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Abstract A unified framework on distributed estimations in-network using incremental subgradient (IS) meth-

ods is introduced. The IS methods meet the requirement of the asynchronously processing, which are efficient

solvers developed recently focusing on separable non-differentiable convex optimization problems. The main

contribution of this paper is to formalize distributed estimators as equivalent separable convex optimization

problems, where general skills and several specific cases on signal estimations are presented. Analytical and

simulation results show that the IS framework can solve general nonlinear estimation problems in-network, and

achieve comparable performances as the centralized estimators.
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1 Introduction

Over the past decades, signal processing in-network has attracted lots of interest from various research

fields. The fundamental motivation is to design a reasonable scheme which can distribute the computa-

tional task over the whole network. In many practical networks, such as wireless ad-hoc networks, the

concurrent transmission rate is bounded [1]. It implies that any distributed algorithm on such networks

has to consider the communication cost besides the computational complexity on single node.

Traditional in-network signal processing methods are fulfilled on a fusion center, where centralized

algorithms handle all the data or measurements from nodes and then export the results to the network.

Such methods suffer from some difficulties: 1) heavy communication costs and long delay between the

nodes and the fusion center; 2) possible single point failure on the whole system. Considering the

deficiencies of centralized methods, it is desirable to develop real distributed methods which do not need

any fusion centers. In this way, several benefits are present: 1) all nodes do computation with local

(nearby) information following simple rules; 2) all nodes only exchange information with their neighbor

nodes; 3) the network’s dynamic behavior will converge to the expected result.

Among varieties of distributed processing ways, consensus average (CA) and distributed optimization

approaches are two of the mainstream methods used in recent publications. In consensus context, each
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node only exchanges information with its neighbors within communication range. By proper designed

distributed communication schemes, the whole network will converge to a consensus state, usually the

average of all nodes’ initial states, which is faster and more efficient than all-to-all broadcast schemes [2].

Under reasonable assumptions, distributed estimation expressions on a static signal on a network, e.g.

best linear unbiased estimator (BLUE), linear minimum mean squares error estimator (LMMSE), least

mean squares estimator (LMS) and even Kalman filter (KF), could be decomposed into a summation

of many local calculations, and can then be solved in CA framework [3]. CA based methods require

synchronized transmission over the network, which restricts their applications in some practical scenarios.

CA methods also perform not very well in convergence rate and communication efficiency, compared with

other distributed methods as introduced as follows.

Distributed optimization is another approach to solving the signal processing problems in-network. For

instance, many estimators in statistical processing field with analytical solutions are derived from some

optimization problems. One usually used distributed optimization method is the alternating direction

method of multipliers (AD-MoM) [4], which has been applied to solve distributed estimation problems

[5–8]. AD-MoM is a general optimization method based on the Lagrangian dual framework, so it can

be applied to the general distributed estimation on deterministic and/or random signals [5,6], such as

maximum likelihood (ML), BLUE, maximum a posteriori (MAP), and MMSE. Furthermore, recursive

estimation problems such as recursive least squares filter (RLS), LMS and KF can also be integrated

into the AD-MoM framework [7,8]. AD-MoM methods need so-called bridge nodes to accomplish the

information exchange over the network, whereas the selection of bridge nodes is an intractable problem

[9]. Also, AD-MoM requires synchronous information exchange among neighboring nodes, which comes

with high communication cost and computation complexity in some cases as discussed in Section 5.

Incremental subgradient (IS) method is an asynchronous approach developed to solve separable convex

optimization problems [10–12]. Incremental approach only handles single objection in one iteration and

relay the intermittent result to the successor. Compared with the traditional gradient methods, IS does

not require object functions be differentiable, which broadens the field of its applications. IS has been

used to solve the least square regression problem [10] and SVM classification case [13], while it can

potentially be used to solve any separable optimization problems as indicated in [14]. Besides determined

objective functions, the IS methods can also be used to solve stochastic optimization problem [15,16],

which actually is some incremental stochastic gradient algorithms.

There are several incremental ways of the IS methods, mainly classified by determined or random relay

paths. The seminal paper [10] proposed cyclic and uniform randomized relay modes, and analyzed their

convergence properties of several stepsize rules. Later, Markovian relay mode is also proposed [16,17],

where relay among neighboring nodes follow a Markovian transition probability matrix.

