# 保障天然气净化装置长周期运行的 RBI 技术

郑 鹤<sup>1</sup> 宋 彬<sup>1</sup> 计维安<sup>1</sup> 陈胜永<sup>2</sup> 陆剑波<sup>1</sup> 1.中国石油西南油气田公司天然气研究院 2.中国石油西南油气田公司开发部

郑鹤等,保障天然气净化装置长周期运行的 RBI 技术,天然气工业,2009,29(3):107-109.

摘 要 RBI是以详细风险分析为基础的设备检验技术,应用 RBI技术可以科学合理地制定并实施设备检验、检修计划,对保证天然气净化装置安全长周期运行具有重要意义。为此,对 RBI技术在天然气净化装置上的应用做了深入研究,并介绍了我国天然气净化工业对 RBI的技术需求以及近期开展 RBI评估工作的进展情况,RBI技术基本原理和工作流程,风险量化的两个方面,目前国际通行的 API规范体系和我国拟推出的国家标准。从检验计划制订方式、检验有效性等4个方面分析了 RBI技术对天然气净化企业大修工作的指导性,提出了 RBI评估过程中应特别注意的技术关键,指出了天然气净化工业在应用 RBI技术中遇到的问题及解决办法。

**关键词** RBI 天然气 净化 脱硫装置 检验 应用研究

DOI:10.3787/j.issn.1000-0976.2009.03.032

# 1 对 RBI 技术的需求

中国石油西南油气田公司(以下简称西油公司) 是我国首个以天然气生产为主的千万吨级大油气 田,承担着为川、渝、云、贵、湘、鄂等我国西南、华中 地区六省市近千家大中型工业用户和 680 多万居民 用户供气的重任。随着上产 300×10<sup>8</sup> m³/a 目标的 逐步实施,西油公司生产压力剧增,现有各天然气净 化装置长周期安全运行的矛盾日益突出。

多年来,在保证安全生产前提下,西油公司一直致力于提高天然气净化装置的长周期运行能力[1],迫切需要一套科学合理的评价技术,来指导科学制定天然气净化装置的检维修计划[2]。RBI(Risk-Based Inspection,基于风险的检验)是以详细风险分析为基础的设备检验技术。RBI从收集设计数据、操作参数、维修和检验记录等人手,识别设备材料损伤机理、分析失效模式、失效可能性及后果,确定出每台设备的风险大小并排序,制订并实施检验、检修计划以确保设备本质安全,节约检验、检修费用。

# 2 RBI 评估技术简介

#### 2.1 应用规范体系

API RP 580、API pub 581 是 RBI 基本资源文件,是目前 RBI 技术的国际性行业标准。API 750、

**API** 510、**API** 570、**API** 653 是操作层次上的文件,是 **RBI** 思想、原则在操作中的具体运用。

#### 2.2 RBI 的核心概念

RBI主要评估3个参数:失效可能性、失效后果、失效可能性和后果组合的风险。其中风险是RBI的核心概念。

#### 2.2.1 风险

风险(R)=失效概率(PoF)×失效后果(CoF)(1) 风险是失效概率(可能性)和后果的组合,单一 考虑后果或可能性都是不全面的。

#### 2.2.2 失效概率

失效概率的定量计算有以下两种:

数;Dmin表示允许的最小厚度,mm。

1)阿克苏—诺贝尔(AKZO NOBEL)法。这一方法计算的是完整性因数(Integrity factor)S。失效概率为 S 的倒数,即 1/S。

$$S = \{D_{\text{last}} - (CR \times I) \times U\} / D_{\text{min}}$$
 (2)  
式中: $D_{\text{last}}$ 表示前次测得的厚度, $mm$ ; $CR$ 表示厚度  
减薄率, $mm/a$ ; $I$ 表示检验周期, $a$ ; $U$ 表示不确定系

2)API pub 581 采用的方法。失效概率(*PoF*)按下式计算:

$$PoF = F_{G} \times F_{M} \times F_{E} \tag{3}$$

式中: $F_{G}$  表示同类设备平均失效概率; $F_{M}$  表示管理系数; $F_{E}$  表示设备修正系数。

作者简介:郑鹤,1972年生,工程师;1996年毕业于四川联合大学(西区)化工设备与机械专业。地址:(610213)四川省成都市双流县华阳镇天研路1号。电话:13084401326。E-mail:zheng h@ petrochina.com.cn

