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1 Introduction

We denote by C∞
c (0,∞) the space of compactly supported smooth functions on (0,∞). Let g be a

real-valued function in C∞
c (0,∞). If

h(x) =

∫ ∞

0

g(xy)g(y)dy,

then h ∈ C∞
c (0,∞). Its Mellin transform is

ĥ(s) =

∫ ∞

0

h(x)xs−1dx = ĝ(s)ĝ(1− s).

The convolution operator υ(h) is defined by

υ(h)f(x) =

∫ ∞

0

h(λ)f(λ−1x)d×λ, d×λ = λ−1dλ.

The Schwartz space S(R) is the set of all rapidly decreasing, infinitely differentiable functions f on

R with supx∈R |xaf (b)(x)| < ∞ for a, b = 0, 1, 2, . . . We use natural logarithm to identify R×
+ = (0,∞)

with R. This induces an isomorphism between spaces S(R×
+) and S(R). The fundamental differential

operator on S(R×
+) is

Df(x) = −xf ′(x).

http://crossmark.crossref.org/dialog/?doi=10.1007/s11425-018-9356-0&domain=pdf
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We denote by H∩ the subspace of all even functions f ∈ S(R) such that f(0) = 0 and Ff(0) = 0,

where the Fourier transform of f is

Ff(y) =

∫ ∞

−∞
f(x)e2πixydx.

The strong Schwartz space is

H− := {f | R×
+ → C such that xαf(x) ∈ S(R×

+) for every real number α}.

The zeta operator Z is defined by Zf(x) =
∑∞

n=1 f(nx). We call the quotient space

H := H−/ZH∩

a Hilbert-Pólya space. Let D− be the operator induced by D on H.

The Hilbert-Pólya conjecture says that the Riemann hypothesis is true because non-trivial zeros of the

zeta function correspond (in a certain canonical way) to the eigenvalues of some positive operator.

Note that the convolution operator υ(h) is a positive operator on L2(0,∞). In direction of the Hilbert-

Pólya conjecture, a spectral interpretation for critical zeros of the zeta-function is given by Connes [2].

He constructed a closed unbounded differential operator Dχ and a Hilbert-Pólya space Hχ. The discrete

spectrum of Dχ acting on Hχ is the set of imaginary parts of critical zeros of the L-function with

Grössencharakter χ [2, Theorem 1, p. 40].

Motivated by Connes’ construction, Meyer [3, Corollary 4.2, p. 8] proved that the eigenvalues of the

transpose Dt
− of D− acting on the space of continuous linear functionals H → C are exactly the nontrivial

zeros of ζ(s) and that the algebraic multiplicity of eigenvalues of Dt
− is the order of corresponding zero

of ζ(s).

In infinite dimensional spaces an operator and its transpose may not have the same spectrum. If D−
was a compact operator on H, then D− and its transpose would have the same spectrum. However, D−
is unbounded and hence is not compact on H. Thus we do not know whether or not every nontrivial

zero of the Riemann zeta function is an eigenvalue of D−. This question leads us to confirm by explicit

construction in Theorem 1.1 that every nontrivial zero of the zeta function is indeed an eigenvalue of D−,

which suffices for the purpose of the Riemann hypothesis [1, 9].

Theorem 1.1. If ρ is a nontrivial zero of ζ(s), then

Fρ(x) =

∫ ∞

1

Zη(tx)tρ−1dt

is an eigenfunction of D− on the Hilbert-Pólya space H associated with the eigenvalue ρ, where η(x) =

8πx2(πx2 − 3
2 )e

−πx2

, i.e.,

DFρ(x) = ρFρ(x) + Zη(x), η ∈ H∩.

A fundamental result in [4, (1.8), p. 55] is that if λ is an eigenvalue of the fundamental differential

operator, then h(λ) is an eigenvalue of invariant integral operators. Since Connes’ discussion is modelled

on Selberg’s trace formula, analogous statement for Connes’ approach to the Riemann hypothesis would

be that if ρ is nontrivial zero of the zeta function, then ĥ(ρ) is an eigenvalue of υ(h). We confirm this

analogy by explicit construction in Theorem 1.2.

Theorem 1.2. If ρ is a nontrivial zero of ζ(s), then ĥ(ρ) is an eigenvalue of υ(h) on the Hilbert-Pólya

space H associated with the eigenfunction Fρ.

In the following theorem we give a characterization of eigenfunctions associated with nontrivial zeros

of the Riemann zeta function via the Poisson summation formula.

Theorem 1.3. Let δl,F (x) =
∫∞
0

Z−1F (xt) sin(2l+1)πt
πt dt. Then

lim
l→∞

(
1

x

l∑
m=1

FZ−1F

(
m

x

)
− δl,F (x)

)
= F (x)
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for every F ∈ H−. An element F ∈ H− belongs to the subspace ZH∩ if and only if JZFZ−1F (x) = F (x)

for all x, where Jf(x) = x−1f(x−1).

By using Theorem 1.3, we prove the following theorem about geometric multiplicity of nontrivial zeros

of the Riemann zeta function.

