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1 Introduction

We denote by Cg°(0,00) the space of compactly supported smooth functions on (0,00). Let g be a
real-valued function in C2°(0, 00). If

h(x) = /OOO g(zy)g(y)dy,

then h € C(0, 00). Its Mellin transform is
i) = [ hwa* e =301 - o).
The convolution operator v(k) is defined by
v(h) f(z) = /OOO RO FO 2)d* A, dXA = A~ LdA.

The Schwartz space S(R) is the set of all rapidly decreasing, infinitely differentiable functions f on
R with sup,cp |29 f®) (2)| < oo for a,b = 0,1,2,... We use natural logarithm to identify R} = (0, c0)
with R. This induces an isomorphism between spaces S(R}) and S(R). The fundamental differential
operator on S(RY) is

Df(x) = —af'(a).
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We denote by Hn the subspace of all even functions f € S(R) such that f(0) = 0 and §f(0) = 0,
where the Fourier transform of f is

556 = [ s@ena.
The strong Schwartz space is
H_ :={f | R} — C such that 2 f(z) € S(RY) for every real number o}.
The zeta operator Z is defined by Zf(z) = >, f(nz). We call the quotient space
Ho=H_|ZHn

a Hilbert-Pélya space. Let D_ be the operator induced by D on H.

The Hilbert-Pélya conjecture says that the Riemann hypothesis is true because non-trivial zeros of the
zeta function correspond (in a certain canonical way) to the eigenvalues of some positive operator.

Note that the convolution operator v(h) is a positive operator on L?(0, c0). In direction of the Hilbert-
Pélya conjecture, a spectral interpretation for critical zeros of the zeta-function is given by Connes [2].
He constructed a closed unbounded differential operator D, and a Hilbert-Pélya space H,. The discrete
spectrum of D, acting on H, is the set of imaginary parts of critical zeros of the L-function with
Grossencharakter x [2, Theorem 1, p.40].

Motivated by Connes’ construction, Meyer [3, Corollary 4.2, p.8] proved that the eigenvalues of the
transpose D! of D_ acting on the space of continuous linear functionals H — C are exactly the nontrivial
zeros of ((s) and that the algebraic multiplicity of eigenvalues of D? is the order of corresponding zero
of {(s).

In infinite dimensional spaces an operator and its transpose may not have the same spectrum. If D_
was a compact operator on H, then D_ and its transpose would have the same spectrum. However, D_
is unbounded and hence is not compact on H. Thus we do not know whether or not every nontrivial
zero of the Riemann zeta function is an eigenvalue of D_. This question leads us to confirm by explicit
construction in Theorem 1.1 that every nontrivial zero of the zeta function is indeed an eigenvalue of D_,
which suffices for the purpose of the Riemann hypothesis [1,9].

Theorem 1.1.  If p is a nontrivial zero of ((s), then

Fy(z) = /100 Zn(tx)tP~dt

is an eigenfunction of D_ on the Hilbert-Pdlya space H associated with the eigenvalue p, where n(z) =
8ra?(ra? — %)e‘”z, i.e.,
DF,(x) = pF,(z) + Zn(z), n€Hn.

A fundamental result in [4, (1.8), p.55] is that if A is an eigenvalue of the fundamental differential
operator, then h()) is an eigenvalue of invariant integral operators. Since Connes’ discussion is modelled
on Selberg’s trace formula, analogous statement for Connes’ approach to the Riemann hypothesis would
be that if p is nontrivial zero of the zeta function, then }\L(p) is an eigenvalue of v(h). We confirm this
analogy by explicit construction in Theorem 1.2.

Theorem 1.2.  If p is a nontrivial zero of ((s), then E(p) is an eigenvalue of v(h) on the Hilbert-Pdlya
space H associated with the eigenfunction F),.

In the following theorem we give a characterization of eigenfunctions associated with nontrivial zeros
of the Riemann zeta function via the Poisson summation formula.