## 

失效后果是指 RBI 评估当装置设备失效时,装置中有毒物、易燃、易爆物料泄漏所引起的后果。泄漏的后果由物料的物理性质、毒性和可燃性、天气条件、泄放时间和减缓措施等因素决定。后果类型分为可燃、有毒、营业中断和环境后果等4种类型。在RBI 评估中可将这些影响都转化为经济损失,折算成人员伤亡费、设备修理费、周边设备修复费、环境清理费、停产损失费等,也可根据需要采用不同的后果呈现方式,例如公司立法制定了有关限制潜在生命损失(PLL)或死亡事故率(FAR)的安全要求,那么也可分成人员安全和经济损失两种风险类型[4]。

#### 2.3 风险管理

通过风险管理,可以制订计划采取措施将不可接受的风险降低到可接受水平之上。

1)通过损伤机理分析,根据失效可能性和失效 后果,确定每个设备项的风险大小,据此对设备进行 风险排序并以矩阵形式表达(见图1)。



图 1 风险矩阵排序图

- 2)根据风险可接受准则、风险的大小和未来的发展,确定设备检验的优先次序、检验日期和周期。
- 3)根据损伤机理推荐有效的设备检验方法、检验位置及范围,最终提供一个最佳检验管理计划。

# 3 RBI 技术对天然气净化装置大检修 的指导性

#### 3.1 检验计划的制订方式更为科学合理

为了降低装置的风险,各天然气净化厂需定期停产进行装置检验<sup>[5]</sup>,其大修计划的制订极大地依赖于"经验",且其通常只关注于设备失效的后果,往往忽略了其失效可能性,导致失效可能性高但后果轻微的设备"过检",而失效可能性低但后果严重的设备"检验不足",存在有限的检验资源分配不合理的缺陷。

而 RBI 技术要求计划制定前必须了解装置工艺

流程、过往检修历史、设备的损伤机理、材料的退化机理,通过详细的损伤、退化机理分析,计算对应的技术模块,最后再结合"经验"形成检验计划,弥补了单靠"经验"制定检验计划的不足,更具科学性和合理性。

## 3.2 提高了检验真实性和准确性

以全面腐蚀为例:首先,RBI 根据腐蚀速率数据的来源,设定了腐蚀数据"置信度";其次,RBI 把检验方法的有效性分为5类(高度有效、通常有效、一般有效、效果差和无效)。这样通过贝叶斯公式,检验后腐蚀破坏率的置信度即可被较准确地确定。

#### 3.3 检验周期的确定更加科学合理

延长装置检验周期可显著提高企业经济效益。 在法律法规允许的范围内,以 RBI 评估为依据可尽量延长装置检验周期,并据此安排其他生产完整性管理工作,使装置整体检验周期更趋合理,减少停工时间,减少非计划停车次数,缩小停车检修的范围。

#### 3.4 检验资源分配更合理

RBI 将设备发生事故的可能性和事故造成的后果进行综合考虑,将设备划分成不同的风险等级,允许操作者将精力集中于高风险的设备上,对其增加投入,进行重点检修,而在保障安全生产、控制风险的前提下,对低风险设备减少投入,为合理分配有限的检验费用提供科学依据。

#### 3.5 科学合理决定检验内容和程度

通过数据分析,识别出设备的失效机理与损伤 形式,判断在这些失效机理的影响下,设备的哪些部 位可能会发生何种类型的缺陷,需要执行何种检验 方法以及检验效力(检验有效性);最后根据当前风 险等级、风险发展趋势,考虑检验经济性来确定最佳 检验时间。

# 4 RBI 评估工作流程

- 1)确定实施范围、目的、工作方法、交付项目及 日程。
- 2)收集资料。包括工艺流程数据、历年检维修记录、失效分析记录、工艺介质分析数据、设备设计资料、财务数据等。
- 3)根据 PFD、PID 图分割工艺流程。综合 PFD 图上的压力、温度、流体种类、状态、隔离装置、物质隔离区段、材料结构、损坏机理、腐蚀率、毒性量、pH值、污染物、连锁控制阀、ESD 控制阀等信息,划分物流回路及腐蚀回路。
  - 4)利用 RBI 软件计算失效可能性、失效后果和

风险;确定风险等级、分布;预测今后一定时期内风险的发展趋势并提出检修计划

- 5)实施检修,执行预防性维修并记录检修结果, 记录所有更改。
  - 6)更新 RBI 数据,实施再评估。

# 5 我国 RBI 技术应用现状

国内也有高校、机构进行了一系列的 RBI 研究 工作,但几乎都围绕炼化装置而极少在天然气净化 装置上开展。相关机构正在编制国家标准,并对有 关法规作出修改以使二者相适应。