Theorem 1.4. Let ρ be a nontrivial zero of ζ(s). Then the eigenvalue ρ of D− has geometric multi-

plicity one.

If the geometric multiplicity of each eigenvalue of D− on the Hilbert-Pólya space H is the same as its

algebraic multiplicity, then Theorem 1.4 implies the simplicity of zeros of the Riemann zeta function.

2 Proofs of Theorems 1.1 and 1.2

We denote by N the set of all positive integers. For any interval I on R, we define

S(R×
+)I = {f | R×

+ → C such that xαf(x) ∈ S(R×
+) for every α ∈ I}.

Lemma 2.1. If f is an even function in S(R), then both f and Ff belong to S(R×
+)(0,∞).

Proof. By definition of S(R) and S(R×
+)(0,∞) we have f ∈ S(R×

+)(0,∞). Since the Fourier transform F

maps S(R) into itself, we also have Ff ∈ S(R×
+)(0,∞).

This completes the proof of the lemma.

Proof of Theorem 1.1. Since

η(x) = 8πx2

(
πx2 − 3

2

)
e−πx2

, (2.1)

we have η ∈ H∩, η̂(s) = s(s − 1)π−s/2Γ(s/2), and Fη(x) = η(x) by calculation. Thus by Poisson’s

summation formula,

JZη(x) = Zη(x). (2.2)

Put

F (x) =

∫ ∞

1

Zη(tx)tρ−1dt. (2.3)

Since η ∈ H∩, by Lemma 2.1 and analytic continuation,∫ ∞

0

Zη(tx)ts−1dt = x−sζ(s)s(s− 1)π−s/2Γ(s/2) = x−sξ(s)

for ℜs > 0. In particular,
∫∞
0

Zη(tx)tρ−1dt = 0 where the integral is convergent for fixed x. Hence

by (2.2),

F (x) = −
∫ 1

0

Zη(tx)tρ−1dt = −
∫ ∞

1

1

x
Zη

(
t

x

)
t−ρdt. (2.4)

We write F (x) = x−ρ
∫∞
x

Zη(t)tρ−1dt. By the product formula, −xF ′(x) = ρF (x) + Zη(x), i.e.,

DF (x) = ρF (x) + Zη(x), η ∈ H∩ (2.5)

so that ρ is an eigenvalue of D− on the Hilbert-Pólya space if we can show F ∈ H−.

Since R is open and since xσDmF (x) is a continuous function of x ∈ (0,∞), for every k,m + 1 ∈ N,
σ ∈ R it suffices to show that

xσDmF (x) ≪ 1 as x → 0 or x → ∞.

If 0 < x 6 1, then X := 1/x > 1. By (2.4),

|xσDmF (x)| =
∣∣∣∣−X−σ dm

d (logX)m

(
X

∫ ∞

1

Zη(tX)t−ρdt

)∣∣∣∣
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6 8π

∞∑
n=1

∫ ∞

1

X−σ

∣∣∣∣ dm

d(logX)m

(
X(ntX)2

(
π(ntX)2 − 3

2

)
e−π(ntX)2

)∣∣∣∣t−ℜρdt.

As π > 3 and nt > 1, there exists a constant Cσ,m > 0 such that

X−σ

∣∣∣∣ dm

d(logX)m

(
X(ntX)2

(
π(ntX)2 − 3

2

)
e−π(ntX)2

)∣∣∣∣e2(ntX)2 6 Cσ,m

for all t > 1 and all n ∈ N as X → ∞ (i.e., x → 0+). It follows that

|xσDmF (x)| 6 8πCσ,m

( ∞∑
n=1

e−n2

)∫ ∞

1

e−t2t−ℜρdt ≪ 1

as x → 0.

If x > 1, by (2.3) we derive similarly to the case x → 0 that

|xσDmF (x)| =
∣∣∣∣xσ dm

d(log x)m

(∫ ∞

1

Zη(tx)tρ−1dt

)∣∣∣∣
6 8π

∞∑
n=1

∫ ∞

1

∣∣∣∣xσ dm

d(log x)m

(
(ntx)2

(
π(ntx)2 − 3

2

)
e−π(ntx)2

)∣∣∣∣tℜρ−1dt ≪ 1

as x → ∞. Therefore F ∈ H−.

As η ∈ H∩, for any fixed x > 0 and for all t > 1 we have |η(tx)| 6 cx(tx)
−2 for a constant cx depending

on x. Thus ∫ ∞

1

∣∣∣∣ ∑
n>N+1

η(ntx)

∣∣∣∣tℜρ−1dt 6 cx
x2N(2−ℜρ)

→ 0

as N → ∞, so that we can change the order of summation and integration to obtain

F (x) = Z

∫ ∞

1

η(tx)tρ−1dt. (2.6)

Hence

Z−1F (x) =

∫ ∞

1

η(tx)tρ−1dt = x−ρ

∫ ∞

x

η(t)tρ−1dt ∼ η̂(ρ)

xρ

as x → 0+. Since η̂(ρ) ̸= 0, this implies that F is not an element in ZH∩. Hence F is a nontrivial

element in H.

This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Let F be given as in (2.3). By (2.6),

F (x) = Z

∫ ∞

1

η(tx)tρ−1dt.