Theorem 1.3.  Let 6 p(z) = [;° Z7'F(at) %ﬁl)mdt. Then

lim (; i}gz—lF(’Z) - 51,F(x)> = F(z)

l—o0
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for every F € H_. An element F € H_ belongs to the subspace ZHn if and only if JZFZ 1 F(x) = F(x)
for all x, where Jf(x) = x=1f(z~1).

By using Theorem 1.3, we prove the following theorem about geometric multiplicity of nontrivial zeros
of the Riemann zeta function.

Theorem 1.4. Let p be a nontrivial zero of ((s). Then the eigenvalue p of D_ has geometric multi-
plicity one.

If the geometric multiplicity of each eigenvalue of D_ on the Hilbert-Pélya space H is the same as its
algebraic multiplicity, then Theorem 1.4 implies the simplicity of zeros of the Riemann zeta function.

2 Proofs of Theorems 1.1 and 1.2
We denote by N the set of all positive integers. For any interval I on R, we define
S(RY)r ={f | R} — C such that 2 f(x) € S(R}) for every a € I}.

Lemma 2.1.  If f is an even function in S(R), then both f and Ff belong to S(R’)(0,00)-

Proof. By definition of S(R) and S(R7 )(g,00) We have f € S(RY)(g,o0)- Since the Fourier transform §
maps S(R) into itself, we also have Ff € S(RY)(0,00)-
This completes the proof of the lemma. O

Proof of Theorem 1.1.  Since

n(x) = 8ma? (ﬂ'x2 - 3>e”2, (2.1)

we have 1 € Hn, 7(s) = s(s — 1)7~%/2I'(s/2), and Fn(z) = n(z) by calculation. Thus by Poisson’s
summation formula,

JZn(x) = Zn(z). (2.2)
Put -
F(x) = / Zn(tz)tP~tdt. (2.3)

Since 1 € Hn, by Lemma 2.1 and analytic continuation,
/ In(ta)t=tdt = 2C(s)s(s — 1)a—*/2D(s/2) = 3¢ (s)
0

for s > 0. In particular, fooo Zn(tx)tP~tdt = 0 where the integral is convergent for fixed z. Hence
by (2.2),

1 0
F(z) = 7/ Zn(tx)tP~tdt = 7/ 1 Zn(t)tpdt. (2.4)
0 1 x X
We write F(z) =2~ [ Zn(t)tP~'dt. By the product formula, —zF’(z) = pF(z) 4+ Zn(x), i.e.,
DF(x) = pF(x) + Zn(xz), n€Hn (2.5)

so that p is an eigenvalue of D_ on the Hilbert-Pdlya space if we can show F' € H_.
Since R is open and since 7 D™ F(x) is a continuous function of 2 € (0, 00), for every k,m + 1 € N,
o € R it suffices to show that

2’D"F(z) <1 as z—0 or x— oo.

If0 <z <1, then X :=1/x > 1. By (2.4),

dam e
o ym | _ yxy-o —p
|x® D™ F (z)] X I(og X) (X/l Zn(tX)t dt)‘
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As m > 3 and nt > 1, there exists a constant Cy, ,, > 0 such that

ﬁ (X(me)2 (7r(nt)()2 - 2) e_”("tX)2>

forallt >1and alln € Nas X — oo (i.e.,, x — 0+4). It follows that

o0 e’}
|z D™ F(x)| < 87Co m < Z e_”2> / e Ut ®odt < 1
n=1 1

3 2
2 2 2 —m(ntX) —Rp
log ) (X(ntX) (W(ntX) 2)e )‘t dt.