Our main contribution of this work is to formalize the classical distributed estimation problems as

optimization problems, so that distributed estimations can be accomplished with the IS framework. The

outline of this paper is as follows. Some necessary definitions and related work on the IS methods are

given and simply reviewed in Section 2. The key equivalent relationships between some typical distributed

estimators with closed-form expressions and the separated convex optimization problems are established

in Section 3, where the general form of the distributed incremental subgradient (DIS) estimator in-network

is formulized. Specific forms of the DIS estimator on the classical distributed estimation problems are

presented in Sections 4 and 5. The simulation results of our DIS estimator are reported in Section 6.

Finally, some concluding remarks are given in Section 7.

2 Incremental subgradient methods

Consider a distributed estimation problem on a network with N independent observers, where only single-

hop communications between neighbors are allowed. The network is modeled as an undirected graph with

symmetric links. We consider the problem as

min f(x) =
∑N

i=1 fi(x) s.t. x ∈ X , (1)
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where fi are convex functions (but not necessarily differentiable), and X is a nonempty, closed, and

convex subset of Rn. The signal x ∈ R
p to be estimated may be a deterministic or random signal. The

observation of the node i to signal x(t) is described as zi(t) = fi(x(t), wi(t)), where wi(t) denotes the

measurement noise. We focus on random relay modes of the IS methods, which is more suitable for

in-network processing.

The IS iterative process can be written as

x(k + 1) = PX (x(k)− αkgωk
(x(k))), (2)

where αk is the positive stepsize, PX is the projection operator on the set X . gωk
(·) is a subgradient

of fωk
(·), where ωk is a sequence random variables over the index set 1, . . . , N . The procedure of the

iteration is that a sub-function fωk
(·) is selected each instance k, and then steps forward the negative

subgradient direction of fωk
(·) at xk. Compared with traditional gradient or subgradient based methods,

the main advantage of the IS methods is that each node only needs to carry out local optimization without

global information.

2.1 Uniform random relay mode

In uniform random relay mode [10], ωk is a sequence of random variables uniformly selected over the index

set. In order to ensure that the iteration converges to f∗ as k → ∞, we offer the following assumption:

Assumption 1. The set of subgradients {gωk
(·)} for all k 6 0 is bounded, i.e., there exists a positive

constant C such that ‖gωk
(·)‖ 6 C with probability 1.

Several stepsize rules which the constant and diminishing stepsize rules are two fundamental ones.

Theorem 1 (Constant stepsize rule [10]). Assume Assumption 1 holds. Then, for the sequence xk

generated by the incremental method (2) in uniform random relay mode, with the constant positive

stepsize α, we have

(a) if f∗ = −∞, then infk>0 f(xk) = f∗ almost surely (a.s.),

(b) if f∗ > −∞, then infk>0 f(xk) 6 f∗ +
αNC2

2 a.s.

Theorem 2 (Diminishing stepsize rule [10]). Assume Assumption 1 holds and let the optimal set X ∗

be nonempty. If the stepsize diminishes such that αk > 0,
∑∞

k=0 αk = ∞,
∑∞

k=0 α
2
k < ∞, then, for the

sequence xk generated by the incremental method (2) in uniform random relay mode converges to some

optimal solution x∗ almost surely.

2.2 Markovian relay mode

Although owing to fast convergence rate of the uniform random relay mode, the random relay between

any pair across the network is not applicable. If only neighboring transfer is allowed, Markovian relay

mode is more feasible. One kind of transition matries in [16], also named the Perron matrix in [2], is

given for instance

[P ]i,j =















ε, if j 6= i and j ∈ Ni,

1− ε|Ni|, if j = i,

0, otherwise,

(3)

where [P ]i,j is the transfer probability from node i to j at time k, Ni is the neighbor set of node i, and

|Ni| is its cardinality, i.e., the degree of node i. The constant ε is chosen to guarantee that the Perron

matrix is primitive such that we have the following lemma.

Lemma 1 ([2]). Let ε < 1/∆, where ∆ is the maximum degree of all nodes. The matrix P owns the

following properties, if the underlying topology is a connected undirected graph, i.e., there is an edge

from node i to j if and only if [P ]i,j > 0.