Since h is a compact support on (0,∞),∣∣∣∣ ∫ ∞

0

h(λ)d×λ
∞∑

n=N+1

∫ ∞

1

η(tλ−1nx)tρ−1dt

∣∣∣∣
6 cx

x2

∞∑
n=N+1

1

n2

∫ ∞

0

|h(λ)λ2|d×λ
∫ ∞

1

tℜρ−3dt → 0

as N → ∞. Thus we can change the order of integration and summation and derive

υ(h)F (x) =

∫ ∞

0

h(λ)d×λZ

∫ ∞

1

η(tλ−1x)tρ−1dt

= Z

∫ ∞

0

h(λ)d×λ

∫ ∞

1

η(tλ−1x)tρ−1dt
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= ĥ(ρ)F (x) + Zg1(x), (2.7)

where

g1(x) =

∫ ∞

0

h(λ)d×λ

∫ ∞

1

η(tλ−1x)tρ−1dt− ĥ(ρ)

∫ ∞

1

η(tx)tρ−1dt

=

∫ ∞

1

(υ(h)η(tx)− ĥ(ρ)η(tx))tρ−1dt

= x−ρ{ĥ(ρ)η̂(ρ)− ĥ(ρ)η̂(ρ)} −
∫ 1

0

(υ(h)η(tx)− ĥ(ρ)η(tx))tρ−1dt

= −
∫ 1

0

(υ(h)η(tx)− ĥ(ρ)η(tx))tρ−1dt (2.8)

is an element in H∩ (shown next). Therefore, ĥ(ρ) is an eigenvalue of υ(h) associated with the eigen-

function F (x) on the Hilbert-Pólya space.

We now show that g1 ∈ H∩. First notice that υ(h)η and η are elements in H∩. Also g1(0) = 0 and

Fg1(0) =

∫ ∞

−∞
g1(x)dx =

∫ ∞

1

tρ−1dt

∫ ∞

−∞
(υ(h)η(tx)− ĥ(ρ)η(tx))dx

= 2

∫ ∞

1

tρ−2dt

∫ ∞

0

(υ(h)η(x)− ĥ(ρ)η(x))dx =
2

1− ρ
(ĥ(1)− ĥ(ρ))η̂(1) = 0,

where the change of order of integration is permissible as the double integral is absolute integrable.

Let a, b = 0, 1, 2, 3, . . . Since υ(h)η − ĥ(ρ)η ∈ H∩, there exists a positive constant M such that

sup
x∈R

|(υ(h)η − ĥ(ρ)η)(b)(x)| 6 M

and

sup
x∈R

|xmax(a,b)+1(υ(h)η − ĥ(ρ)η)(b)(x)| 6 M.

For |x| > 1, we have

|xag
(b)
1 (x)| =

∣∣∣∣ ∫ ∞

1

xatb([υ(h)η](b)(tx)− ĥ(ρ)η(b)(tx))tρ−1dt

∣∣∣∣
6

∫ ∞

1

|tx|max(a,b)+1|([υ(h)η](b)(tx)− ĥ(ρ)η(b)(tx))|tℜρ−2dt

6 M

1−ℜρ
.

For |x| 6 1, we have

|xag
(b)
1 (x)| =

∣∣∣∣− ∫ 1

0

xatb([υ(h)η](b)(tx)− ĥ(ρ)η(b)(tx))tρ−1dt

∣∣∣∣
6

∫ ∞

1

|([υ(h)η](b)(tx)− ĥ(ρ)η(b)(tx))|tℜρ−1dt 6 M

ℜρ
.

Thus g1 ∈ S(R), and therefore g1 ∈ H∩ as η is even.

This completes the proof of Theorem 1.2.

3 Properties of δl,F

Lemma 3.1. Let F be any element in H−. Then Z−1F ∈ S(R×
+)[1,∞). For every k,m+1 ∈ N, σ > 0

we have

xσDmZ−1F (x) ≪ | log x|−k as x → ∞.
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Proof. Let F be any element in H−. Then F̂ (s) is an entire function. For s = σ + it, t ̸= 0 by partial

integration

F̂ (s) =

∫ ∞

0

F (x)xs−1dx =
(−1)ν

(it)ν

∫ ∞

0

∂ν [xσF (x)]

∂(log x)ν
xit−1dx (3.1)

for any real σ and ν ∈ N. Thus F̂ (s) is of rapid decay for s in any vertical strip. By Mellin’s inversion

formula

xσZ−1F (x) =
1

2πi

∫
ℜs=σ+1

F̂ (s)

ζ(s)
xσ−sds ≪ x−1 ≪ | log x|−k

for x > 1, σ > 0 and k ∈ N.
By [8, (3.11.8), p. 60], a constant A exists such that

1/ζ(s) = O(log |t|) (3.2)

for ℜ(s) > 1− A
log |t| with |t| > t0. Let δ = A/ log t0, C1 = {s = 1− δ + it | |t| < t0}, and

C2 =

{
s = σ + it

∣∣∣∣σ = 1− A

log |t|
, |t| > t0

}
.

