG and (b) the exact solutions, and (c) the errors between the CG results and the exact solutions, for a fiber embedded
in an infinite domain under remote transverse tension.

Figure 9 22 generated by (a) the CG and (b) the exact solutions, and (c) the errors between the CG results and the exact solutions, for a fiber embedded in
an infinite domain under longitudinal tension.
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gives very accurate solutions, compared with the exact so-
lutions.
Finally, by using the same model, a fiber embedded in an

infinite domain that is subjected to a longitudinal remote
shear is also studied. The exact solutions can be found in
Ref. [41]. And the same CG is used. A constant shear stress

= 100 MPa12 is applied to the surface of the CG. Figures
11 and 12 show that the computed results are in good
agreement with the exact solutions.

5.4 Prediction of the effective moduli of fiber composites

We also study the equivalent moduli of a fiber composite by CGs.
The material properties of the glass fiber and the polymer matrix
are E = 72.4 GPa,  = 0.22f f , E = 3.5735 GPa,  = 0.345m m ,
respectively. A single CG is used and the radius of the fiber
varies with the volume fraction. Periodic boundary condi-
tions are applied. The obtained equivalent moduli
E E G G,  ,  ,  11 22 12 23 are compared with experimental results

Figure 10 23 generated by (a) the CG and (b) the exact solutions, and (c) the errors between the CG results and the exact solutions, for a fiber embedded in
an infinite domain under longitudinal tension.

Figure 11 /12 12 generated by (a) the CG and (b) the exact solutions, and (c) the errors between the CG results and the exact solutions, for a fiber embedded
in an infinite domain under longitudinal shear.

Figure 12 /13 12 generated by (a) the CG and (b) the exact solutions, and (c) the errors between the CG results and the exact solutions, for a fiber embedded
in an infinite domain under longitudinal shear.
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in Ref. [42]. Figure 13 shows that although only one CG is
employed, the computed transverse and longitudinal effec-
tive moduli all agree well with the FEM and experimental
results.

5.5 CGs with a large number of fibers with parallel
computation

A RVE with a large number of fibers is simulated. Figure 14
shows a RVE containing n randomly-distributed fibers. The
material properties of the glass fiber and the polymer matrix
are the same as the above example, and a uniform traction
P = 100 MPa is applied in x2 direction. Figures 15-20 show
the computed maximum principal stress and strain energy
density distribution for three RVEs containing 25 fibers,
with the volume fractions of 8%, 33%, and 63%, respec-
tively. It can be shown that while the maximum principal
stress and strain energy density distribution in fibers is re-
latively uniform, a highly varying stress and strain energy
density can be observed in the matrix.
In order to demonstrate the efficiency of the CGs when

modeling a RVE with a large number of fibers, two RVEs
containing 250 and 2500 CGs are modeled, and parallel
computation is implemented to further accelerate the ana-

Figure 13 Variation of the (a) longitudinal Young’s modulus E11, (b) transverse Young’s modulus E22, (c) longitudinal shear modulus G12, (d) transverse
shear modulus G23, with the volume fraction of the glass fiber.

Figure 14 A RVE containing n randomly-distributed fibers.

Y. Huang, et al. Acta Mech. Sin., Vol. 39, 423179 (2023) 423179-11



Figure 15 Distribution of maximum principal stress in the RVE con-
taining 25 fibers, with the fiber volume fraction of 8%.

Figure 16 Distribution of strain energy density in the RVE containing 25
fibers, with the fiber volume fraction of 8%.

Figure 17 Distribution of maximum principal stress in the RVE con-
taining 25 fibers, with the fiber volume fraction of 33%.

Figure 18 Distribution of strain energy density in the RVE containing 25
fibers, with the fiber volume fraction of 33%.

Figure 19 Distribution of maximum principal stress in the RVE con-
taining 25 fibers, with the fiber volume fraction of 63%.

Figure 20 Distribution of strain energy density in the RVE containing 25
fibers, with the fiber volume fraction of 63%.
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lysis. Detailed process of parallelization is similar to that of
Ref. [34]. Because most of the computational time is spent
on calculating the stiffness matrix of each CG, we simply
assign each of n threads to compute stiffness matrices of 1/n
of the CGs. Figures 21-24 show the computed maximum
principal stress and strain energy density distribution for the
RVEs with 250 and 2500 fibers, respectively. Using a
desktop PC with an AMD R7 processor and a 16G RAM,
the time required for solving the three RVEs with 25, 250,
2500 fibers with/without parallel algorithm is given in Table
4. It shows that parallelization can significantly reduce the

computational time, and a RVE with 2500 fibers can be
simulated within 10 hours using a regular desktop PC.

6. Conclusions

In this study, CGs with embedded fibers are developed for
the first time, as a power micromechanical tool for modeling
fiber composites. Different to CGs with embedded particles,
on the one hand, the trial displacement fields within the CGs
are assumed with cylindrical harmonics as P-N potentials,
and a new scaling method for the cylindrical harmonics has
been proposed to successfully avoid the problem of ill-
conditioning; on the other hand, a new multi-field boundary
variational principle has been developed to derive the

Figure 21 Distribution of maximum principal stress in the RVE con-
taining 250 fibers.

Figure 23 Distribution of maximum principal stress in the RVE con-
taining 2500 CGs.

Figure 24 Distribution of strain energy density in the RVE containing
2500 CGs.

Figure 22 Distribution of strain energy density in the RVE containing 250 CGs.

