
DATA PAPER

†	� Corresponding author: Chahrazed B. Bachir Belmehdi (E-mail: cb.bachirbelmehdi@esi-sba.dz).

Predicting an Optimal Virtual Data Model for Uniform
Access to Large Heterogeneous Data

Chahrazed B. Bachir Belmehdi†, Abderrahmane Khiat, Nabil Keskes

LabRI-SBA, Enterprise Information Systems, ESI-SBA Institute; Fraunhofer IAIS, Algeria; Germany

Keywords:  Data Virtualization, Big Data, OBDA, Deep Learning

Citation: Bachir Belmehdi, C.B., Khiat, A., Keskes, N.: Predicting an Optimal Virtual Data Model for Uniform Access to Large

Heterogeneous Data. Data Intelligence 6(2), 504-530 (2023). doi: https://doi.org/10.1162/dint_a_00216

Submitted: July 2, 2023; Revised: July 30, 2023; Accepted: August 14, 2023

ABSTRACT

The growth of generated data in the industry requires new efficient big data integration approaches for
uniform data access by end-users to perform better business operations. Data virtualization systems, including
Ontology-Based Data Access (ODBA) query data on-the-fly against the original data sources without any
prior data materialization. Existing approaches by design use a fixed model e.g., TABULAR as the only Virtual
Data Model — a uniform schema built on-the-fly to load, transform, and join relevant data. While other data
models, such as GRAPH or DOCUMENT, are more flexible and, thus, can be more suitable for some common
types of queries, such as join or nested queries. Those queries are hard to predict because they depend on
many criteria, such as query plan, data model, data size, and operations. To address the problem of selecting
the optimal virtual data model for queries on large datasets, we present a new approach that (1) builds on
the principal of OBDA to query and join large heterogeneous data in a distributed manner and (2) calls a
deep learning method to predict the optimal virtual data model using features extracted from SPARQL
queries. OPTIMA — implementation of our approach currently leverages state-of-the-art Big Data
technologies, Apache-Spark and Graphx, and implements two virtual data models, GRAPH and TABULAR,
and supports out-of-the-box five data sources models: property graph, document-based, e.g., wide-columnar,
relational, and tabular, stored in Neo4j, MongoDB, Cassandra, MySQL, and CSV respectively. Extensive
experiments show that our approach is returning the optimal virtual model with an accuracy of 0.831, thus,
a reduction in query execution time of over 40% for the tabular model selection and over 30% for the graph
model selection.

© 2024 Chinese Academy of Sciences. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0)
license.

Data Intelligence	 505

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

	 SPARQL is a query language for Resource Description Framework (RDF).
	� We denote GRAPH and TABULAR when referring to the type of virtual data model; while we denote Property Graph,

Document-based, Wide-Columnar, Relational, and Tabular when addressing the source model.
	 Resource Description Framework (RDF) is a standard designed as a data model for describing metadata.

1.  INTRODUCTION

Massive data generated by applications, transactions, or machines keep increasing drastically over the
years [1]. However, the information extracted from this data is unexploited and less used, leading to a
knowledge gap [2]. Consequently, the growing volume of data consumed by different applications raises
the need for effective data integration approaches [3, 4]. The aim is to get more insights by enabling the
process of a large volume of data that is stored in various sources (Oracle, MongoDB, etc.), that is resided
in different platforms (cloud, mainframes), and is represented in different formats (relational, graph,
no-relational [5]). Modern approaches ”Data virtualization [6]” tackle this challenge by creating a virtual
data model under which the heterogeneous formats are homogenized on-the-fly without data materialization
[7], thus reducing cost, and simplifying data management, updates, and maintenance. Ontology-based data
access (OBDA) [8] also implements a virtual data model and addressed data integration challenges with
practical knowledge representation models, ontology-based mappings, and a unique query language
SPARQL[9].

Existing approaches [10, 11, 12] use by design only one virtual data model (e.g., TABULAR) to load
and transform the requested data into a uniform model to be joined and aggregated; while other data
models, such as GRAPH or DOCUMENT, are more suitable [13]. For instance, approaches using a fixed
TABULAR virtual model (TABULAR is a model that uses predefined structures, i.e., table definitions) can
have downside performances for SPARQL queries that involve many join operations on very large data. In
contrast, other data models such as GRAPH (a model that structures data into a set of nodes, relationships,
properties, and, most importantly, stores relationships at the individual record level) perform better for such
queries. On the other hand, the TABULAR model performs better for queries that involve selection or
projection. The problem to be addressed in this paper is defined as, given a query, ”which virtual data
model is optimal i.e., the model that has the lowest query execution time (cost)? and how to select it?”.

It is very challenging, however, to automatically select the optimal virtual model based on queries since
it is not realistic to compute the query execution time for all SPARQL queries against all virtual data models
to get the actual cost. Furthermore, the query behavior on data virtualization is quite hard to predict since
the behavior depends not only on the virtual data model but also on query planning. To the best of our
knowledge, existing machine learning techniques [14, 15, 16] [17] were established in the literature for
cost estimation of SPARQL queries; most of them, however, are designed for querying uniform data, e.g.,
RDF and not for distributed data sources.

To address these research questions, we developed OPTIMA — an OBDA extensible framework that
predicts the optimal virtual data model GRAPH or TABULAR, using a deep learning algorithm to join data

506	 Data Intelligence

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

from sources databases that support Property Graph, Relational, Tabular, Document-based, and Wide-
Columnar models. The proposed algorithm uses one hot vector encoding to transform different SPARQL
features into hidden representations. Next, it embeds these representations into a tree-structured model,
which is used to classify the virtual model GRAPH or TABULAR that has the lowest query execution time.

Extensive experiments show that our approach is successfully running, returning the optimal virtual
model with an accuracy of 0.831, thus reducing the query execution time of over 40% for the TABULAR
model selection and over 30% for the GRAPH model selection.

The article is structured as follows. The underlying concepts about ontology-based big data access are
given in Section 2. Our approach is described in detail in Section 3. Further description of deep learning
model is presented in Section 4. Experimental results are reported and explained in Section 5. Related Work
is presented in Section 6. Section 7 concludes with an outlook on possible future work.

2.  PRELIMINARIES

Our proposed approach requires the following inputs (1) data sources using different models. (2) Semantic
Mapping that describes mapping in RDF Mapping Language, (3) information about data sources (password,
etc.), and (4) a set of SPARQL queries. To guide the subsequent description of our approach, we provide
the following definitions:

Definition 1 (Data Source Schema) Dataset Schema is a set of Sd ∪ Sc ∪ Sr ∪ Sg ∪ St considered by
our approach; we introduce each model briefly as follows:

• �Document-based Sd [18]: A document d is a JSON object o. An object is formed by a set of key/value
pairs (aka fields) o = {k1 . . . kn}; a key is a string, while a value can be either a primitive value (e.g.,
a string), an array of values, an object, or null.

• �Wide-Columnar Sc [19]: A table t is the unit of wide-column identified by name and composed by a
set of column-families. The table’s rows are identified by a unique key. Each row of the table can contain
up to n records. The record is a pair of identifiers id and a value. A wide-column is, in fact, a Hash
structure expressed as: t = Hashtable < key,Hashrow < f,Hashrecord < id, value >>>.

• �Relational Sr [20]: A relation schema R with a set ∑ of PKs, FKs and attributes A = <A1, . . . , An> is
denoted R(A1, . . . , An) is a set of n - tuples < d1, . . . , dn > where each di is an element of dom(Ai)
or is null. The relation instance is the extension of the relation. A value of null represents a missing or
unknown value.

• �Property Graph Sg [21]: G = (V, E, l, μ) is a directed, edge-labelled, attributed multi-graph where V is
a set of nodes, E ⊆ (V � V) is a set of directed edges, l : E → ∑ is an edge labelling function assigning
a label from the alphabet ∑ to each edge. Properties can be assigned to edges and nodes by the
function μ : (V ∪ E ) � K → S where K is a set of property keys and S the set of property values.

• �Tabular St [22] is a set of tables T = {t1 . . . tn}. Each table tx integrates one or more column groups, as
tx = {GC1 . . . GCn}. Each column group integrates different columns representing the atomic values to
be stored in the table, 1{ }x x

x nGC C C= … .