If x < 1, we can move the line of integration to obtain

xZ−1F (x) =
1

2πi

∫
C1∪C2

F̂ (s)

ζ(s)
x1−s ds = O(xδ) +

1

2πi

∫
C2

F̂ (s)

ζ(s)
x1−sds. (3.3)

Since F̂ (s) is of rapid decay for s any vertical strip, by (3.2) a constant M exists such that |F̂ (s)/ζ(s)|
6 M |t|−2 for all s ∈ C2. It follows that∫

C2

F̂ (s)

ζ(s)
x1−sds ≪ x

1√
| log x| +

∫
|t|>eA

√
| log x|

1

|t|2
dt

≪ 1

e
√

| log x|
+

1

eA
√

| log x|
≪ | log x|−k,

when x → 0 for k ∈ N. Hence xZ−1F (x) ≪ | log x|−k when x < 1 for k ∈ N. Therefore for any σ > 1,

xσZ−1F (x) ≪ | log x|−k

as x → 0 or ∞. We also have xσZ−1F (x) ≪ | log x|−k as x → ∞ for every k ∈ N, σ > 0.

Since F̂ (s) is of rapid decay for s any vertical strip and

DmZ−1F (x) =
1

2πi

∫
C1∪C2

F̂ (s)sm

ζ(s)
x−sds,

we derive similarly to the above that

xσDmZ−1F (x) ≪ | log x|−k (3.4)

as x → 0 or ∞ for every k,m+ 1 ∈ N, σ ∈ [1,∞), i.e., Z−1F ∈ S(R×
+)[1,∞). We also have

xσDmZ−1F (x) ≪ | log x|−k as x → ∞

for every k,m+ 1 ∈ N, σ > 0.

This completes the proof of the lemma.

Lemma 3.2. Let

δl,F (x) =

∫ ∞

0

Z−1F (xt)
sin(2l + 1)πt

πt
dt.

Then

δl,F (x) =

∫ 1+
1
2
x

0

FZ−1F (t)dt. (3.5)
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Proof. Since

FZ−1F (u) = 2

∫ ∞

0

Z−1F (t) cos 2πutdt,

we can write ∫ l+
1
2
x

0

FZ−1F (u)du = 2

∫ ∞

0

Z−1F (t)dt

∫ l+
1
2
x

0

cos 2πutdu

=

∫ ∞

0

Z−1F (t)
sin (2l+1)πt

x

πt
dt

=

∫ ∞

0

Z−1F (xt)
sin(2l + 1)πt

πt
dt,

where the change of order of integration is permissible because the double integral is absolute integrable

as Z−1F ∈ L1(0,∞) plus one finite interval of integration for a bounded function.

This completes the proof of the lemma.

Lemma 3.3. We can write

δl,F (x) =
1

2πi

∫
C1∪C2

(
l+ 1

2

x )sF̂ (s)

sζ(1− s)
ds.

In particular, if F = Zg for an element g ∈ H∩ then

δl,Zg(x) =
1

2πi

∫
ℜs=K

(
l+ 1

2

x )1−sF̂g(s)

s− 1
ds

for any K > 0, where F̂g(s) is of rapid decay for s any vertical strip of the half-plane ℜs > 0.

Proof. By (3.3),

Z−1F (x) =
1

2πi

∫
C1∪C2

F̂ (s)

ζ(s)
x−s ds.

Hence ∫ ∞

0

Z−1F (xt)
sin(2l + 1)πt

πt
dt =

∫ ∞

0

sin(2l + 1)πt

πt
dt

1

2πi

∫
C1∪C2

F̂ (s)

ζ(s)
(xt)−sds,

where the double integral is absolute integrable because of the contour C1 ∪C2 (using | sin(2l+1)πt| 6 1

when t > 1 and | sin(2l + 1)πt| 6 (2l + 1)πt when t < 1). Thus we can change the order of integration

and derive ∫ ∞

0

Z−1F (xt)
sin(2l + 1)πt

πt
dt =

1

2πi

∫
C1∪C2

F̂ (s)

ζ(s)
x−sds

∫ ∞

0

sin(2l + 1)πt

πt1+s
dt

=
1

2πi

∫
C1∪C2

πs−1(2l + 1)sF̂ (s)

ζ(s)
x−sds

∫ ∞

0

sin t

t1+s
dt.

By [6, Example 10, p. 162], ∫ ∞

0

sin y

y1+s
dy = −Γ(−s) sin

πs

2
(3.6)

for −1 < ℜs < 1. It follows that∫ ∞

0

Z−1F (xt)
sin(2l + 1)πt

πt
dt = − 1

2πi

∫
C1∪C2

πs−1(2l + 1)sF̂ (s)

ζ(s)
x−sΓ(−s) sin

πs

2
ds.

Inserting
Γ(−s) sin πs

2

ζ(s) = −π1−s2−s

sζ(1−s) (see [8, (2.1.8), p. 16]) into the right-hand side of the above identity, we

find that ∫ ∞

0

Z−1F (xt)
sin(2l + 1)πt

πt
dt =

1

2πi

∫
C1∪C2

(
l+ 1

2

x )sF̂ (s)

sζ(1− s)
ds.
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By an argument similar to that made in the paragraph containing (3.3),

δl,F

((
l +

1

2

)
x

)
≪ 1

x| log x|k
(3.7)

for any positive integer k as x → 0. It follows that δl,F ∈ L1(0,∞).