Table 4 Time required for the CGs with/without parallel computation
25 250 2500

Without parallel computation (s) 2678.19 25561.12 254985.36
With parallel computation (s) 423.12 3778.24 34951.12
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stiffness matrices of the CGs with embedded fibers.
Numerical examples demonstrate that the developed CGs

can accurately capture the localized stress distributions
under various loadings and estimate the effective material
properties of fiber reinforced composites, by comparing the
computational results with exact solutions and experi-
mental results in the literature. Moreover, with the use of
simple parallelization, the time required for CGs is sig-
nificantly decreased. It was shown that solving a RVE with
2500 randomly distributed unidirectional fibers took less
than 10 hours on an 8-core desktop PC. Thus, we consider
that the CG developed in this study is an accurate and
efficient tool for the micromechanical modeling of fiber
composites.
It is expected that such a powerful micromechanical tool

can be coupled with FEM in large-scales and employed in
the multi-scale analysis framework for the integrated design
of composite materials and structures. For example, based
on the proposed CGs and the homogenization at the micro-
scale, the equivalent moduli of fiber composites (such as
single-layer laminas) can be calculated; and then by using
the FEM at meso- and macro-scale (such as laminates and
3D braided composites), the deformation/buckling of large-
scale composite beam/shells that are typically used in
lightweight structures can be simulated. This will be de-
monstrated in our future studies.

Appendix

By assuming f r g h z= ( ) ( ) ( ) and substituting it into Eq.
(19), it can be shown that f r( ), g( ), h z( ) should satisfy the
following equation:

rf r r f
r r g

g
h

h
z

1 + 1 + 1 = 0. (A1)2

2

2

2

2

Using as the separating constant, the z-dependent term is
re-written as

rf r r f
r r g

g
h

h
z

1 + 1 = 1 = . (A2)2

2

2

2

2

For h
h

z
1 =

2

2 , the characteristic polynomial is r +2 , the

vanishing of which leads to r = ± . Thus, the expression
of h z( ) needs to be discussed in three cases according to the
value of :
(1) If < 0, let n= 2, and we have

h z E nz F nz( ) = cosh( ) + sinh( )n n .
(2) If = 0, then h z E F z( ) = +0 0 .
(3) If > 0, let n= 2 , r in= ± , and we have

h z E nz F nz( ) = cos( ) + sin( )n n .
Equation (A2) can be used to derive

r
f r r f

r r g
g= 1 = (A3)2 2

2

by using as the separating constant.

For g
g1 =

2

2 , the characteristic polynomial is r + = 02 ,

and r = ± . Considering that g( ) is periodic, the ex-
pression of g( ) needs to be discussed in two cases ac-
cording to the value of :
(1) If = 0, then g C( ) = 0.
(2) If > 0, let m= 2, im= ± , and we have

g C m F m( ) = cos( ) + sin( )m m .
Then, the radial solution in r direction is governed by

( )f
r r

f
r r f+ 1 + = 0, (A4)

2

2 2

whose solutions are related to the values of both and :
(1) If = 0 and = 0, then f r A B r( ) = + ln00 00 .
(2) If = 0 and > 0 ( m= 2), then

f r A r B r( ) = +m
m

m
m

0 0 .
(3) If < 0 ( n= 2) and > 0 ( m= 2), we have

f
r r

f
r n m

r f+ 1 + = 0, (A5)
2

2
2 2

2

which is the Bessel differential equation, and the solutions
are Bessel functions of first and second kinds:
f r A J nr B Y nr( ) = ( ) + ( ), (A6)mn m mn m

where Jm and Ym denote as the Bessel function of the first
kind and the second kind, respectively.
(4) If < 0 and = 0, then

f r A J nr B Y nr( ) = ( ) + ( )n n0 0 0 0 .
(5) If > 0( n= 2) and > 0( m= 2), we have the

modified Bessel differential equation:

f
r r

f
r n m

r f+ 1 + = 0, (A7)
2

2
2 2

2

the solutions of which are modified Bessel functions of first
and second kinds:
f r A I nr B K nr( ) = ( ) + ( ), (A8)mn m mn m

where Im and Km denote the modified Bessel function of the
first kind and the second kind, respectively.
(6) If > 0 and = 0, we have

f r A I nr B K nr( ) = ( ) + ( )n n0 0 0 0 .
Finally, the analytical expression of can be written in

the form of Eqs. (23) and (24) .
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基于三维纤维计算晶粒的纤维复合材料直接细观力学建模

黄业增, 王俊博, 李明净, 王冠楠, 董雷霆, Satya N. Atluri

摘要 面向纤维复合材料与结构的优化设计需要, 建立高效准确的纤维复材细观力学仿真工具具有重要意义.本文首次提出了包含内

嵌纤维的三维计算晶粒(computational grains), 用于纤维增强复合材料的直接细观力学建模. 基于所开发的纤维计算晶粒方法, 可以直

接构造含有多根随机分布纤维的代表性体积单元(RVE). 此外, 本文提出了一种基于缩放柱调和函数的Papkovich-Neuber解来表征纤维

和基体中独立的Trefftz试函数位移场, 并且开发了一种新的多场边界变分原理来计算纤维计算晶粒的刚度矩阵. 数值算例表明, 对于内

嵌大量随机分布纤维的RVE,纤维计算晶粒不需要构造复杂的网格,即可快速计算RVE的精确应力场,并预测其有效力学性能.此外,这
也是内嵌纤维的三维有限元单元的首次提出.
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