—0

2
eQ(ntX) < Ca,

as x — 0.
If x > 1, by (2.3) we derive similarly to the case x — 0 that

am o
v Zn(te)tP~tdt
g ([, )
o am 2 2 3 —m(ntx)?
as ¢ — 0o. Therefore F € H_.
Asn € Hp, for any fixed x > 0 and for all ¢ > 1 we have |n(tz)| < ¢, (tz) =2 for a constant ¢, depending
Co

on x. Thus -
Jo |3 | < o

n>N+1
as N — 00, so that we can change the order of summation and integration to obtain

27 D™ F ()] =

=1t <« 1

tRe=1g < =0

F(z) = Z/lOO n(tx)tP~1dt. (2.6)

Hence - - R
Z7'F(2) = / n(tz)t?~tdt = a:*f’/ ()P~ tdt ~ L@’)
1 T T

as © — 0+. Since 7j(p) # 0, this implies that F is not an element in ZHn. Hence F is a nontrivial
element in H.
This completes the proof of Theorem 1.1. O

Proof of Theorem 1.2.  Let F be given as in (2.3). By (2.6),

F(z) = Z/lOO n(tz)tP~1dt.

Since h is a compact support on (0, 00),

R(N)d* X / (AT na)tP~ 1dt‘
M >

n=N+1

Z / A2|dXA/ Rt — 0

n= N+1

as N — oo. Thus we can change the order of integration and summation and derive

) = / W) AZ / (A1)t Lt
0 1

oo oo
:Z/ h(A)dXA/ n(A " )t dt
0 1
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= h(p)F(z) + Zg1(x), (2.7)
where
g1(x) :/ 10077 (A" )Pt — h(p )/100 n(tx)tP~ dt
~ [ wtntea) ~pmteoneeas
= 2" {h(p)ii(p) — h(p)A(p)} — — h(p)n(tx))t*~" dt
- (w(hn(tz) - ﬁ(p)n(tw))tp—ldt (2.8)

is an element in Hn (shown next). Therefore, ﬁ(p) is an eigenvalue of v(h) associated with the eigen-
function F(z) on the Hilbert-Pélya space.

We now show that g1 € Hn. First notice that v(h)n and 7 are elements in Hn. Also g1(0) = 0 and

500 = [ awde = [t [ oimntn) - pptea))as

—00 —00

=2 /100 =241 /O“(v(h)n(a:) — h(p)n(x))dz = : E p (h(1) — h(p))A(1) = 0,

where the change of order of integration is permissible as the double integral is absolute integrable.
Let a,b=0,1,2,3,... Since v(h)n — h(p)n € Hn, there exists a positive constant M such that

sup | (v(h)n — h(p)n)® (z)| < M

z€R
and
sup [0 () — h(p)n) ()] < M.
For |z| > 1, we have
20 (b z)| = ‘/ atb (b)(tx) Tl(p)n(b)(m))tp_ldt

< /1 |tz|max(a b) +1|([U(h)7)](b) (tz) — ﬁ(p)n(b) (tlv))|t§Rp72dt

M
< .
1—Rp
For |z| < 1, we have
1 ~
@) = |- [ 2 e B et
0
e ~ M
< [ 1 ® ) = B ® o)l ta < g
1 Rp
Thus ¢g; € S(R), and therefore g1 € Hn as 7 is even.
This completes the proof of Theorem 1.2. L

3 Properties of §;

Lemma 3.1.  Let F be any element in H_. Then Z7'F € S(R )[1 ) For everyk,m+1€N,0>0
we have

D™ Z 7 F(z) < |logz|™% as 1z — oco.
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Proof. Let F be any element in H_. Then ﬁ(s) is an entire function. For s = o + it, t # 0 by partial
integration

N 00 —1)¥ © (o F .
F(s) :/ F(x)z* 'dx = ( ) / O [e? Flz)) ot td (3.1)
0 (it)” Jo  9(logz)”
for any real ¢ and v € N. Thus a (s) is of rapid decay for s in any vertical strip. By Mellin’s inversion
formula .
_ 1 F(s) ,_ _ _
2° 7 F(x :—_/ 2 Cds < v <« log = k
( ) 2mi Rs=o+1 C(S) | ‘

forx>1,0>0and k € N.
By [8, (3.11.8), p.60], a constant A exists such that

1/¢(s) = O(log [¢]) (3.2)

for R(s) > 1— ﬁ with [t| > to. Let 6 = A/logty, C1 ={s=1—-0+1it||t| < to}, and

A
ng{s:J—i—it c=1——— t|>t0}.