Next, if F = Zg for an element g ∈ H∩ then

δl,Zg(x) = − 1

2πi

∫
(1)−C1∪C2

(
l+ 1

2

x )1−sẐg(1− s)

(1− s)ζ(s)
ds.

Taking Mellin transform for both sides of the Poisson summation formula for the function Fg ∈ H∩ we

obtain that Ẑg(1− s) = ζ(s)F̂g(s). Consequently,

δl,Zg(x) =
1

2πi

∫
(1)−C1∪C2

(
l+ 1

2

x )1−sF̂g(s)

s− 1
ds.

As g ∈ H∩, by Lemma 2.1 we have Fg ∈ S(R×
+)(0,∞). Similarly to (3.1) we obtain that F̂g(s) is of rapid

decay for s in any vertical strip of the half-plane ℜs > 0. As F̂g(1) = 0 because Fg ∈ H∩ we can move

the line of integration to ℜs = K and derive that

δl,Zg(x) =
1

2πi

∫
ℜs=K

(
l+ 1

2

x )1−sF̂g(s)

s− 1
ds

for any K > 0.

This completes the proof of the lemma.

4 Proofs of Theorems 1.3 and 1.4

Lemma 4.1. Let F be any element in H−. Then for m+ 1 ∈ N,∫ ∞

0

DmZ−1F (u)du = 0.

Proof. By Mellin’s inversion formula,

Z−1F (x) =
1

2πi

∫ c+i∞

c−i∞

F̂ (s)

ζ(s)
x−sds (4.1)

for c > 1. For any t > 0, by (3.1) we can change the order of integration to obtain∫ ∞

t

Z−1F (x)dx =
1

2πi

∫ c+i∞

c−i∞

F̂ (s)

(s− 1)ζ(s)
t1−sds.

By (3.1) and (3.2), we can move the line of integration and get∫ ∞

t

Z−1F (x)dx =
1

2πi

∫ 1+i∞

1−i∞

F̂ (s)

(s− 1)ζ(s)
t1−sds.

As the integral is absolutely integrable, by the Riemann-Lebesgue lemma [7, Theorem 1, p. 11],

lim
t→0+

∫ 1+i∞

1−i∞

F̂ (s)

(s− 1)ζ(s)
t1−sds = 0.

Hence ∫ ∞

0

Z−1F (x)dx = 0.
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Also

DmZ−1F (x) =
1

2πi

∫ c+i∞

c−i∞

F̂ (s)sm

ζ(s)
x−s ds

and ∫ ∞

t

DmZ−1F (x)dx =
1

2πi

∫ 1+i∞

1−i∞

F̂ (s)sm

(s− 1)ζ(s)
t1−sds.

By the Riemann-Lebesgue lemma,

lim
t→0+

∫ 1+i∞

1−i∞

F̂ (s)sm

(s− 1)ζ(s)
t1−sds = 0.

Hence ∫ ∞

0

DmZ−1F (x)dx = 0.

This completes the proof of the lemma.

Lemma 4.2. Let f ∈ L1(R) be an even function. If Ff(0) = 0, then

1

α

l∑
m=1

Ff

(
m

α

)
=

∞∑
m=1

f(mα+ 0) + f(mα− 0)

2
+

∫ 1
2

0

f(αt)
sin(2l + 1)πt

sinπt
dt+R(f, α),

where

R(f, α) =
∞∑

m=1

∫ m+ 1
2

m

{f(tα)− f(mα+ 0)} sin(2l + 1)π

sinπt
dt

+
∞∑

m=1

∫ m

m− 1
2

{f(tα)− f(mα− 0)} sin(2l + 1)πt

sinπt
dt

for l ∈ N, where Ff(x) =
∫∞
−∞ f(y)e2πiyxdy.

Proof. The following argument is a minor modification of [7, lines 15–21, p. 61].

As Ff(0) = 0 and f ∈ L1(0,∞), from the trigonometric identity

2
l∑

m=1

cos 2πmαt =
sin(2l + 1)παt

sinπαt
− 1,

we derive

l∑
m=1

Ff(mα) =

∫ ∞

0

f(t)2

( l∑
m=1

cos 2πmαt

)
dt =

∫ ∞

0

f(t)

{
sin(2l + 1)παt

sinπαt
− 1

}
dt

= lim
M→∞

∫ M+1
2

α

0

f(t)
sin(2l + 1)παt

sinπαt
dt.

We can write

∫ M+1
2

α

0

f(t)
sin(2l + 1)παt

sinπαt
dt

=
1

α

M∑
m=1

f(mα + 0) + f(mα − 0)

2

+

∫ 1
2α

0

f(t)
sin(2l + 1)παt

sinπαt
dt+

M∑
m=1

∫ m+1
2

α

m
α

{
f(t)− f

(
m

α
+ 0

)}
sin(2l + 1)παt

sinπαt
dt



2326 Li X-J Sci China Math November 2019 Vol. 62 No. 11

+
M∑

m=1

∫ m
α

m− 1
2

α

{
f(t)− f

(
m

α
− 0

)}
sin(2l + 1)παt

sinπαt
dt.