Data Intelligence	 507

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

	 Basic Graph Pattern (BGP) is a set of Triple Patterns, where BGPs is set of BGP.

We denote an entity of a data source by { }s
x ie a= , representing either a node, a table or an object; where

s is the schema entity, x its name and x
ia are its attributes representing either edges or columns. A data

source consists of one or more entities, d = {ei}.

Definition 2 (Semantic Mapping) Semantic mappings are bridges (links) between the ontology and
sources schemata elements. We differentiate between two types of semantic mappings [12]:

• �Entity mapping: men = (e, c) a relation mapping an entity e from d onto an ontology class c.
• �Attribute mapping: mat = (a, p) a relation mapping an attribute a from an entity e onto an ontology

property p.

Definition 3 (Star-Shaped Query) A Star-Shaped Query (SSQ) is a set of triple(subject, predicate,
object) patterns – BGPs sharing the same subject [23]. We denote SSQ by stx = {ti = (x, pi, oi) | t ∈ BGPq}
where x is the shared subject, whereas BGPq = {(si, pi, oi) | pi ∈ O}, is the triple patterns of SSQ.

Definition 4 (Connection SSQ) The joins of data coming from different data sources are represented
actually by the connections between star-shaped queries i.e., two SSQs sta, stb (subject, predicate, object)
are connected if the object of sta is the subject of stb. connected(sta, stb)→∃ti = (si, pi, b) ∈ sta.

Definition 5 (Relevant Entities to SSQ) [24] An entity e is relevant to a SSQ st if it contains attributes
ai mapping to every triple property pi of the SSQ i.e., relevant(e, st) → ∀pi ∈ prop(st)∃aj ∈ e | (pi, aj) ∈ Mat,
where prop is a relation returning the set of properties of a given SSQ.

Definition 6 (Entity Wrapping) it is a function wrap that takes one or more relevant entities to SSQ
and returns a Virtual Model [24]. It loads entity elements and organizes them according to Virtual model
schema wrap : En → PS.

Definition 7 (Virtual Data Model) Virtual Data Model is the data structure of the computation unit of
the query engine to load, transform and join only the relevant data. It is built and populated on-the-fly and
not materialized, i.e., used only during query processing then cleared. Virtual Data Model has a schema
that organizes data according to its structure. We consider two types of schema, GRAPH or TABULAR.

• �Structure of a GRAPH [25] (in-memory) is similar as Property Graph. A GRAPH G = (V,E ) is a set of
vertices V = {1 . . . n} and a set of m directed edges E. The directed edge (i, j ) ∈ E connects the source
vertex i ∈ V with the target vertex j ∈ V. GRAPH stores relationships at the individual record level.

• �Structure of a TABULAR (in-memory) [26] is the same structure as the Tabular model defined above.
TABULAR has predefined structures.

Definition 8 (Graph and Data Parallel) During the querying execution, the Virtual Model, GRAPH or
TABULAR is partitioned, distributed, and queried in parallel.

508	 Data Intelligence

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

	 https://gist.github.com/shagunsodhani/c72bc1928aeef40280c9

• �GRAPH Parallel is executed after loading relevant entities into the DEE. Graph-Parallel Systems consist
of a property graph G = (V, E, P ) and a vertex-program Q that is instantiated simultaneously on all the
vertices.

• �Data Parallel [27] concerns the TABULAR model, which is executed after loading relevant entities into
the DEE. Data-Parallel computation derives parallelism by processing independent data on separate
resources.

3.  PREDICTING OPTIMAL VIRTUAL MODEL FOR QUERYING LARGE HETEROGENEOUS DATA

To solve the problem of selecting the optimal virtual data model and thus efficiently query large
heterogeneous data, we propose an approach that leverages OBDA methodology and deep learning. Our
Solution follows OBDA and supports two types of virtual data models, GRAPH and TABULAR, to load and
join data from sources with various models, i.e., property graph, document-based, wide-columnar, relational,
and tabular. We used a deep learning algorithm that predicts the optimal virtual model based on query
behavior. More precisely, the algorithm extracts and encodes significant features from input SPARQL query
into representations that are then embedded into a tree-structured model to classify the virtual model,
GRAPH or TABULAR, that has the lowest cost i.e., query execution time. Below we describe each part of
our proposed approach illustrated in Figure 1.

Figure 1.  Predicting Optimal Virtual Model on top of OBDA.

Data Intelligence	 509

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

3.1 Virtual Data Model Prediction

Our distinctive deep learning model, built on top of OBDA layers, aims to select the optimal virtual data
model based on query behavior. Our algorithm analyzes and extracts features from the input SPARQL query
and uses One-Hot Vector encoding to transform different features into hidden representations. Next, these
representations are embedded into a tree-structured model, which can effectively learn the representations
of query plan features and predicts the cost against each virtual data model. As an output, the proposed
algorithm returns the optimal virtual model, GRAPH or TABULAR, that has the lowest query execution time.
Our deep learning algorithm is detailed in section 4. Once the optimal model is predicted, the rest of the
OBDA layers (e.g., query decomposition, entity detection, and operations, e.g., join, limit) follow the
optimal virtual data model, GRAPH or TABULAR.

3.2  Query Decomposition & Relevant Entity Detection

Once the optimal virtual model is selected, our approach decomposes the input SPARQL query into
star-shaped queries to identify conjunctive queries [28]. More precisely, in SPARQL, the conjunction is
expressed using shared variables across sets of triple patterns, also called basic graph patterns (BGP). Based
on this characterization, we divide the query’s BGP into a set of sub-BGPs, where each sub-BGP contains
all the triple patterns sharing the same subject variable — called star-shaped query — SSQ (Definition 3).
Most approaches for query decomposition in OBDA systems follow subject-based method because triples
sharing the same subject correspond to the same entity, e.g., table or object in the data source, thus avoiding
traversing data to find specific entities to be joined and extra joins that can be very expensive.

Next, our approach analyzes each star-shaped query and retrieves semantic mappings that are already
predefined i.e., correspondences between SSQ elements/variables (i.e., ontology class or property) and data
sources’ entities (e.g., table) or attributes (e.g., column name) in addition to data source type (e.g., relational)
[see Definition 2]. A correspondence that maps every triple property of a star-shaped query is called a
relevant entity (Definition 5). Finally, loading those entities defined by data sources’ models into the optimal
virtual data model, GRAPH or TABULAR, requires data mapping and transformation, for instance, mapping
and transforming a table from a relational model into a GRAPH or TABULAR. Furthermore, star-shaped
SPARQL operations (e.g., Projection, filtering, grouping, etc.) are also translated into GRAPH or TABULAR
operations.

3.3  Data Mapping and Transformation

Once the relevant entities and sources are identified using semantic mappings as shown above, our
approach maps and transforms relevant entities (e.g., a table) from their original models (e.g., relational)
[Definition 1] to data that comply with optimal virtual data model predicted, GRAPH or TABULAR

	� One-hot vector is a 1 � N matrix (vector) used to distinguish each word in a vocabulary from every other word in the
vocabulary.

510	 Data Intelligence

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

(Definition 7). This conversion occurs at query-time, which allows for the parallel execution of expensive
operations, e.g., join (Definition 6).

Each star-shaped query corresponds to one relevant entity, and thus one single virtual data model is
created. This is the case when the relevant entity, according to the mapping, could be retrieved only from
one data source, e.g., one relational table. Otherwise, if the relevant entity according to the mapping could
be retrieved from multiple sources, then the virtual model for the entity is the union of temporary virtual
models created for each source (Figure 4).

Below we describe data source models transformation by wrappers into GRAPH and TABULAR.

• �For the virtual data model of type GRAPH, the structure returned of relevant data on different data
sources using existing data access methods [24] is schema-less data, e.g., RDD (Resilient Distributed
Dataset). Then necessary structural adaptations are employed, which consist of converting schema-less
to GRAPH following the mapping process. The data is represented as a table with specific columns
for the Tabular and Relational models defined by CSV and MySQL. Then the mapping process is
defined as follows (see Figure 2a): for each table row, a vertex is created with the same label as the
table’s name (e.g., table ’Person’ corresponds to all vertices with the label ’Person’) in addition to the
root vertex. Edges are created between vertices and the root vertex, whereas the properties of each
vertex are the columns of the table (e.g., column ’name’ corresponds to property ’name’), and the
values of the properties are the table’s cell information. The same process is applied to property graphs
defined by neo4j, document-based, and Wide-Column models (e.g., an XML file) defined by MongoDB
and Cassandra.