(a) The Perron matrix P is primitive and hence has one strictly maximum eigenvalue.
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(b) All eigenvalues of P lie within the interval [−1, 1], which can be ordered as −1 6 µ1 6 µ2 6 · · · 6
µN−1 6 µN = 1.

(c) P is a doubly stochastic matrix, which means 1TP = 1T and PT1 = 1.

Theorem 3 (Constant stepsize rule [17]). Assume Assumption 1 holds. Then, for the sequence xk

generated by (2) in Markovian relay mode, with the constant positive stepsize α, we have (a) If f∗ = −∞,

then lim infk→∞ f(xk) = f∗ a.s. (b) If f∗ > −∞, then lim infk→∞ f(xk) 6 f∗ +
αKC2

0

2 a.s., where

K = maxiE[(Ri
k)

2], and Ri
k is the recurrent time of node i.

Theorem 4 (Diminishing stepsize rule [16]). Assume Assumption 1 holds and let the set X be bounded.

Assume a stepsize rule αk = α/kp, where 2/3 < p 6 1. Then, for the sequence xk generated by (2) in

Markovian relay mode, we have lim infk→∞ f(xk) = f∗ a.s.

It is obvious the result of the Markovian relay mode is weaker than the uniform relay mode. However,

it does not degrade the performance a lot in practice. A trick in Markovian relay mode is that each node

preservers two intermittent results, one is the current value and the other is the minimal value in history.

3 IS estimation framework

3.1 Equivalence on distributed estimation problems

The central issue of this paper is how to transform an analytical global optimization solution into a

separable optimization problem and solve it using the IS methods. Many distributed estimators have

the closed-form expressions as given in the following lemmas, which have equivalent relationships with

constructed distributed optimization problems.

Lemma 2. Assume
∑N

i=1 Ai
TAi is invertible. The solution x̂ = (

∑N
i=1 Ai

TAi)
−1
∑N

i=1 Ai
Tbi is equiv-

alent to a distributed optimization problem x̂ = argminx

∑N
i=1 ‖Aix− bi‖22.

Proof. Note ‖Aix− bi‖22 is a convex function of x, take the derivative of
∑N

i=1 ‖Aix− bi‖22 with respect

to x and let it be zero,
∑N

i=1

[

AT
i (Aix− bi)

]

= 0, then we have the unique result.

Lemma 3. If all Ai are positive definite matrices, the solution x̂ = (
∑N

i=1 Ai)
−1
∑N

i=1 bi is equivalent

to a distributed optimization problem x̂ = argmin
x

∑N
i=1 ‖A

1/2
i x−A

−1/2
i bi‖22.

Proof. By the eigen-decomposition of Ai, we know A
1/2
i and A

−1/2
i exist and are also positive definite.

Note that ‖A1/2
i x−A

−1/2
i bi‖22 is a convex function of x, take the derivative of

∑N
i=1 ‖A

1/2
i x−A

−1/2
i bi‖22

with respect to x and let it be zero:
∑N

i=1[(A
1/2
i )T(A

1/2
i x−A

−1/2
i bi)] =

∑N
i=1(Aix− bi) = 0. Then we

have the unique result, where we use the fact that
∑N

i=1 Ai is invertible if all Ai are positive definite.

Special equivalent cases on BLUE and LMMSE were proposed in [5,6]. Here we give the general forms

which can be applied in more cases.

3.2 General randomized DIS estimator

As we have built a bridge from analytical estimators to incremental subgradient optimization problems,

we can present the general algorithms of our DIS estimator as Algorithm 1.

4 Distributed estimators on deterministic signals

4.1 DIS-MLE

For a deterministic signal x, each sensor node observes zi ∈ R
Li independently with the probability

density function (pdf) pi(zi;x). If pi(zi;x) is known, the maximum likelihood estimator (MLE) is given

by x̂ML = argminx −∑N
i=1 ln[pi(zi;x)]. Here we assume
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Algorithm 1 General randomized DIS estimator

1. Initialization

Select an initial value x(0) and do other initializations.

2. Incremental iteration

For k = 0, 1, 2, . . .

Calculate the subgradient gi(x(k)) of fi,

Select a stepsize αk,

x(k + 1) = PX (x(k) − αkgi(x(k))),

Transmit x(k + 1) to node j ∈ Ni according to (3).

3. Stopping

When x(k) reaches to a steady value, stop the iteration.