Therefore

1

α

l∑
m=1

Ff

(
m

α

)
=

∞∑
m=1

f(mα+ 0) + f(mα− 0)

2
+

∫ 1
2

0

f(αt)
sin(2l + 1)πt

sinπt
dt+R(f, α),

where

R(f, α) =
∞∑

m=1

∫ m+ 1
2

m

{f(tα)− f(mα+ 0)} sin(2l + 1)πt

sinπt
dt

+
∞∑

m=1

∫ m

m− 1
2

{f(tα)− f(mα− 0)} sin(2l + 1)πt

sinπt
dt.

This completes the proof of the lemma.

Lemma 4.3. Let F be any element in H− and f(t) = Z−1F (|t|). Then

lim
l→∞

∞∑
m=1

∫ 1
2

− 1
2

(f(tα+mα)− f(mα))
sin(2l + 1)πt

sinπt
dt = 0

for any fixed real α.

Proof. By (4.1),

f(t) =
1

2πi

∫ c+i∞

c−i∞

F̂ (s)

ζ(s)
t−s ds, t > 0,

for a constant c > 1. Since

(tα+mα)−s − (mα)−s = −s

∫ tα+mα

mα

u−s−1du,

we have ∣∣∣∣(f(tα+mα)− f(mα))
sin(2l + 1)πt

sinπt
v

∣∣∣∣
6

∣∣∣∣( 1

2πi

∫ c+i∞

c−i∞

−sF̂ (s)

ζ(s)

[ ∫ tα+mα

mα

u−s−1du

]
ds

)
sin(2l + 1)πt

sinπt

∣∣∣∣
6 (2l + 1)πt

2π · 2t
t

m1+cαc

∫ c+i∞

c−i∞

∣∣∣∣−sF̂ (s)

ζ(s)

∣∣∣∣|ds| ≪ 1

m1+c

for |t| 6 1/2, where the implied constant depends only on α and l, not on t. The uniform convergence of

the series
∞∑

m=1

(f(tα+mα)− f(mα))
sin(2l + 1)πt

sinπt

for |t| 6 1/2 justifies the following change of integration and summation:

∞∑
m=1

∫ 1
2

− 1
2

(f(tα+mα)− f(mα))
sin(2l + 1)πt

sinπt
dt

=

∫ 1
2

− 1
2

(
1

2πi

∫ c+i∞

c−i∞

−sF̂ (s)

ζ(s)

[ ∞∑
m=1

∫ tα+mα

mα

u−s−1du

]
ds

)
sin(2l + 1)πt

sinπt
dt.

Since there exists a constant c3 depending on α such that∣∣∣∣( 1

2πi

∫ c+i∞

c−i∞

−sF̂ (s)

ζ(s)

[ ∞∑
m=1

∫ tα+mα

mα

u−s−1du

]
ds

)
1

sinπt

∣∣∣∣ 6 c3
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for all |t| 6 1/2, applying the Riemann-Lebesgue lemma to the right-hand side of the above identity

we derive

lim
l→∞

∞∑
m=1

∫ 1
2

− 1
2

(f(tα+mα)− f(mα))
sin(2l + 1)πt

sinπt
dt = 0

for any fixed real α.

This completes the proof of the lemma.

Lemma 4.4. Let δl,F (x) be given as in Lemma 3.2. Then

lim
l→∞

(
1

x

l∑
m=1

FZ−1F

(
m

x

)
− δl,F (x)

)
= F (x)

for every element F in H−.

Proof. Let F be any element in H−. Put f(t) = Z−1F (|t|). Then f is an even function on R. By (3.4)

with σ = 1,m = 0, k = 2, f belongs to L1(0,∞). By Lemma 4.1 with m = 0, Ff(0) = 0. Thus by

Lemma 4.2,

1

x

l∑
m=1

Ff

(
m

x

)
=

∞∑
m=1

f(mx+ 0) + f(mx− 0)

2
+

∫ 1
2

0

f(xt)
sin(2l + 1)πt

sinπt
dt+R(f, x),

where

R(f, x) =
∞∑

m=1

∫ 1
2

− 1
2

(f(tx+mx)− f(mx))
sin(2l + 1)πt

sinπt
dt.

By Lemma 4.3, for x ∈ (0,∞) we have

lim
l→∞

(
1

x

l∑
m=1

FZ−1F

(
m

x

)
−
∫ 1

2

0

f(xt)
sin(2l + 1)πt

sinπt
dt

)
= F (x).

By (3.4) and the Riemann-Lebesgue lemma,

lim
l→∞

∫ 1/2

0

f(xt)

(
1

sinπt
− 1

πt

)
sin(2l + 1)πtdt = 0

and

lim
l→∞

∫ ∞

1/2

f(xt)
sin(2l + 1)πt

πt
dt = 0.

Therefore,

lim
l→∞

∫ 1
2

0

f(xt)
sin(2l + 1)πt

sinπt
dt = lim

l→∞

∫ ∞

0

f(xt)
sin(2l + 1)πt

πt
dt.