• �As for the virtual data model of type TABULAR, the structure returned of relevant data on different data
sources using existing data access methods is organized into named columns, e.g., DataFrame.
Adaptations are needed, which consist of converting DataFrame to TABULAR following a mapping
process. For instance, the selected object as a relevant entity of documented-based and wide-columnar
stored in MongoDB and Cassandra is parsed to create a virtual TABULAR (see Figure 2a), which
consists of a table with a name similar to the root object’s name (e.g., a table ’Person’ from object
name ’Person’). A new row is inserted by iterating through object elements into the corresponding
table. The corresponding key-values are saved under the column representing the cell information. The
same process is applied to other models.

	 (a) Transforming Relational to GRAPH	 (b) Transforming Document-based to TABULAR

Figure 2.  Transformation Process.

Data Intelligence	 511

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

We highlighted below how SPARQL and star-shaped queries operations are translated into Virtual Data
model operations in case of GRAPH and TABULAR.

3.4  Distributed Query Processing

Distributed Query Processing is where the virtual model is actually joined and executed. Our approach
uses Big Data engines (e.g., SPARK) that offer users the ability to manipulate the data model of its computation
unit (i.e., virtual data model). This allows the implementation of different data models that can be more
suitable for various queries. We consider two types of data models, GRAPH and TABULAR, which allow
for graph-parallel (see Figure 3a) and data-parallel (see Figure 3b) computation, thus affecting the query
performance. Our approach uses several different data models (property graph, document-based, wide-
columnar, relational, and tabular) to demonstrate its capability to cover and access various heterogeneous
data sources. We should point out that we did not employ any query optimization function to choose the
most efficient query execution plan; instead, we focused on the join operation. For instance, if our predictive
model predicts based on the input SPARQL query that the optimal virtual model is of type GRAPH, then
for each relevant entity, one virtual GRAPH model is generated, following our proposed transformation
process (see Subsection 3.3). Once generated, our approach joins those GRAPHs or TABULARs (i.e., a
virtual model for each relevant entity) into a FINAL Virtual, GRAPH, or TABULAR (see Figure 5). Below we
describe the join process and operations using GRAPH or TABULAR virtual models.

	 (a) GRAPH Parallel	 (b)TABULAR Parallel

Figure 3. Parallel Mechanism for GRAPH and TABULAR.

	 (a) Union of TEMPORARY GRAPHs	 (b) Union of TEMPORARY TABULARs

Figure 4.  Union Operation of TEMPORARY Virtual Model.

512	 Data Intelligence

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

	 (a) Join of GRAPHs	 (b) Join of TABULARs

Figure 5.  Join Operation of Virtual Model.

• �Joining Virtual Data Model: The data join coming from different data sources are represented actually
by the connections between star-shaped queries i.e., two SSQs sta, stb (subject, predicate, object) are
connected if the object of sta is the subject of stb. These connections are translated into an array of join
pairs (see green SSQ in Figure 4a). As for GRAPH, the FINAL Virtual GRAPH (Figure 5a) is created by
iterating through the GRAPHs join pairs following a multi-way join algorithm (Figure 6a) which has
been proven beneficial in terms of performance based on research literature [29]. The multi-way join
algorithm can join two or more relations simultaneously, which is suitable for graph-parallel
computation. In practice, new edges are created for each joined pair to link GRAPHs, such as an edge
source point to one of the GRAPH vertices and its destination points to the second GRAPH. The FINAL
Virtual GRAPH is the result of the newly created edges and the union of the joined pair vertices. Finally,
we filter out vertices’ identifiers that have no destination. Furthermore, to make the joining of GRAPHs
faster, we selected only projection columns’ IDs before joining GRAPHs since it is heavy to scan over
columns. Similarly, the FINAL Virtual TABULAR i.e., joined TABULARs (Figure 5b) is created by applying
join between the respective tables following incrementally joined (Figure 6b), which is revealed to be
very efficient [30]. This is done by using a predefined method ’join’ that takes the joined pairs’ names
and the name of the foreign key column as an argument. Furthermore, we adopted the same strategy
proposed in [24], which employs a filter before data transformation, thus reducing the number of the
values of the attributes to be transformed and then joined which revealed high efficiency.

	 	
	 (a) Multi-Join Algorithm of GRAPHs	 (b) Incremental Join Algorithm of TABULARs [12]

Figure 6. Join Algorithms for GRAPH and TABULAR.

Data Intelligence	 513

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

• �Star-Shaped/SPARQL Operations to GRAPH/TABULAR Operations GRAPH and TABULAR have
different structures; therefore, the interaction with GRAPH is possible through Graph Pattern Matching
operations (e.g., Cypher-like), while the interaction with TABULAR is possible through SQL-like
functions. We highlighted below how SPARQL and star-shaped operations are translated into Virtual
Data model operations, GRAPH, and TABULAR.

	 –	� Projection: this operation requires accessing FINAL Virtual GRAPH and TABULAR. For GRAPH, we
used the hash map method to get the properties’ indexes by iterating over the projected vertices
and collecting the linked vertices into one vertex. This helps reduce the operations (e.g., limit)
execution time by executing operations on a single vertex instead of multiple vertices. Contrary to
the FINAL TABULAR, which is projected using a predefined method ’project’ that takes as an
argument the projection variables and returns a projected FINAL TABULAR.

	 –	� Filtering: Performing filtering on a given property of Virtual GRAPHS needs accessing data through
an index rather than the property name. Therefore, we used a hash map that stores the property
name and index. We get the right property index by matching the property name from the filter
with the one from the hash map. As for the Virtual TABULAR model, filters are executed over the
TABULAR columns. We use a predefined method ’filter’ that takes as an argument the filter statement
and returns a filtered virtual TABULAR model.

	 –	� Ordering and Limit: to be able to sort or show a limited number of data of the GRAPH, we extracted
triples from the FINAL GRAPH. Next, we used a predefined ordering method, e.g., ’sortBy’ and
limited method ’take’, that takes the vertex property value as input and outputs sorted or limited
FINAL GRAPH. As for the TABULAR model, it can be sorted and limited using predefined methods
’orderBy’ and ’limit’ respectively. These methods take the ordering column or number of needed
rows in case of Limit as an argument and return an ordered or limited FINAL TABULAR.

3.4.1  Query Execution

Optimizing query execution time is a very crucial step when it comes to loading and joining data.
However, time optimization depends not only on the virtual data model, i.e., GRAPH or TABULAR, but
also on the execution plan of operations, e.g., applying a filter before joining data. We disabled any query
optimization by engine Apache SPARK and Graphx to emphasize the join operation when querying multiple
data sources.

Optimization Strategy for GRAPH. To join GRAPHs, we applied a multi-way join algorithm (Figure
6a) which has been proven beneficial in terms of performance based on research literature [29]. The multi-
way join algorithm can join two or more relations at the same time, which is suitable for graph-parallel
computation. Furthermore, to make the join of GRAPHs faster, we selected only projection columns and
their ID before joining GRAPHs since it is heavy to scan over columns (unlike the TABULAR strategy given
next).

Optimization Strategies for TABULAR. To join TABULARs, research has proven that incremental data
processing approaches [30] for data-parallel achieve better performance since they rely on updating the

514	 Data Intelligence

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

results of a query when updates are streamed rather than re-computing these queries and may require less
memory than batch processing. Therefore, we followed the incremental join; if TABULAR is selected as an
optimal virtual data model based on query behavior, the FINAL Virtual TABULAR is created by iterating
through the TABULARs that are created from the relevant entities and incrementally joined (see Figure 6b).
Furthermore, we adopted the same strategy as described by [24] where we applied a filter before data
transformation, thus reducing the number of the values of the attributes to be transformed and then joined,
which revealed very efficient.

4.  DEEP LEARNING MODEL

This section describes our deep learning model to predict the virtual data model of type GRAPH or
TABULAR.

4.1  SPARQL Features Analysis

Our model breaks down the SPARQL query plan into nodes (Figure 7a). Each node includes a set of
query features that significantly affect the query cost (e.g., filter). The different features are then encoded
using different encoding models. Below, we list those features and their encoding:

• �MetaData: is the set of attributes and entities used in the SPARQL query (e.g., entity names ’producer’).
We encode both attributes and entities using a one-hot vector. Then we concatenate each attribute
vector with its entities vectors to have a final MetaData vector.