log [t|”

If x < 1, we can move the line of integration to obtain

1 F 1 F
xZ ' F(x) = —/ (s)xl_s ds = O(z%) + —/ £(s) ' ds. (3.3)
2mi Jeyue, C(s) 27 Jo, ((s)
Since F(s) is of rapid decay for s any vertical strip, by (3.2) a constant M exists such that [F(s)/C(s)|
< M|t|72 for all s € Cy. Tt follows that

F(s)
Cy ¢(s)

1 1
xl—sd8<<x\/m+/ —3
t/>eAvTTa ]

1

1
_l’_
e\/|logm| eA\/\loga:\

when z — 0 for k € N. Hence 2Z 1 F(z) < |logz|~* when x < 1 for k € N. Therefore for any o > 1,

< < |logz| 7,

27 Z 7 F(z) < |log x| ™"

as x — 0 or co. We also have 27 Z 1 F(x) < |logz|™* as x — oo for every k € N, o > 0.
Since F'(s) is of rapid decay for s any vertical strip and

D" Z 1 F(x) = i/ F(s)s™ s,
2mi Jeo,ue,  C(8)

we derive similarly to the above that

D™ Z 7 F(z) < |logz| ™" (3.4)
as x — 0 or oo for every k,m+1€N, o € [1,0), ie., Z71F € S(RY)1,00)- We also have
D" Z 7 F(z) < |logz| ™% as x— 00

for every k,m+1 €N, o > 0.
This completes the proof of the lemma. O
Lemma 3.2. Let
sin(2] 4+ 1)wt
—dt
Tt

51}17(.’1:) = / Z_IF((Et)
0
Then

o.r(x) = /O FZ7LF(t)dt. (3.5)
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Proof.  Since

2323
SZ'F(u) =2 / Z 7 F(t) cos 2mutdt,

0
we can write

o o (214D 7t
:/ Z_lF(t) sin ~=———
0

Tt

> sin (2] + 1) 7t
= / Z7 1 F(xt) Md \
0 t
where the change of order of integration is permissible because the double integral is absolute integrable
as Z71F € L(0,00) plus one finite interval of integration for a bounded function.
This completes the proof of the lemma.
Lemma 3.3. We can write

O

I+ivs
1 (2)"F(s)
R s
1UC2

In particular, if F = Zg for an element g € Hn then

I+3 1—sm
1 —=2 Fa(s
O1,z4(7) = %/ER’_K —( ) 9(s)

d
s—1 s
for any K > 0, where @(s) is of rapid decay for s any vertical strip of the half-plane Rs > 0.
Proof. By (3.3),

72 P(z) = /C F(s)
Hence

= - x % ds.
271—1 1UCo C(S)

sin(2] 4+ 1)wt ti. F(s) (wt)~*ds,

wt 27 Jo,u0, C(5)
where the double integral is absolute integrable because of the contour C; U Cs (using |sin(2] + 1)7t| < 1
when ¢ > 1 and |sin(2l 4+ 1)7¢| < (21 + 1)t when ¢ < 1). Thus we can change the order of integration
and derive

> sin(2] 4+ 1
/ Z_lF(mt) M dt = /
0 mt 0

e sin (20 + 1)wt 1
/ Zflp(xt)ud
0

p— L F(s) x*Sds/ sin(20 4+ 1)wt
mt 27 Jo,ue, C(8) 0 mwtlts
_ (20 + 1)813(3)33,5 ds /°° sint
27” CLUCy C(S) 0
By [6, Example 10, p. 162],