The stated identity then follows.

This completes the proof of the lemma.

Lemma 4.5 (See [5, Proposition 4.1, p. 87]). Suppose f ∈ L1(R). Then Ff is continuous and bounded

on R.

Lemma 4.6 (See [5, Theorem 4.2, p. 87]). Suppose f ∈ L1(R) and assume also that Ff ∈ L1(R). Then
f(x) = FtFf(x) for almost every x.

Lemma 4.7 (See [3, (10), p. 4]). The set of all even functions in S(R) equals

H+ := {f ∈ L2(R×
+, dx) | both f and Ff belong to S(R×

+)(0,∞)}.



2328 Li X-J Sci China Math November 2019 Vol. 62 No. 11

Proof of Theorem 1.3. The first part of Theorem 1.3 is Lemma 4.4.

We now show that, for any element in F ∈ H−, F belongs to ZH∩ if and only if JZFZ−1F (x)

= F (x) holds for every x ∈ (0,∞).

If F ∈ ZH∩, by the Poisson summation formula the stated identity is true.

Conversely, if JZFZ−1F (x) = F (x) for every x ∈ (0,∞) then

FZ−1F (x) = Z−1JF (x) (4.2)

for all x ∈ (0,∞). As JF ∈ H−, we have Z−1JF ∈ S(R×
+)[1,∞) by Lemma 3.1. Thus (4.2) says that

FZ−1F ∈ S(R×
+)[1,∞). Also Z−1F ∈ S(R×

+)[1,∞) by Lemma 3.1.

Next, we show that both FZ−1F and Z−1F are in S(R×
+)(0,1). By Lemmas 3.1 and 4.5, FZ−1F is

continuous on R. Moreover FZ−1F (0) = 0 by Lemma 4.1.

By (4.2) and Lemma 4.6,

Z−1F (x) = FtZ−1JF (x) (4.3)

for almost every x. As the right-hand side of (4.3) is continuous on R by Lemma 4.5, Z−1F (x) can be

extended uniquely to a continuous function on R. We use the same notation for the extended function.

Since FtZ−1JF (0) = 0 by Lemma 4.1, by (4.3) we also have Z−1F (0) = 0.

For m ∈ N, by (4.3),

DmZ−1F (x) = DmFtZ−1JF (x) = (2πix)mFt(ymZ−1JF (y))(x). (4.4)

By choosing σ = m+ 1, k = 2 in (3.4) and m = 0 in (3.4), we find that ymZ−1JF (y) ∈ L1(0,∞). Then

Lemma 4.5 together with (4.4) implies that DmZ−1F (x) is a continuous on R and that DmZ−1F (0) = 0.

For m ∈ N,
DmFZ−1F (x) = (−2πix)mF(ymZ−1F (y))(x).

This identity implies that DmFZ−1F (x) is continuous on R and DmFZ−1F (0) = 0.

Summarizing the above four paragraphs, DmZ−1F (x) and DmFZ−1F (x) are continuous on R and

vanish at x = 0 for m = 0, 1, 2, . . . Hence they are bounded on (0, 1), so that for every k,m + 1 ∈ N,
σ ∈ (0, 1) we have

xσDmZ−1F (x) ≪ | log x|−k and xσDmFZ−1F (x) ≪ | log x|−k as x → 0.

This together with the 2nd part of Lemma 3.1 implies that FZ−1F ∈ S(R×
+)(0,1) and Z−1F ∈ S(R×

+)(0,1).

Thus by the end of 2nd paragraph of this proof we have shown that FZ−1F ∈ S(R×
+)(0,∞) and Z−1F ∈

S(R×
+)(0,∞). Thus it follows from Lemma 4.7 that Z−1F belongs to H+. We have already shown that

FtZ−1JF (0) = 0 and Z−1F (0) = 0. Therefore, Z−1F is an element in H∩ so that F ∈ ZH∩.

This completes the proof of Theorem 1.3.

Lemma 4.8 (See [8, Theorem 9.7, p. 218]). There is a constant A such that each interval (n, n + 1)

contains a value tn for which

|ζ(1− s)| > t−A
n

for −1 6 ℜs 6 2 and ℑs = tn.

Lemma 4.9. Assume that ρ is a nontrivial zero of ζ(s). If F ∈ H− is an eigenfunction of D− in H
with the eigenvalue ρ, then ρ is the only pole of F̂ (s)

sζ(1−s) and is a simple pole inside the strip 0 < ℜs < 1.

Proof. By Theorem 1.1, there exists an element F ∈ H− such that −xF ′(x) = ρF (x)+Zg(x) for some

g ∈ H∩. Taking their Mellin transforms we get

sF̂ (s) = ρF̂ (s) + ζ(s)ĝ(s)

for ℜs > 1. Since F ∈ H−, F̂ (s) is entire. As g ∈ H∩, ĝ(1) = 0 and by Lemma 2.1, ĝ(s) is analytic for

ℜs > 0. By analytic continuation,

sF̂ (s) = ρF̂ (s) + ζ(s)ĝ(s)
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for ℜs > 0, i.e.,

F̂ (s)

ζ(s)
=

ĝ(s)

s− ρ

for ℜs > 0. By the functional equation of ζ(s), this identity becomes

F̂ (s)

sζ(1− s)
= −2sπs−1 sin

πs

2
Γ(−s)

ĝ(s)

s− ρ
(4.5)

for ℜs > 0.