• �Operation: is the set of physical operations used in the SPARQL query, such as Join, BGP, Projection,
OrderBy, and Limit. Each operation is composed of an operator (e.g., ”>=”) and a list of operands
(entities or attributes e.g., [operator=’project’, attributes=’price, delivery-days’]). Both the operator and
its operands are encoded using a one-hot vector. Finally, each operation vector in the SPARQL query
is the concatenation of an operator vector and its operands vectors.

• �Filter: is the set of query filters. A filter is considered a special operation since it could be either atomic
or compound. Each atomic filter is composed of an attribute, an operator, and an operand. The filter
operand could be either a float or a string value. Both the attribute and the operator are encoded using
a one-hot vector. To encode the operand, we use a normalized float if its value is numeric; otherwise,
we use a String representation. The String representation makes use of a Char Embedding model and
a CNN (Convolutional Neural Network [31]) to have a fixed-length dense String vector. The three
resulting vectors are concatenated to form one single filter vector.
The compound filter is a combination of multiple atomic filters using either AND or OR operator. For
example, ’price > 4000 (atomic) AND price < 20 000 (atomic)’, in this case, the filter is considered
as a compound. To obtain the vector of the compound filter, we encode each logical operator and
atomic filter using one-hot encoding. Next, a tree filter is created where the root is the one-hot vector
of a logical operator (e.g., AND), and the nodes are the one-hot vectors of atomic filters (e.g., left node
000111 representing price > 400). Finally, each node (one-hot vector) is transformed into a sequence
using the Depth First Search algorithm (DFS). At the end of each sequence, we add an empty node.
The sequences are then concatenated following the visited order.

Data Intelligence	 515

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

4.2  Proposed Tree-structured Model

Tree-structured models have been proven more powerful than neural networks at predictive tasks using
tabular data [32]. Inspired by the work presented in [33], we propose our deep learning model (Figure 7b)
that takes as input the encoded features of SPARQL query and outputs the optimal virtual data model,
GRAPH or TABULAR that has the lowest cost. Our model consists of an embedding layer to condense the
features’ vectors and an estimation layer to estimate the optimal virtual data model. In addition, the model
includes an intermediate representation layer to capture the correlation between the joined star-shaped
queries. In the following, we give a detailed explanation of the model architecture.

	 (a) Features Extractor	 (b) Tree-Structured

Figure 7.  Deep Learning: Feature Extraction and Tree-Structured Model.

4.2.1  SPARQL Embedding Layer

The SPARQL Query Embedding Layer (Figure 8a) embeds a sparse vector into a dense vector. It takes as
inputs three types of feature vectors: MetaData, Operation, and Filter. First, the MetaData vector along with
the Operation vector are embedded using a fully connected neural network layer with ReLU (Rectified
Linear Unit) activator, which is a piecewise linear function that outputs the input directly if it is positive.
The structure of the Filter vector is more complicated in the case of compound filters. Therefore, we adapted
a Min-Max-Pooling operation to embed the Filter vector.

The Min-Max-Pooling model is a tree-structured model that takes the structure of the Filter tree. For leaf
nodes, we use a fully connected neural network. For conjunction nodes, we use the max pooling layer
for ‘OR’ operator and the min pooling layer for ‘AND’ operator. The max pooling layer is the maximum
number of estimated results satisfying the atomic predicates, while the min pooling layer is the minimum
number of estimated results satisfying the atomic predicates. Thus representing the SPARQL query filters
explicitly.

	� Fully connected network: a linear regression a0x + … + anx, 2 linear regressions connected means the output of the first one
is the input of the second one.

516	 Data Intelligence

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

4.2.2  SPARQL Representation Layer

Learning complex structure representations such as tree structure using classic neural networks has many
challenges. First, the neural networks can learn much information from the leaf nodes but fails at capturing
the correlation among upper nodes. This is known as the vanishing gradient problem. Second, capturing
correlations between multiple tree nodes requires storing a lot of intermediate results, which leads the space
to grow exponentially. This is known as the gradient explosion problem. To handle those two problems, we
designed an intermediate layer (detailed in Figure 8b) that captures the global cost information from leaf
nodes to the root by training representations for nodes recursively. We use fully connected networks that
have the same structure and share common parameters. Each layer has three inputs: an embedding vector,
a representation vector of the right child, and a representation vector of the left child. We used Long Short-
Term Memory (LSTM) [34] as a recurrent model. The LSTM model uses the concept of ’memory’ to store
information of previous nodes, which makes them capable of learning order dependence in the tree
structure. This helps prevent the information loss problem. On the other hand, the forget gate of Sigmoid
helps LSTM to address the space explosion problem.

	 (a) Tree Representation 	 (b) Representation Model

Figure 8.  Deep Learning: Tree and Representation Model.

4.2.3 Virtual Model Classification Layer

It is a binary classification model that takes the representation vector of query tree nodes as input and
outputs the optimal virtual data model, GRAPH or TABULAR, with the lower cost (i.e., we set GRAPH with
value 1 for SPARQL queries that are faster than TABULAR and label TABULAR with value 0 for SPARQL
queries that are faster than GRAPH). The classification layer includes two fully connected neural networks
with a ReLU activator. The output layer is a Sigmoid function that returns a number from 0.0 to 1.0,
representing the probability that the input belongs to. If the output is closer to 1.0 then the predicted virtual
data model is of type GRAPH; otherwise, if the output is closer to 0.0, then the predicted virtual data model
is of type TABULAR.

Data Intelligence	 517

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

5.  IMPLEMENTATION AND EXPERIMENTAL SETUP

OPTIMA — an implementation of our approach, is an OBDA system that calls Graphx and Apache-
Spark to implement two virtual data model, GRAPH and TABULAR. The virtual data model is the model
defined by the computation unit of these two query engines. Graphx and Apache-Spark already implement
wrappers called connectors, of which we used five types to load data that is stored in Neo4j (property
graph), MongoDB (document-based), Cassandra (wide-column), MySQL (relational), and CSV (tabular). As
for transformation, we used Graphx and Apache-Spark functions e.g., flaMap(x=>y). OPTIMA calls a deep
learning model to get the predicted optimal virtual data; it uses NumPy for encoding data and PyTorch for
the prediction model. OPTIMA is available on GitHub at https://github.com/chahrazedbb/OPTIMA.

We conducted an empirical study to evaluate OPTIMA performance with respect to the following sub-
research questions of our problem: RQ1: What is the query performance using OPTIMA? RQ2: Is the time
of prediction plus the time of query execution using an optimal virtual model equal to the fixed one? RQ3:
What is the query performance when using TABULAR versus GRAPH? RQ4: What is the accuracy of
OPTIMA and machine learning? RQ5: What is the query performance of OPTIMA compared to the state-
of-the-art, e.g., Squerall [12]? RQ6: What is the impact of involving more data sources in a join query?
RQ7: What is the resource consumption (CPU, memory) of OPTIMA while running various queries? RQ8:
What is the time taken by each transformation process?

5.1  Benchmark, Queries, and Environment

There is no benchmark dedicated to assessing ontology-based big data access systems. We end up using
BSBM* [12] to evaluate the performance of OPTIMA. BSBM* is an adapted version of BSBM benchmark
[35] where five tables, Product, Offer, Review, Person, and Producer, are distributed among different data
storage. To test OPTIMA, we use the five tables to enable up to 4-chain joins. These tables are loaded in
five different data sources Neo4j, MongoDB, Cassandra, MySQL, and CSV. Table 1 shows the described
information about data. We generated 5150 queries with 0-4 joins, 0-45 selection, and 0-16 for the filter,
limit, and orderBy. The characteristics of these queries are presented in Table 2.

Table 1.  Data & Queries Characteristics.