> siny . TS
/0 pE= y=—I(—s)sin —
for —1 < Rs < 1. It follows that

3.6
2 (3.6)
- sin(20 + 1 1 120 4 1)°F
/ 27V F(at) Md - (204 1) (S)x_sf(—s) i ™ g
0 mt 2ri C1UC: C(S)
Inserting P(fz)(zi)n z = —z ZEIE;)
find that

(see [8, (2.1.8), p. 16]) into the right-hand side of the above identity, we
/°° 771 F(at) sin(2] + 1)mt F
0 s

5N
g — L CGEPFE) o
7t 2 CLUCs Sc(l — )
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By an argument similar to that made in the paragraph containing (3.3),

1 1
19 I+ = _ .
S(CHEE = o

for any positive integer k as z — 0. It follows that &, » € L(0,00).
Next, if F' = Zg for an element g € HnA then

1 (B2)1=Zg(1 - s)
271 J(y—cyucs, (1=s)¢(s)

5l,Zg(x) = ds.

Taking Mellin transform for both sides of the Poisson summation formula for the function §g € Hn we
obtain that Zg(1 — s) = ((s)Fg(s). Consequently,

1 o~
e =g [ CTE,
LZQ 2’]‘[’1 (1)_01U02 S — ]- '

As g € Hn, by Lemma 2.1 we have §g € S(R)(0,00)- Similarly to (3.1) we obtain that §\g(5) is of rapid
decay for s in any vertical strip of the half-plane s > 0. As é\g(l) = 0 because §g € Hn we can move
the line of integration to s = K and derive that

Ao
1 (%) "g(s)
Ouz9(®) = 55 /%:K o1 &

for any K > 0.
This completes the proof of the lemma. O

4 Proofs of Theorems 1.3 and 1.4

Lemma 4.1.  Let F be any element in H_. Then for m+1 € N,
/ D™Z 7 F(u)du = 0.
0

Proof. By Mellin’s inversion formula,

ct+ico 1 s
Z7'F(z) = % /C_ioo ?;5)) x~%ds (4.1)

for ¢ > 1. For any ¢t > 0, by (3.1) we can change the order of integration to obtain

oo B 1 c+ioco ﬁ(S) B
1 _ T \2) 4l-s
/t Z7 F(x)dx = i) GO t-~%ds.

By (3.1) and (3.2), we can move the line of integration and get

o0 1+ioco o
/ Z7 F(z)dx = i _Fls) t1ds.
t 2mi Jisiee (s —1)C(5)

As the integral is absolutely integrable, by the Riemann-Lebesgue lemma [7, Theorem 1, p. 11],

1+ico -~

F
lim () t'=5ds = 0.
=0+ J1 oo (5 —1)C(8)

Hence
o0
/ Z7 F(x)dx = 0.
0
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Also
1 fetie F(s)sm
D" Z7'F(x) = / x5 ds
27“ ico C(S)
and
o 1 SAE ﬁ(s)sm
/ D" Z7'F(2)dr = — e
’ 2mi Jicioo (s = 1)¢(s)
By the Riemann-Lebesgue lemma,
lim T _E@)sm t'*ds =0
=0+ J1_ie (s —1)C(s) .
Hence .
/ D™Z 7 F(z)dx = 0.
0
This completes the proof of the lemma. O

Lemma 4.2. Let f € LY(R) be an even function. If Ff(0) = 0, then

! 2 i
( ) meoHrO f(ma 0)+/0 f(at)sm(;lﬂdtJrR(f,a)y

nmt

where

o mty sin T
R(f,a) = Z/ (F(ta) = flma+0)) SRCLEDT o,

= Jm sin 7t
= m sin(20 + 1)7t
ta) — —0)})—————L—at
+mZ:j1 W) = fma =0} =0

for L € N, where Ff(z) = [7_ f(y)e*™¥=dy.