西油公司积极开展了对 RBI 的尝试、应用工作:邀请专家举办了多期学习班,广泛宣传这一新的设备管理理念;委托两个著名公司完成了两套天然气净化装置的评估;引进了国际上广泛使用 Orbit-on-shore+IDS 计算和数据库软件。西油公司下属的天然气研究院还承担了有关 RBI 的国际合作课题和西油公司专项课题,并在 4 套装置上开展了 RBI 评估工作。

## 6 问题与建议

### 6.1 现在很难制定出合理的可接受风险准则

- 1)国内目前还没有 RBI 相关标准规范颁布。
- 2)API 580、API 581 只指出各企业可以有自己的风险准则,无法为不同国度、不同行业、不同企业规定统一的可接受风险准则。
- 3)可接受的风险与一个国家的社会、经济发展 息息相关,一个企业是难以自行确定可接受风险的, 因此企业需要按照政府有关部门和企业主管单位的 相关规定,综合多方面因素确定可接受的风险<sup>[6]</sup>。

#### 6.2 需要建立天然气净化行业的 RBI 评估体系

RBI技术起源于国外石化行业,失效可能性分析始于近海炼油、化工炼制设备的同类失效频率数据库。直接应用于其他行业(包括天然气净化)可能与设备的实际失效频率不吻合,因而应努力收集统计整理各类设备、管道的失效数据,分析破坏机理,建立适合天然气净化装置 RBI评估的失效数据库和失效模型。

# 6.3 引进的 DNV Orbit-onshore 软件需要随着新的标准进行升级或改版

我国相关机构正在积极着手制定符合本国国情的 RBI 技术标准,已提出《承压设备系统基于风险的检验实施导则》标准草案,草案颇有自己的创新点:

- 1)引入制造质量修正因子(超标缺陷修正因子)。
- 2)减薄因子部分(局部减薄)采用极限分析理论(凹坑理论)。
  - 3)无设计寿命情况下,按剩余寿命进行计算。
  - 4)增加部分在线检测方法的检验有效性[7]
- 5)根据中国国情,对可接受准则(风险目标)、检验计划确定等内容进行了必要调整<sup>[8]</sup>。

API 规范也在不断前行中。新的 API 581 中失效后果由查表法得出,取代了之前所采用的 DNV PHAST 计算方法,新的失效后果模型采用了 NIST 开发的物流模型(SUPERTRAPP 软件)以及 E2G \* 专利的后果模型,失效可能性评估方法也有所调整。

#### 6.4 RBI 数据库需要不断更新

对于天然气净化装置,需要不断完善、修正及增 删其腐蚀数据、物料数据以及材料数据。

## 6.5 设备检验方法应不断改进

应加强对重点设备、参数的在线监测,掌握装置即时运行情况,切实消除安全隐患。

#### 参考文献

- [1] 倪伟,陈胜永.依靠科技,加快发展,努力实现天然气净化新跨越「R].重庆;天然气净化技术座谈会,2005.
- [2] 陈登丰.在役承压设备基于风险的检验和工程适用性评估技术的发展[J].中国特种设备安全,2006,22(11).
- [3]合肥通用机械研究所压力容器检验站.中国石油西南油 气田分公司重庆天然气净化总厂长寿分厂天然气净化装 置风险评估(RBI)报告[R].[出版地不详]:[出版者不 详].2008.
- [4] DNV.中国石油西南油气田分公司重庆天然气净化总厂 垫江分厂 RBI 风险评估报告[R].[出版地不详]:[出版 者不详]:2008.
- [5] 傅敬强,宋文中.天然气净化厂紧急停开产安全保障措施探讨「J<sup>-</sup>].石油与天然气化工,2007,36(2):173-176.
- [6] 沈士明.工程风险分析技术在我国石化工业中的实践与思考[C].杭州:第三届石化装置工程风险分析技术应用研讨会,2007.
- [7] 温帆.TLG-837 尾气分析仪在天然气净化装置中的应用 [J].石油与天然气化工,2008(增刊),131-133.
- [8] 寿比南.关于完善我国压力容器压力管道定期检验规范体系的思考[C].南昌:第四届石化装置工程风险分析技术应用研讨会,2008.

(收稿日期 2008-12-10 编辑 何 明)