Product Offer Review Person Producer

Database type Cassandra MongoDB CSV Neo4j MySQL
of tuples 50000 50000 50000 50000 50000
Data size ~90MB ~90MB ~90MB ~90MB ~90MB

	 for Apache-Spark, a small part of OPTIMA is based on Squerall’s code (https://github.com/EIS-Bonn/Squerall)
	� RDD is an immutable distributed collection of elements, while DataFrame is an immutable distributed collection of data

organized into named columns. RDD is distinct from DataFrame in that the former is considered schema-less.
	� https://spark.apache.org/docs/latest/graphx-programming-guide.html, https://spark.apache.org/docs/2.2.0/rdd-programming-

guide.html

https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html

518	 Data Intelligence

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

Table 2.  Tables and Operations involved in Queries.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

Product √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Offer √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Review √ √ √ √ √ √ √ √ √ √ √ √ √ √

Person √ √ √ √ √ √ √ √ √

Producer √ √ √ √ √ √ √ √ √ √ √

PROJECT √16 √5 √29 √45 √24 √45 √38 √38 √24 √34 √4 √6 √32 √34 √4 √5 √9 √45 √45 √5

FILTER √16 √12 √1 √5 √1 √1 √1 √1 √4 √2 √3

ORDERBY √1 √1 √1 √1 √1 √1 √1 √1 √1

LIMIT √300 √2 √20 √4 √20 √20 √80 √10 √13 √19 √1000 √1000

DISTINCT √

We take 4120 queries for training the model and 1030 queries for validation. We run the evaluation on
Ubuntu Version 20.04 64-bit with an Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, allocating 8GB of RAM.

Training paradigm

In this section, we provide a detailed description of the training paradigm of our deep learning model.
The training data typically involves the following steps:

• �Data collection and preprocessing: To the best of our knowledge, no large datasets of SPARQL queries
exist. Therefore, we generated more than 5000 SPARQL queries that combine all possible elements of
a SPARQL query, as described in Table 1. These queries are then preprocessed (see an example of
SPARQL query in Appendix A.1) to extract features (see Appendix A.2) and then convert them into a
tree-structured representation (see Appendix A.3) suitable for input into our deep-learning model. We
run each query on both GRAPH and TABULAR. We set GRAPH with a value of 1 for SPARQL queries
that are faster than TABULAR and label TABULAR with a value of 0 for SPARQL queries that are faster
than GRAPH.

• �Tree construction: The tree structure is constructed based on the query plan, in other words, into query
result clause and query pattern and query. For example, the tree’s root node represents the query plan,
while the child nodes represent the query result clause and query pattern and query, and the leaf nodes
of the query result clause would represent clause type such as the ”SELECT” operation (see Appendix
A.3).

• �Supervised learning: To enable the model to learn the relationships between the SPARQL query
elements (e.g., plan, operators, etc.) and the execution time of each data model GRAPH or TABULAR.
We trained our deep learning model using feed- forward neural network with multiple hidden layers
and non-linear activation functions ReLU and Sigmod, including two fully connected neural networks,
each with 16 neurons. We trained the model on 80% of queries using the mean squared error as the

Data Intelligence	 519

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

loss function and the Adam optimization algorithm. The model is trained for 100 epochs, and the
validation loss is monitored to prevent overfitting.

• �Model evaluation: We evaluated our trained model’s accuracy, and we obtained good results after
iterations.

5.2  Metrics

To evaluate OPTIMA, we use the following metrics:

• �OPTIMA Accuracy. We compare the results returned by OPTIMA against the results returned by
Squerall.

• �Classification. We use two metrics to evaluate the OPTIMA classification model: Cross-entropy loss
and Accuracy function. Assuming the real result is denoted as r = ri, the predicted result is denoted as
p = pi, and the correctly predicted results as tp = tpi, where 1 ≤ i ≤ N, we compute these metrics as
follows: CE(r, p) = Σri � log(pi), Acc(tp, p) = Σtpi  / Σpi

• �Memory and CPU consumption as described in [36]. Specifically, we measure how much the memory
and CPU are active during the computation.

• �Execution Time. We measure the time OPTIMA takes from query submission to the delivery of the
answer. The time is measured using the absolute wall-clock system time reported by the Scala time()
function.

5.3  Method

We consider two studies:

• �In the first study, we compare OPTIMA’s results with SPARK-based Squerall’s results. Our comprehensive
literature review did not reveal any single work except Squerall that is available and that supports most
data sources. Squerall uses two big data engines, Presto and SPARK: Presto-based, where the virtual
model of presto engine (which cannot be controlled by users) is used for query processing, and SPARK-
based, where DataFrames are created as a virtual data model. To make the results comparable, we
choose SPARK-based Squerall and extend it to support Neo4j. We assess the accuracy of OPTIMA in
terms of (1) results (accuracy), (2) time, and (3) CPU and memory usage compared to SPARK-based
Squerall. We should note that comparing the overall execution time of OPTIMA against an original
system, e.g., relational for a given query, is impossible because we are querying various heterogeneous
formats and models.

• �In the second study, we inspect OPTIMA’s main components: machine learning, data wrappers, and
query execution. We observed the behavior of query execution for GRAPH and TABULAR in terms of
time. For the data wrapper, we investigate the time taken for the transformation process from data
sources to GRAPH or TABULAR. As for the machine learning component, we compare our model with
the LSTM model in terms of accuracy and time. The LSTM model takes as input the encoded features
vectors without any correlation and outputs the data model.

520	 Data Intelligence

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

5.4  Experiment 1: OPTIMA vs SPARK-based Squerall

In this experiment, we load BSBM* as described above to obtain the results from OPTIMA and SPARK-
based Squerall. Then, we run 5150 SPARQL queries and compare the results.

• �Validation of Results and Overall Execution Time: this comparison allows us to confirm the
correctness of the results returned by OPTIMA. Table 3a shows the results of OPTIMA and SPARK-
based Squerall of a complex SPARQL query Q21. The results are the same for both systems, which
confirms that OPTIMA is able to support and join large data coming from different datasets.
Table 4 illustrates the execution time returned by both systems. As can be observed, OPTIMA excels
Squerall for queries that involve multiple joins. The time difference ranges from 0 to 80000 milliseconds
(ms). This difference is due to the predicted virtual data model e.g., Q19, Q20, in which deep learning
predicted that the Virtual model of type GRAPH is optimal. We also observe a small difference in the
execution time (ranging from 0 to 30 ms) in favour of Squerall compared to OPTIMA for queries that
involve multiple projections e.g., Q7, Q10. This is explained by the fact that the optimal virtual model
is identical to Squerall’s, and both Squerall and OPTIMA used the same APIs to call data (wrapper);
however, the data model prediction time added to OPTIMA makes it slightly slower than Squerall.
Furthermore, the average execution time of Squerall is greater than 4000 ms compared to the average
execution time of OPTIMA 2400 ms as shown in table 3b. These results illustrate the benefits of
OPTIMA over existing systems; thus, RQ1 and RQ5 are answered.

• �Data Model Execution Time: As shown in Table 5, the analysis of experimental results indicates that
GRAPH is faster than TABULAR in most cases, except for queries like Q8 and Q10. It has comparable
to slightly lower performance in Q16. This confirms that the optimal model is very important in
reducing the execution time of queries. The total execution time ranges from 50 to 90000 ms, with
90% of all cases being about or below 3000 ms. OPTIMA virtual data model of type GRAPH is faster
in queries that involve joins (ranging from 50 to 40000 ms), while the TABULAR model outperforms
the GRAPH model in queries involving more projections (ranging from 200 to 90000 ms).
This is explained by the fact that the GRAPH is designed to store connections between data. Therefore,
queries do not scan the entire graph to find the nodes that meet the search criteria. It looks only at
nodes that are directly connected to other nodes, while SQL-like methods used by the TABULAR model
require expensive join operations because they traverse all data to find the data that meets the search
criteria. On the other hand, the TABULAR model is faster when handling projections because the data
structure is already known, and data can be easily accessed by column names. Conversely, the GRAPH
model does not have a predefined structure for the data, and each node attribute has to be examined
individually during the projection query.
The number of joins has a decisive impact on query performance; it should be taken into consideration
with other factors, e.g., size of involved data, presence of filters, and selected variables. For example,
Q2 joins only two data sources, Product and Review (1254 ms) but has comparable performance with
Q1 (1291 ms), which joins four entities (Product, Offer, Review, and Producer). This may be due to
filtering in Q1 (16 filters), significantly reducing intermediate results to join. Q3 involves four data
sources, yet it is among the fastest queries. This is because it involves the small entities Person and

Data Intelligence	 521

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

Ta
bl

e
4.