Proof.  The followmg argument is a minor modification of [7, lines 15-21, p. 61].
As Ff(0) =0 and f € L'(0,00), from the trigonometric identity

1
2 Z cos 2mmat =

m=1

sin(2l + 1)wat
sin rat

we derive

o sin(20 + 1)mat
(ma) / f(@) ( Z cos 27Tmozt> dt = /0 f(t){bsinwatﬁa — 1}dt

~ lim /T f(t)sin(Ql + 1)mat

M—oo Jg sin rat

dt.

‘We can write

M+ L
e sin(2l + 1)rat

(t)

0 sin Tot

Mf(m +0+f( —0)
>

m=1

dt

~

Q\H

1
M mtg

[ sty 5 () e

m=1""a

_|_
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Moorw m sin(20 4+ 1)wat
+ t)y—fl——-0| p———— dt.
mz_:l/m %{f() f(oz )} sin Tt

Therefore

é zl:gf(m) _ i f(ma +0) + f(ma —

3 sin(21 + 1
0 +/ Flat) CLEDT b s,
o o = 2 0 sin 7t

where

R =3 [ ) - foma -+ oy EE DT g

sin 7t

3 7 (i) - fma - oy SREL T,

sin
This completes the proof of the lemma

Lemma 4.3.  Let F be any element in H_ and f(t) = Z71F(|t|]). Then

llggo Z / F(ta+ma) — f(ma) sin(20 4 1)xt

sint

dt=0
for any fixed real «.

Proof. By (4.1),

c+ioco AS
0= [ 2

T s t%ds, t>0,
for a constant ¢ > 1. Since
ta+ma
(ta + ma)™% — (ma)™° = 75/ u 5 du,
ma
we have

(7t ma) = fmay EEDT

sin 7t

. 1 [etie —sﬁ(s) /taero‘ w1 du | ds sin(20 4 1)xt
S\27 Jolie () mo sin 7t
20+ )mt  t /C“O"
2m -2t mlteac [,

—ioco

—sF(s)
¢(s)

1/2, where the implied constant depends only on « and [, not on ¢t. The uniform convergence of
the series

|ds| <«

m1+c
for [t <

oo

S (f(ta+ ma) — f(may) 2L T
m=1

sin 7t
for |t| < 1/2 justifies the following change of integration and summation

Z / flta+ ma) f(ma))wdt

sint

G L ) 2

ol M\b—‘

- dt.
= Jma sin i
Since there exists a constant c3 depending on « such that
1 c+ioco —Sﬁ s oo ta+ma 1
‘(/ (s) {Z/ w T du|ds | — <3
2m Jesioo C(8) L= e sin 7t
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for all |t| < 1/2, applying the Riemann-Lebesgue lemma to the right-hand side of the above identity
we derive

lim i /5 (f(ta +ma) —f(ma))w dt =0
—1/-3

l—o0 sin 7t

for any fixed real a.
This completes the proof of the lemma. O

Lemma 4.4. Let 6; p(x) be given as in Lemma 3.2. Then

Jim (; ;%Z_1F<ZL> - 51,F($)> =F(z)

for every element F' in H_.

Proof.  Let F be any element in H_. Put f(t) = Z~'F(|t|). Then f is an even function on R. By (3.4)
with ¢ = 1,m = 0,k = 2, f belongs to L*(0,00). By Lemma 4.1 with m = 0, Ff(0) = 0. Thus by
Lemma 4.2,

! > 3 sin s
;ng(m) _ Z f(mx+0)—|—f(mx—0)+/0 f(xt)b (;Tl) tdt+R(f,a:),

7t
where

Z / f(tx +mzx) — f(mx)) wdt

sin 7t

By Lemma 4.3, for z € (0,00) we have

. blIl (20 + 1)mt
ll—lglo( ZSZ 1F< ) / uc sint dt) = Fl@)-

y (3.4) and the Riemann-Lebesgue lemma,

1/2 1 1
lim [z )( , - ) sin(2l 4+ 1)7wtdt = 0

I—o0 Jq sinwt @t
and
> sin(21 + 1)7t
tim [ fler) SREEDT
l—o0 1/2 7t
Therefore,

lim / fa sm 20+ 1) dt ~ lim / fla sm (21 —|— 1)

l—o0 sin 7T't l—o0

The stated identity then follows.
This completes the proof of the lemma. O

Lemma 4.5 (See [5, Proposition 4.1, p.87]).  Suppose f € LY(R). Then §f is continuous and bounded
on R.