Assumption 2. The underlying graph of the network is fully-connected, where the transmissions between

nodes are error-free.

Assumption 3. The pdfs pi(zi;x) are log-concave with respect to x.

The network connectivity in Assumption 2 ensures the utilization of all observations. The log-concave

in Assumption 3 is the requirements of global uniqueness of the centralized ML estimator. Algorithm 1

can be applied to DIS-MLE directly, where fi = − ln[pi(zi;x)] is a convex function.

4.2 DIS-BLUE

For a popular linear measurement model zi = Hix + wi. Let HT = [HT
1 ,H

T
2 , . . . ,H

T
N ]T, wT =

[wT
1 , w

T
2 , . . . ,w

T
N ]T, and the total observations vector zT = [zT

1 , z
T
2 , . . . , z

T
N ]T. The augmented mea-

surement formula is z = Hx+w, for which the Best Linear Unbiased Estimator (BLUE) is

x̂BL =
(

HTC−1H
)−1

HTC−1z, (4)

where C is the blocked variance matrix of all noise wi. However, we cannot solve (4) in a centralized

way. If all the noises are uncorrelated, (4) can be decomposed into

x̂BL =

(

N
∑

i=1

HT
i C

−1
ii Hi

)−1 N
∑

i=1

HT
i C

−1
ii zi, (5)

where Cii is the variance matrix of noise wi. It is well known that the original derivation of BLUE is a

solution of a constrained optimization problem [18]. However, we construct an unconstrained optimization

to get the equivalent result as indicated in Proposition 1,

Proposition 1. The analytical estimator (5) is equivalent to the following optimization problem:

x̂BL = argminx
∑N

i=1 fi(x), where fi(x) = ‖C−1/2
ii Hix−C

−1/2
ii zi‖22.

Proof. Note the covariance matrix Cii is positive definite, so C
−1/2
ii exists and is also positive definite.

Letting Ai = C
−1/2
ii Hi and bi = C

−1/2
ii zi, we complete the proof by Lemma 2, where we use the fact

that HT
i C

−1
ii Hi is positive definite such that

∑N
i=1 H

T
i C

−1
ii Hi is invertible.

Algorithm 1 can be applied here, where the subgradient of fi(x) is equal to its gradient gi(x) =

2(HT
i C

−1
ii Hix − HT

i C
−1
ii zi). Compared with the conventional derivation of BLUE, the optimization

problem in Proposition 1 focuses on the signal x directly, rather than the linear gain on the observations.

4.3 DIS-LSE

For the estimation performance in the observation space, there is a well-known least square estimator

(LSE) to minimize the square error x̂LS = argminx ‖z − Hx‖22 = argminx
∑N

i=1 ‖zi −Hix‖22, which
leads to a closed-form expression x̂LS = (HTH)−1HTz = (

∑N
i=1 H

T
i Hi)

−1
∑N

i=1 H
T
i zi.

In fact, LSE can be considered as a special case of BLUE when all the variance matrices are identical

matrices. So Algorithm 1 can be applied here, where fi(x) = ‖zi −Hix‖22 and its subgradient is equal

to the gradient gi(x) = 2(HT
i Hix−HT

i zi).
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5 Distributed estimators on random signals

5.1 DIS-MAP

If the signal x is a random variable with known a priori pdf p(x), the MAP estimator under independently

conditional observations can be written as x̂MAP = argmin
x
−∑N

i=1 (ln[pi(zi|x)] +N−1 ln[p(x)]).

As in Assumption 3, we assume

Assumption 4. fi(x) = − ln[pi(zi|x)]−N−1 ln[p(x)] is convex with respect to x.

Then Algorithm 1 can be applied here, where fi(x) is not necessarily differentiable.

5.2 DIS-LMMSE

For the convenience of computation, x and zi are assumed to be zero-mean without loss of generality,

as we can compensate for the mean value after computation. Further assuming that x is the linear

combination of observations xi, the LMMSE estimator is formulized as x̂LMMSE = CxzC
−1
zz

z, where

Cxz is the covariance matrix of x and z, and Czz is the variance matrix of z [18]. For the linear

model zi = Hix+wi when the noises wi are uncorrelated, the LMMSE result can be decomposed into

x̂LMMSE = (C−1
xx

+
∑N

i=1 H
T
i C

−1
wi

Hi)
−1
∑N

i=1 H
T
i C

−1
wi

zi.