 T
im

e
in

 m
s

pe
r

Q
ue

ry
 o

f O
PT

IM
A

 &
 S

qu
er

al
l.

Sy
st

em
Q

1
Q

2
Q

3
Q

4
Q

5
Q

6
Q

7
Q

8
Q

9
Q

10
Q

11
Q

12
Q

13
Q

14
Q

15
Q

16
Q

17
Q

18
Q

19
Q

20

O
PT

IM
A

12
91

12
54

 7
30

10
29

9
10

19
9

15
53

71
04

84
42

10
09

4
46

94
25

75
 2

33
46

73
44

87
23

97
28

81
16

98
46

07
28

04
56

48
Sq

ue
ra

ll
40

98
25

19
30

91
10

28
3

10
19

1
79

84
70

89
84

27
10

08
8

46
84

25
61

14
00

46
44

44
69

38
85

28
75

33
14

87
42

90
59

74
07

Ti
m

e
D

iff
er

en
ce

28
07

12
65

23
61

  
1

6
  

8

64
31

 
15

 
15

  

6
 

10
 

14
11

67
 

29
 

18
14

88
  

6
16

16
41

35
62

55
17

59

Ta
bl

e
5.

 T
im

e
in

 m
s

pe
r

Q
ue

ry
 o

f P
re

di
ct

io
n,

 G
R

A
PH

 &
 T

A
B

U
LA

R
.

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Pr
ed

ic
tio

n
Ti

m
e

    

3
    

3

    

4
    

6

   

4
   

5

   

5
   

6

    

2
  

4

  
5

      

1
    

5

   

5
   

4
   

3

   

2
  

4
   

4

   

4

G
R

A
PH

11
43

11
61

12
39

 1
24

3
  

30
6

31
81

71
68

12
23

7
 4

97
7

16
68

1
12

11
35

67
 4

82
12

85
 7

66
28

83
66

39
13

66
33

70
17

23
TA

B
U

LA
R

40
98

25
19

30
91

10
28

3
10

19
1

79
84

70
89

 8
42

7
10

08
8

 4
68

4
25

61
14

00
46

44
44

69
38

85
28

75
33

14
87

42
90

59
74

07

Ta
bl

e
3.

 O
PT

IM
A

 P
er

fo
rm

an
ce

.

Q
ue

ry
   

 O
PT

IM
A

   

 S

qu
er

al
l

Sy
st

em
Ti

m
e

(m
s)

M
et

ri
cs

O
PT

IM
A

Sq
ue

ra
ll

SE
LE

C
T

D
IS

TI
N

C
T

?p
ro

-
du

ct
La

be
l ?

pr
od

uc
er

La
be

l
[’

B
ar

 M
ix

 L
em

on
’,

’C

ok
e

C
la

ss
ic

 3
55

 M
l’]

[’
B

ar
 M

ix
 L

em
on

’,
’C

ok
e

C
la

ss
ic

 3
55

 M
l’]

O
PT

IM
A

Sq
ue

ra
ll

24
00

42
00

C
PU

 a
ve

ra
ge

(%

)
0.

21
0.

20

W
H

ER
E

{p
ro

du
ct

 r
df

s:
la

be
l

?p
ro

du
ct

La
be

l.
(b

) A
vg

 T
im

e
M

ax
 m

em
or

y
(G

B
)

1.
0

0.
97

?p
ro

du
ce

r
rd

fs
:la

be
l

?p
ro

du
ce

rL
ab

el
.

?p
ro

du
ct

 r
df

:ty
pe

bs

bm
:P

ro
du

ct
.

?p
ro

du
ct

 b
sb

m
:p

ro
du

ce
r

?p
ro

du
ce

r.}

(c
) R

es
ou

rc
e

C
on

su
m

pt
io

n

(a
) Q

ue
ry

 R
es

ul
t R

et
ur

ne
d

by
 O

PT
IM

A
 &

 S
qu

er
al

l		

522	 Data Intelligence

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

Producer, which is another reason to reduce intermediate results to join. With five data sources to join,
Q4 is among the most expensive queries (10299 ms). This can be attributed to the fact that the filter
on Product is selective (?language = ”en”), which results in large intermediate results to join, in contrast
to Q6 (?price < 8000). Although the four-source join Q7 and Q8 involve the small entity Producer,
they are the most expensive queries that execute over the GRAPH model; this can be attributed to a
large number of projections (38 attributes). Thus, we answer RQ3 and RQ6 and suggest that operations
can affect query execution time.

• �Resource Consumption: finally, we record the Resource Consumption (i.e., Memory and CPU) taken
by OPTIMA and SPARK-based Squerall. The results reported in Table 3c show that the CPU is not fully
used by OPTIMA and SPARK-based Squerall (around 0.21% was used). This means that the complexity
of queries does not impact CPU consumption. As for the total memory reserved, OPTIMA consumed
around 1GB over 8GB per node, while SPARK-based Squerall used at most 1GB. Having the same
CPU and memory could be explained by the fact that both are using the same query engine — SPARK,
and the distribution of CPU between the nodes for loading and transformation. This answers RQ7.

5.5  Experiment 2: Performance of OPTIMA’s Predictive Model

In this study, we evaluate the main components of OPTIMA.

• �Deep Learning Accuracy. We evaluated our model with LSTM and Regression models to assess our
encoding techniques and prediction model. We used 5150 queries; 80% for training and 20% for
validation. We trained all models on the same dataset and computed the accuracy and Cross-entropy
loss function. Results in Table 6a show that our tree-structure-based method outperforms the LSTM
and Regression models with an average accuracy of 0.831 for our model against 0.708 and 0.717 for
LSTM and Regression, respectively. The cross-entropy loss is equal to 0.00018 for our model compared
to 1.92027 and 6.51098 for LSTM and Regression, respectively. This is explained by the fact that both
models, LSTM and Regression, rely on the independent assumption among different operations and
attributes, while our model achieves the best performance as it captures more correlations. Thus
answering RQ4.

• �Deep learning reduces the overall execution time. To check if deep learning is reducing the overall
execution time of OPTIMA by selecting the optimal virtual data model. We illustrate first the time
taken by OPTIMA’s components: machine learning algorithm, query execution over GRAPH model,
and query execution over TABULAR against SPARK-based Squerall. We run OPTIMA and Squerall over
1030 queries. Results are shown in table 6b. The average execution time of the machine learning
component is a very short 12 ms, while the average time for GRAPH is 1320 ms and TABULAR is
2862 ms. Results show that for most queries, GRAPH is faster than TABULAR, even with prediction
time. In summary, only 14% of the queries were initially faster for OPTIMA (using GRAPH as a virtual
model) compared to Squerall and become in the later favour. This is explained by the fact that for those
queries, there is a slight difference in execution time using GRAPH compared to Squerall. This answers
RQ2.

Data Intelligence	 523

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

Table 6.  Deep Learning Performance.

Cost Loss Accuracy Condition Avg. time (ms)

Regression model 1.92027 0.708 Machine Learning    12
LSTM 6.51098 0.717 Only GRAPH 1320
Our Model 0.00018 0.831 Only TABULAR 2862

	 (a) Loss & Accuracy of Deep Learning Models	 (b) Time of Deep Learning, GRAPH & TABULAR

5.5.1  Data wrapper Time

To answers RQ8, we evaluate, in this study, the time needed to load the data from data sources to the
virtual data model of type GRAPH or TABULAR (see Table 7). Since the transformation process is different,
we expect different behavior from the wrappers. In the table, we illustrate the time needed by each wrapper
with the following observations:

Table 7.  Time (ms) of Data transformation to GRAPH & TABULAR.

Model Neo4j JDBC CSV Cassandra MongoDB Loading

GRAPH   138 954 196 7695 188 4.327
TABULAR 3275 199 255 5319 330 7.141

• �Neo4j connector loads 50000 nodes from Neo4j within 138 ms into GRAPH, compared to 3275 ms
in TABULAR. This is explained by the fact that the graph property used by Neo4j has the same exact
structure as the GRAPH model.

• �CSV connector loads 50000 rows within 196 ms from CSV files into GRAPH, compared to 255 ms in
TABULAR, even though CSV files save data into tables. This can be explained by the fact that GRAPH
virtual model is a schema-less model that loads data directly without the need to preserve data
structure, while TABULAR takes time to build the data schema.