Lemma 4.6 (See [5, Theorem 4.2, p.87]).  Suppose f € L'(R) and assume also that Ff € L*(R). Then
f(x) = 3§ f(x) for almost every .
Lemma 4.7 (See [3, (10), p.4]).  The set of all even functions in S(R) equals

= {f € L*(R},dz) | both f and Ff belong to S(R’)(0,00)}-
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Proof of Theorem 1.3.  The first part of Theorem 1.3 is Lemma 4.4.

We now show that, for any element in F € H_, F belongs to ZHn if and only if JZFZ1F(z)
= F(x) holds for every = € (0,00).

If F' € ZHA, by the Poisson summation formula the stated identity is true.

Conversely, if JZFZ1F(x) = F(z) for every x € (0,00) then

SZ'F(x)=Z'JF(z) (4.2)

for all 2 € (0,00). As JF € H_, we have Z~'JF € S(R})1,00) by Lemma 3.1. Thus (4.2) says that
FZ7'F € S(RY)1,00)- Also Z7'F € S(RY)1,00) by Lemma 3.1.
Next, we show that both §Z7'F and Z~'F are in S(RY)(p,1). By Lemmas 3.1 and 4.5, §Z 'F is
continuous on R. Moreover §Z 1F(0) = 0 by Lemma 4.1.
By (4.2) and Lemma 4.6,
Z7'F(2) =§'Z ' JF (z) (4.3)

for almost every x. As the right-hand side of (4.3) is continuous on R by Lemma 4.5, Z~1F(x) can be
extended uniquely to a continuous function on R. We use the same notation for the extended function.
Since §'Z~1JF(0) = 0 by Lemma 4.1, by (4.3) we also have Z~'F(0) = 0.

For m € N, by (4.3),

D™ Z'F(z) = D™§' Z7 ' JF(2) = (27iz)"F (y™ Z T F (y))(x). (4.4)

By choosing 0 =m + 1, k=2 in (3.4) and m = 0 in (3.4), we find that y"Z 1 JF(y) € L*(0,00). Then
Lemma 4.5 together with (4.4) implies that D™Z ' F(z) is a continuous on R and that D™Z~1F(0) = 0.
For m € N,
D"FZ7F () = (=2miz)"§(y" 27 F(y))(x).

This identity implies that D™FZ~1F(z) is continuous on R and D™FZ~1F(0) = 0.

Summarizing the above four paragraphs, D™Z'F(z) and D™FZ 'F(z) are continuous on R and
vanish at © = 0 for m = 0,1,2,... Hence they are bounded on (0, 1), so that for every k,m + 1 € N,
o € (0,1) we have

D™ 77 F(x) < |logz|™* and 2°D™FZ 'F(x) < |logz|™* as x —0.

This together with the 2nd part of Lemma 3.1 implies that §Z~'F € S(RY)(0,1) and Z7'F € S(RY)0,1)-
Thus by the end of 2nd paragraph of this proof we have shown that §Z~!F € S(RY)(0,00) and Z7lF €
S(R%)(0,00)- Thus it follows from Lemma 4.7 that Z ~1F belongs to H,. We have already shown that
§'Z-YJF(0) =0 and Z~'F(0) = 0. Therefore, Z~'F is an element in Hn so that F' € ZH.