By (3.1), F̂ (s) is an entire function of rapid decay for s in any vertical strip. By Lemma 3.3 and

moving the contour of integration to ℜs = 1 we obtain

δl,F

((
l +

1

2

)
x

)
=

1

2πi

∫
ℜs=1

x−sF̂ (s)

sζ(1− s)
ds. (4.6)

If ĝ(ρ) = 0, the above identity implies that F̂ (s)
sζ(1−s) is analytic inside 0 6 ℜs 6 1. Note that F̂ (s) is of

rapid decay in s in this region by (3.1). Consider the integral∫
(
l+ 1

2

x )sF̂ (s)

sζ(1− s)
ds

taken round the rectangle (±itn, 1± itn) with tn’s being given in Lemma 4.8, and let n → ∞. From (4.5)

and (4.6) we derive that

δl,F (x) =
1

2πi

∫
ℜs=0

(
l+ 1

2

x )sF̂ (s)

sζ(1− s)
ds.

Because the integrand is absolute integrable on ℜs = 0, by the Riemann-Lebesgue lemma,

lim
l→∞

δl,F (x) = 0.

Thus by Lemma 4.4, JZFZ−1F (x) = F (x) for all x. It follows from Theorem 1.3 that F ∈ H∩. This

contradicts to that F represents in the nontrivial element in the Hilbert-Pólya space. Therefore we must

have ĝ(ρ) ̸= 0, i.e., ρ is the only pole of F̂ (s)
sζ(1−s) inside 0 < ℜs < 1 and is a simple pole.

This completes the proof of the lemma.

Proof of Theorem 1.4. Let F ∈ H− be any eigenfunction of D− on H with the eigenvalue ρ. By (4.5),

ρ is the only pole of

F̂ (s)

sζ(1− s)
= −2sπs−1 sin

πs

2
Γ(−s)

ĝ(s)

s− ρ

in the strip 0 < ℜs < 1, and is a simple pole.

Let

F1(x) =

∫ ∞

1

Zη(tx)tρ−1dt.

By the proof of Theorem 1.1, DF1 = ρF1 +Zη and η ∈ H∩. It follows from the proof of Lemma 4.9 and

Theorem 1.3 that F1 is a nontrivial element in H. By (2.3) and (2.4),

F1(x) =

∫ ∞

1

Zη(tx)tρ−1dt = − 1

x

∫ ∞

1

Zη

(
t

x

)
t−ρdt.

Hence, the following double integral is absolutely integrable for ℜs > 1 so that we can change the order

of integration to write

F̂1(s) =

∫ ∞

0

xs−1dx

∫ ∞

1

Zη(tx)tρ−1dt

=

∫ ∞

1

tρ−s−1

∫ ∞

0

Zη(x)xs−1dx
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=
ξ(s)

s− ρ
.

Since F̂1(s) is an entire function, by analytic continuation, F̂1(s) =
ξ(s)
s−ρ holds for all s. Thus

F̂1(s)

sζ(1− s)
=

(s− 1)π
s−1
2 Γ( 1−s

2 )

s− ρ
.

Now we choose a complex number α so that

F̂ (s)− αF̂1(s)

sζ(1− s)

has no pole at s = ρ and hence is analytic in 0 < ℜs < 1. The argument made in the proof of Lemma 4.9

shows that F − αF1 ∈ H∩. Consequently, F and F1 represent the same element in H. Therefore the

geometric multiplicity of the eigenvalue ρ of D− on the Hilbert-Pólya space is one.

This completes the proof of Theorem 1.4.

References

1 Bombieri E. Remarks on Weil’s quadratic functional in the theory of prime numbers, I. Rend Mat Acc Lincei, 2000,

11: 183–233

2 Connes A. Trace formula in noncommutative geometry and the zeros of the Riemann zeta function. Selecta Math

(NS), 1999, 5: 29–106

3 Meyer R. A spectral interpretation for the zeros of the Riemann zeta function. In: Mathematisches Institut, Georg-

August-Universität Seminars Winter Term. Göttingen: Universitätsdrucke Göttingen, 2005, 117–137

4 Selberg A. Harmonic analysis and discontinuous groups on weakly symmetric Riemannian spaces with applications to

Dirichlet series. J Indian Math Soc (NS), 1956, 20: 47–87

5 Stein E M, Shakarchi R. Real Analysis. Princeton: Princeton University Press, 2005

6 Titchmarsh E C. The Theory of Functions, 2nd ed. Oxford: Oxford University Press, 1939

7 Titchmarsh E C. Introduction to the Theory of Fourier Integrals, 2nd ed. Oxford: Oxford University Press, 1967

8 Titchmarsh E C. The Theory of the Riemann Zeta-Function, 2nd ed. Oxford: Oxford University Press, 1986
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