• �JDBC connector loads 50000 rows from MySQL database within 954 ms into GRAPH, compared to
199 ms in TABULAR. This can be explained by the fact that MySQL uses a relational model, which
has the same data structure as the Virtual TABULAR model.

• �MongoDB connector loads 50000 rows from MongoDB within 188 ms into GRAPH, compared to 330
ms in TABULAR. This can be explained by the fact that MongoDB is document-based i.e., it is schema-
less, the same as the GRAPH Virtual model, unlike the TABULAR model, which needs to build a data
schema.

• �Cassandra connector loads 50000 rows within 7695 ms into GRAPH, compared to 5319 ms in
TABULAR. This can be explained by the fact that Cassandra uses a columnar data model, which is
more close to the TABULAR model even though it is a NoSQL database.

524	 Data Intelligence

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

6.  RELATED WORK

Our literature review reveals two categories addressing data virtualization. These two categories are
namely ”ontology-based data access” and ”non-ontology-based data access” [12]. Non-ontology-based
data access approaches mostly use SQL-like as query language and implement a virtual relational model
[37,38], defining views of relevant data from sources having a relational model. Those views are generated
based on mapping assertions that associate the general relational schema with the data source schemata.
The shortcomings of these approaches are that the schema modifications and extensions are very rigid due
to mappings and may depend on complex constraints. Furthermore, these approaches use Self-Contained
Query [24] where users cannot control the structure of the virtual data model. OBDA [39] approaches use
SPARQL as a unified access language and detect relevant data from sources to be joined through ontologies
and standardized mappings. This provides flexibility in modifying and extending the ontology and mappings
with semantic differences found across the data schemata.

Exiting Systems implemented OBDA over relational databases, e.g., Ontop [40], Stardog (http://www.
stardog.com), which are using virtual knowledge graphs. These solutions are not designed to query large-
scale data sources, e.g., NoSQL stores or HDFS. Our study’s scope focuses on works that query large-scale
data sources using OBDA. Optique [10] is an OBDA platform that accesses both static and streaming data.
It implements a relational model (implicitly a TABULAR) as a virtual model while querying data sources
such as SQL databases and other sources e.g., CSV, and XML. There was no clear description of how
Optique accesses NoSQL stores and distributed file systems (e.g., HDFS). Ontario [11] focuses on query
rewriting, planning, and federation, with a strong stress on RDF data as input. Query plans are built and
optimized based on a set of heuristics. The virtual model used by Ontario is the GRAPH model (explicitly
an RDF). Squerall [12], recent and close work to OPTIMA leverages Big Data engines SPARK and Presto
to query on-the-fly heterogeneous large data sources. The virtual data model imposed by Presto is TABULAR
and does not offer users to control it, while SPARK can offer control over the virtual data model, Squerall
uses DataFrame as a virtual model which is TABULAR. However, the decision behind the virtual data model
implemented by all these systems is rather based on use and flexibility and not on solid evidence to improve
query processing. There is no work that (1) implements the different optimal virtual models, and (2) selects
the optimal one based on query behavior. For machine learning, some works [14,15,16] addressed the cost
estimation of SPARQL queries to optimize query execution plan e.g., performance prediction, however, all
these approaches are designed for a single query on one single data source.

7.  CONCLUSION

We presented a new approach that reduces the time execution of querying large heterogeneous data by
predicting the optimal virtual data model based on query behavior OPTIMA — a realization of our approach,
implements two virtual models, GRAPH and TABULAR within the query engine SPARK (Graphx and
Apache-Spark). The effective deep learning model built on top of OPTIMA’s architecture estimates the cost

Data Intelligence	 525

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

of the query against both virtual models to select the optimal one for the given query. It extracts significant
features such as the query plan and query operation and returns the optimal virtual data model. Once
selected, OPTIMA gets a unified view of the data from multiple data sources on-the-fly by decomposing
the input SPARQL query into star-shaped queries. Next, it uses ontology-based mappings to detect relevant
entities from original sources. Those relevant entities are then loaded by the wrappers into the predicted
virtual model, GRAPH or TABULAR to be joined. In the case of GRAPH, a set of vertex and edges are
joined while for TABULAR, a set of tables is combined. Finally, the results are returned by applying the
operation on the FINAL joined GRAPH or TABULAR. Extensive experiments showed a reduction in query
execution time of over 40% for the TABULAR model and over 30% for the GRAPH model.

A.  APPENDIX: TRAINING DATA

In this appendix, we present an example of the data collection and preprocessing of the training model.

Listing A.1: SPARQL query

SELECT DISTINCT ?vendor ?country ?producerPublisher
WHERE{

?producer edm:country ?country.
?producer bsbm:publisher ?roducerPublisher.
?offer bsbm:producer ?producer.
?offer bsbm:vendor ?vendor.
?offer rdf:type schema:Offer.
FILTER (?country = “DE”).
FILTER (?producerPublisher = “1”).
FILTER (?vendor >= 50).

}

Listing A.2: Feature extraction from SPARQL queryA.1

A. [DISTINCT,B,H,I,J,K]
B. [PROJECT,?vendor,?country, producerPublisher]
C. [BGP,D,E]
D. [TRIPLE,?producer,?country]
E. [TRIPLE,?producer,?producerPublisher]
F. [BGP,G]
G. [TRIPLE,?offer,?vendor]
H. [JOIN,C,F]
I. [FILTER,”=”,?country,”DE”]
J. [FILTER,”=”,?producerPublisher,”1”]
K. [FILTER,”>=”,?vendor,50]

526	 Data Intelligence

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

Listing A.3: Tree Represenation of SPARQl QueryA.1

{
  “Plan”:
  {
   “DISTINCT”:””
   ,”PROJECT”:
   [
    “?vendor”
    ,”?country”
    ,”?producerPublisher”
  ]
   ,”JOIN”:
   {
    “TYPE” : “left”
    ,”BGP” :
    {
     “TABLE” : [“producer”]
     ,”TRIPLE” : [“?producer”,”?country”]
     ,”TRIPLE” : [“?producer”,”?producerPublisher”]
    }
    ,”BGP” :
    {
     “TABLE” : [“offer”]
     ,”TRIPLE” : [“?offer”,”?vendor”]
    }
   }
  ,”FILTER”:
   {
    “op_type”: “Compare”
    ,”operator”: “=”
    ,”left_value”: “?country”
    ,”right_value”: “DE”
   }
   ,”FILTER”:
   {
    “op_type”: “Compare”
    ,”operator”: “=”
    ,”left_value”: “?producerPublisher”
    ,”right_value”: “1”
   }
   ,”FILTER”:
   {
    “op_type”: “Compare”
    ,”operator”: “>=”
    ,”left_value”: “?vendor”
    ,”right_value”: “50”
   }
  }
}

Data Intelligence	 527

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

ACKNOWLEDGMENTS

The authors acknowledge the financial support of Fraunhofer Cluster of Excellence (CCIT) and Dr.
Mohamed Najib Mami for the valuable comments that helped to implement our work.

AUTHOR CONTRIBUTION

This paper is the result of a fruitful collaboration among all the authors, who made significant contributions
to its development. The core idea of querying data on the fly and the model was proposed by A. Khiat. C.
Bachir Belmehdi shaped further the idea and took charge of implementing the proposed solution, designing
the experiment, and analyzing the results. The initial draft of the paper was jointly written by C. Bachir
Belmehdi and A. Khiat, wherein they incorporated their collective ideas and findings. N. Keskes, on the
other hand, played a pivotal role by suggesting the research topic and offering valuable feedback throughout
the writing process.

REFERENCES

[1]	 Age, D.: 2025: The digitization of the world–from edge to core. Farmingham, MA. (2020)
[2]	 Snijders, C., Matzat, U., Reips, U.-D.: ”big data”: big gaps of knowledge in the field of internet science.