Proposition 2. The analytical LMMSE estimator has the equivalent optimization form as x̂LMMSE =

argminx
∑N

i=1 ‖A
1/2
i x−A

−1/2
i bi‖22, where Ai = N−1C−1

xx +HT
i C

−1
wi

Hi and bi = HT
i C

−1
wi

zi.

Proof. Note Cxx and Cwi
are positive definite matrices, so C−1

xx and C−1
wi

exist and are also positive

definite. Let Ai = N−1C−1
xx

+ HT
i C

−1
wi

Hi and bi = HT
i C

−1
wi

zi. The proof is completed by Lemma 3,

where we use the fact that Ai = N−1C−1
xx

+HT
i C

−1
wi

Hi is positive definite.

Then Algorithm 1 can be applied here, where fi(x) = ‖A1/2
i x − A

−1/2
i bi‖22, and its subgradient is

equal to the gradient gi(x) = 2[(N−1C−1
xx

+HT
i C

−1
wi

Hi)x−HT
i C

−1
wi

zi].

6 Simulation

In this section, we will show the simulation results for the IS methods and compare them with other

distributed estimation methods. As illustrated in the introduction, we choose the Markovian relay mode

for all the simulations.

We choose a network topology as shown in Figure 1, where the circles represent the sensors, the

triangle represents the signal source, and the edges are the links among sensors. Although the topology

is arbitrarily chosen, all the algorithms discussed above can be applied to any other topology. We use

this sensor network to estimate the amplitude of the signal. The gains in the communication channels

are inversely proportional to the square of the distances between the transmitter and sensors. We assume

that all the links are error-free, and the observation noises are zero-mean and independent and identically

distributed (i.i.d.). To compare our algorithm with others, we define the normalized error as enorm =

‖x̂dis − xtrue||2/‖xtrue||2, where x̂dis is the distributed estimate, and xtrue is the actual signal.

In a typical sensor network, the energy consumption mainly comes from computation and communi-

cation. We define the computational cost as the total number of calculation in the network, where we

take addition and multiplication as one calculation for simplicity. Also we define the communicational

cost as the total number of the communication data from sensors to their neighbors, where we take each

value transmission as one communication for simplicity. For example, if a node sends three parameters

to its four neighbors and another node does the same, the total communicational cost is 2× 3× 4 = 24.

The computation and communication costs in one iteration of different algorithms used in simulation are

listed in Table 1.

In previous sections we have shown that the IS methods can be applied to many distributed estimators

such as MLE, BLUE, MAP, and LMMSE. We will discuss these cases one by one. To all the IS methods
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Figure 1 The network topology used in simulations. (a) The network topology, N = 100, average degree is 6, and the

size is 100× 100; (b) the partial enlargement of the dotted rectangle in (a).

Table 1 The computational and communicational costs in one iteration. The computation cost of algorithms marked

with “∗” may be imprecise. Because they do not have analytical solutions, we use the matlab function fminbnd to find

the optimal points iteratively. We suppose the computation cost in one iteration of fminbnd is 5, which may be the best

situation

Computation cost Communication cost

DIS-MLE 5 2

D-MLE* 8000 840

DIS-BLUE 4 2

D-BLUE 4100 840

CA-BLUE 3600 1200

DIS-MAP 6 2

D-MAP* 8000 840

DIS-LMMSE 4 2

D-LMMSE 4100 840

in the simulation, we choose the diminishing stepsize rule αk = C/(k+1), where k is the iteration index,

and C is a constant.

6.1 Distributed MLE

Here we test the convergence rate of DIS-MLE in non-Gaussian noise case, and compare it with the D-

MLE in [5]. In the simulation model, zi = Hix+wi, where the actual signal amplitude x = 1. The channel

gain Hi = 104/dist(i)2, where the dist(i) represents the distance between sensor i and the transmitter

in Fig.1. The observation noise wi is chosen to follow Laplace distribution, whose probability density

function is p(x) = 1
2b exp(−

|x−µ|
b ), where µ is a location parameter and b > 0 is a scale parameter. Here

we set µ = 0 and b =
√
5/2.

In order to eliminate the effects of the randomization in the IS methods, we achieve the final normalized

error by running the IS 100 times and averaging 100 sets of normalized error in one observation. All the

definitions and assumptions are same in the following simulation cases, except for explicit specification.