This completes the proof of Theorem 1.3. O

Lemma 4.8 (See [8, Theorem 9.7, p.218]).  There is a constant A such that each interval (n,n + 1)
contains a value t, for which
C(L—s) >1,"
for =1 < Ns < 2 and Fs = ty,.
Lemma 4.9.  Assume that p is a nontrivial zero of ((s). If F € H_ is an eigenfunction of D_ in H

with the eigenvalue p, then p is the only pole of Sil(i)s) and is a simple pole inside the strip 0 < Rs < 1.

Proof. By Theorem 1.1, there exists an element F' € H_ such that —zF’'(x) = pF(x) + Zg(x) for some
g € Hn. Taking their Mellin transforms we get

sﬁ(s) = pﬁ(s) +¢(s)g(s)

for Rs > 1. Since F € H_, F(s) is entire. As g € Hn, §(1) = 0 and by Lemma 2.1, §(s) is analytic for
Rs > 0. By analytic continuation,

sﬁ(s) = pﬁ(s) +¢(s)g(s)
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for s > 0, i.e.,

¢(s) s—p
for fts > 0. By the functional equation of ((s), this identity becomes

— _237‘_3—1 sin E F(—S) g(S)

sC(1—s) 2 s—p

(4.5)

for ®s > 0.

By (3.1), F(s) is an entire function of rapid decay for s in any vertical strip. By Lemma 3.3 and
moving the contour of integration to Rs = 1 we obtain

(1)) = o [, 0o

If g(p) = 0, the above identity implies that - gffi) is analytic inside 0 < Rs < 1. Note that a (s) is of

rapid decay in s in this region by (3.1). Consider the integral

~

/(“j)&F(s)
sC(1—9)

taken round the rectangle (%it,, 1 +it,) with ¢,,’s being given in Lemma 4.8, and let n — co. From (4.5)

and (4.6) we derive that
+i\sp
1 () F(s)
0 = — —r - ~ds.
=g [
Because the integrand is absolute integrable on Rs = 0, by the Riemann-Lebesgue lemma,

ds

lim (517F($) =0.
l—o0

Thus by Lemma 4.4, JZ§Z 'F(z) = F(x) for all z. It follows from Theorem 1.3 that F' € Hn. This

contradicts to that F' represents in the nontrivial element in the Hilbert-Pdlya space. Therefore we must
have g(p) # 0, i.e., p is the only pole of % inside 0 < s < 1 and is a simple pole.
This completes the proof of the lemma. O

Proof of Theorem 1.4.  Let F € H_ be any eigenfunction of D_ on H with the eigenvalue p. By (4.5),
p is the only pole of

F\ ~
(8) — _2871_8—1 sin E F(—S) g(S)
sC(1—s) 2 s—p
in the strip 0 < Rs < 1, and is a simple pole.

Let -
Fi(z) = / Zn(tx)tP~dt.
1

By the proof of Theorem 1.1, DFy = pFy + Zn and ) € Hn. It follows from the proof of Lemma 4.9 and
Theorem 1.3 that Fj is a nontrivial element in 7. By (2.3) and (2.4),

Fl(:c):/ Zn(tx)t”’ldt:—%/ Zn(;>tpdt.
1 1

Hence, the following double integral is absolutely integrable for R8s > 1 so that we can change the order
of integration to write

ﬁl(s):/ xs_ldm/ Zn(tx)tP~tdt
0

1

o) oo
= / t”_s_l/ Zn(x)z* " tdx
1 0
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Since ﬁl(s) is an entire function, by analytic continuation, ﬁl(s) = E(Ts; holds for all s. Thus

1

Fi(s) _ (s=Dr'B'T(5)

sC(1—s) s—p

Now we choose a complex number a so that

F(s) — aFi(s)
s¢(1—s)

has no pole at s = p and hence is analytic in 0 < s < 1. The argument made in the proof of Lemma 4.9
shows that F — aF} € Hn. Consequently, F' and F} represent the same element in H. Therefore the
geometric multiplicity of the eigenvalue p of D_ on the Hilbert-Pdélya space is one.

This completes the proof of Theorem 1.4. O
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