International journal of internet science 7(1), 1–5 (2012)
[3]	 Gandomi, A., Haider, M.: Beyond the hype: Big data concepts, methods, and analytics. International journal

of information management 35(2), 137–144 (2015)
[4]	 Cuzzocrea, A., Bellatreche, L., Song, I.: Data warehousing and OLAP over big data: current challenges and

future research directions. In: Proceedings of the sixteenth international workshop on Data warehousing and
OLAP, DOLAP 2013, San Francisco, CA, USA, October 28, 2013, pp. 67–70. ACM (2013)

[5]	 Mami, M. N.: Strategies for a semantified uniform access to large and heterogeneous data sources. Ph.D.
dissertation, University of Bonn, Germany (2021)

[6]	 Rouse, M.: What is data virtualization (2011)
[7]	 Miloslavskaya, N., Tolstoy, A.: Big data, fast data and data lake concepts. Procedia Computer Science 88,

300–305 (2016)
[8]	 Poggi, A., Lembo, D., Calvanese, D., et al.: Linking data to ontologies. Journal on Data Semantics X. Springer

(2008)
[9]	 Dehainsala, H., Pierra, G., Bellatreche, L.: Ontodb: An ontology-based database for data intensive applica-

tions. In: Advances in Databases: Concepts, Systems and Applications, 12th International Conference on
Database Systems for Advanced Applications, pp. 497–508. Springer, DASFAA Thailand (2007)

[10]	 Giese, M., Soylu, A., Vega-Gorgojo, G., et al.: Optique: Zooming in on big data. Computer 48(3) (2015)
[11]	 Endris, K. M., Rohde, P. D., Vidal, M.-E., et al.: Ontario: Federated query processing against a semantic data

lake. In: International Conference on Database and Expert Systems Applications. pp. 379–395. Springer,
(2019)

[12]	 Mami, M. N., Graux, D., Scerri, S., et al.: Squerall: Virtual ontology-based access to heterogeneous and large
data sources. Proceedings of 18th International Semantic Web Conference (2019)

[13]	 Al-Amin, S. T., Ordonez, C., Bellatreche, L.: Big data analytics: Exploring graphs with optimized SQL queries.
In: Database and Expert Systems Applications — DEXA 2018 International Workshops, BDMICS, BIOKDD,
and TIR, Regensburg, Germany, September 3–6, 2018, Proceedings. pp. 88–100. Springer (2018)

528	 Data Intelligence

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

[14]	 Zhang, W. E., Sheng, Q. Z., Qin, Y., et al.: Learning-based SPARQL query performance modeling and predic-
tion. World Wide Web 21(4), 1015–1035 (2018)

[15]	 Hasan R., Gandon, F.: A machine learning approach to sparql query performance prediction. In: International
Joint Conferences on Web Intelligence and Intelligent Agent Technologies, 266–273 (2014)

[16]	 Singh, R.: Inductive learning-based sparql query optimization. Data Science and Intelligent Applications,
121–135 (2021)

[17]	 Zouaghi, I., Mesmoudi, A., Galicia, J., et al.: Query optimization for large scale clustered RDF data. In: Pro-
ceedings of the 22nd International Workshop on Design, Optimization, Languages and Analytical Processing
of Big Data co-located with EDBT/ICDT 2020 Joint Conference, DOLAP@EDBT/ICDT 2020, Denmark, pp.
56–65 (2020)

[18]	 Gallinucci, E., Golfarelli, M., Rizzi, S.: Schema profiling of document-oriented databases. Information
Systems 75 (2018)

[19]	 Senk, A., Valenta, M., Benn, W.: Distributed evaluation of xpath axes queries over large XML documents
stored in mapreduce clusters. In: 25th International Workshop on Database and Expert Systems Applications,
pp. 253–257. Germany (2014)

[20]	 Sequeda, J. F., Arenas, M., Miranker, D. P.: On directly mapping relational databases to rdf and owl. In:
Proceedings of the 21st international conference on World Wide Web, pp. 649–658 (2012)

[21]	 Rodriguez, M. A., Neubauer, P.: The graph traversal pattern. In: Sakr, S., Pardede, E. (eds.) Graph Data
Management: Techniques and Applications, pp. 29–46. IGI Global (2011)

[22]	 Santos, M. Y., Costa, C.: Data warehousing in big data: From multidimensional to tabular data models.
In: Proceedings of the Ninth International C* Conference on Computer Science & Software Engineering,
Portugal, 2016, pp. 51–60. ACM (2016)

[23]	 Vidal, M., Ruckhaus, E., Lampo, T., et al.: Efficiently joining group patterns in SPARQL queries, 228–242
(2010)

[24]	 Mami, M. N., Graux, D., Scerri, S., et al.: Uniform access to multiform data lakes using semantic technolo-
gies. In: Proceedings of the 21st International Conference iiWAS2019, pp. 313–322. ACM (2019)

[25]	 Gonzalez, J. E., Xin, R. S., Dave, A., et al.: GraphX : Graph processing in a distributed dataflow framework.
In: 11th USENIX symposium on operating systems design and implementation (OSDI 14), pp. 599–613
(2014)

[26]	 Salloum, S., Dautov, R., Chen, X., et al.: Big data analytics on apache spark. International Journal of Data
Science and Analytics 1(3), 145–164 (2016)

[27]	 Crankshaw, D., Dave, A., Xin, R. S., et al.: The graphx graph processing system. UC Berkeley AMPLab.
[28]	 Vidal, M.-E., Ruckhaus, E., Lampo, T., et al.: Efficiently joining group patterns in sparql queries. In: Extended

Semantic Web Conference, pp. 228–242. Springer (2010)
[29]	 Henderson, M., Lawrence, R.: Are multi-way joins actually useful? ICEIS (1), 13–22 (2013)
[30]	 Elghandour, I., Kara, A., Olteanu, D., et al.: Incremental techniques for large-scale dynamic query processing.

In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp.
2297– 2298 (2018)

[31]	 He, K., Zhang, X., Ren, S., et al.: Identity mappings in deep residual networks. In: European conference on
computer vision, pp. 630–645. Springer (2016)

[32]	 Yang, Y., Morillo, I. G., Hospedales, T. M.: Deep neural decision trees. CoRR, Vol. abs/1806.06988 (2018)
[33]	 Sun, J., Li, G.: An end-to-end learning-based cost estimator. Proc. VLDB Endow. 13(3), 307–319 (2019)
[34]	 Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997)
[35]	 Bizer, C., Schultz, A.: The berlin SPARQL benchmark. International Journal on Semantic Web and Informa-

tion Systems (IJSWIS) 5(2), 1–24 (2009)

Data Intelligence	 529

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

[36]	 Graux, D., Jachiet, L., Geneves, P., et al.: A multi-criteria experimental ranking of distributed sparql evalua-
tors. In: 2018 IEEE International Conference on Big Data. IEEE, 693–702 (2018)

[37]	 van der Lans, R. F.: Architecting the multi-purpose data lake with data virtualization. Denodo whitepapers
(2018)

[38]	 Chatziantoniou, D., Kantere, V.: Just-in-time modeling with datamingler. In: Proceedings of the ER Demos
and Posters 2021 co-located with 40th International Conference on Conceptual Modeling (ER 2021), Canada,
Vol. 2958, pp. 43–48. CEUR-WS.org (2021)

[39]	 Calvanese, D., Giacomo, G. D., Lembo, D., et al.: Ontologies and databases: The dl-lite approach. In:
Reasoning Web International Summer School, pp. 255–356. Springer (2009)

[40]	 Calvanese, D., Cogrel, B., Komla-Ebri, S., et al.: Ontop: Answering sparql queries over relational databases.
Semantic Web 8(3), 471–487 (2017)

530	 Data Intelligence

Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data

AUTHOR BIOGRAPHY

Chahrazed BACHIR-BELMEHDI received the BSc degree in Information
System, in 2017 and the MSc degree in Information Systems engineering, in
2019 from the Djillali Liabes University, Algeria. She is working toward the
doctoral degree in LabRI laboratory at ESI-SBA, Algeria. Her research interests
include Big Data Analysis, Machine Learning and Software Engineering.

Abderrahmane Khiat holds a PhD in Knowledge Engineering from the
University of Oran1, Algeria (2017) and currently works as a Senior Researcher
at Fraunhofer IAIS, Germany. He ranked fifth among the top young inventors
in the Middle East and Africa in the ”Stars of Science-2021”. He obtained the
price of The Best Paper Awards for Young Scientists Researchers in 2014. His
research includes Knowledge Graphs, Big Data Integration and Data Mining.

Nabil Keskes has completed Prof (2020), M.Sc.(2006), Ph.D.(2012). Currently
he is a full professor in high School of Computer Science in Algeria. His
research interests are geared towards web service selection and pragmatic
web.