In each iteration of DIS-MLE, one addition and two multiplications are needed to calculate the sub-

gradient, and one addition and two multiplications are needed to update the local estimation value. It

only needs to transmit two values, the local estimation value and iteration index, in one link of the whole

network. Figures 2 and 3 display the relationships between the normalized error and the computational

or communicational cost for DIS-MLE and D-MLE.

These results indicate that the convergence rate of DIS-MLE versus computational or communicational

cost is faster than that of D-MLE at first. This is because in every iteration only one sensor processes the

data and transmits local results to one neighbor in the IS methods, while in D-MLE, every sensor should

process data and transmit to all neighbors during an iteration. Both methods own similar estimation

accuracy if increasing the simulation steps further.
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DIS-BLUE, D-BLUE and CA-BLUE.
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Figure 5 Normalized error vs. communicational cost for

DIS-BLUE, D-BLUE and CA-BLUE.

6.2 Distributed BLUE

Here we test the convergence of DIS-BLUE, and compare it with D-BLUE [5] and CA-BLUE in [3]. In

the model, the actual signal amplitude x = 1, and the observation noise wi ∼ N(0, 2.5). In each iteration

of DIS-BLUE, only one addition and one multiplication are needed to calculate the subgradient, and one

addition and one multiplication are needed to update the local estimation value. As it is in DIS-MLE,

we only need to transmit two values in the whole network.

Figures 4 and 5 display the relationships between the normalized error and the computational cost or

communicational cost for DIS-BLUE, D-BLUE and CA-BLUE.

First, the convergence rate of DIS-BLUE is much higher than other algorithms. And the normalized

errors will be less than 0.2% at small calculation and communicational cost. D-BLUE and CA-BLUE

have advantages with cost up to 106 computation and 105 communication respectively. However, it is not

feasible for sensors with limited computation and communication resource. We think that DIS-BLUE

algorithm is a better choice among other distributed BLUE algorithms for practical application.

6.3 Distributed MAP

In the model for MAP, we assume that the actual signal amplitude x is a random variable with Gaussian

distribution N (1, 0.01), and observation noise wi obeys Laplace distribution with µ = 0 and b =
√
5/2. In

every iteration of DIS-MAP, two additions and one multiplication are needed to calculate the subgradient,
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Figure 6 Normalized error vs. computational cost for
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DIS-MAP and D-MAP.
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DIS-LMMSE and D-LMMSE.
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Figure 9 Normalized error vs. communicational cost for

DIS-LMMSE and D-LMMSE.

and one addition and one multiplication are needed to update the local estimation value. As in previous

algorithm, the whole network only needs to transmit the local estimation value and iteration index.

Figures 6 and 7 display the relationships between the normalized error and the computational or

communicational cost for DIS-MAP and D-MAP [6]. It can be seen that the performance of DIS-MAP

has the advantage at any computational and communicational costs.

6.4 Distributed LMMSE

Here we test the convergence of DIS-LMMSE, and compare it with D-LMMSE in [6]. In the model, the

actual signal amplitude x is a random variable with Gaussian distribution N (1, 0.01), and observation

noise wi also obeys Gaussian distribution N (0, 2.5). In one iteration of DIS-LMMSE, the computation

and communication cost are exactly the same as that of DIS-BLUE.

Figures 8 and 9 display the relationships between the normalized errors and the computational or

communicational cost for DIS-LMMSE and D-LMMSE. The convergence performance of this case is

similar to that of DIS-MLE in MLE case.

7 Conclusion

In this paper, we proposed a unified framework on distributed estimation in-network using the IS methods,

as a lot of distributed estimation problems can be transformed into separable optimization problems. We
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believe that the IS methods can also be used to build a distributed RLS, LMS and other popular estimation

methods. The IS methods do not require the objection function to be differentiable, thus broadening the

application areas in many practical scenarios, such as sensor network and collaborative robotics. The IS

methods are also suitable for non-Gaussian noise models, e.g. the MLE and MAP cases in this paper.

Although we only consider the undirected topology here, our method can be easily extended to directed

topologies.

Although verified in many estimation contexts from the simulations, the IS methods converge not fast

enough. The next step of our work is to improve the convergence rate by introducing recent progresses

in optimization theory.
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