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Magnetic field topology frozen in ideal magnetohydrodynzsmiMHD) and its breakage in near-ideal MHD are reviewed io tw
parts, clarifying and expanding basic concepts. The firdtgiaes a physically complete description of the frozendfilpology
derived from magnetic flux conservation as the fundamentagoty, treating four conceptually related topics: Eialerand La-
grangian descriptions of three dimensional (3D) MHD, Chiasdkhar-Kendall and Euler-potential field represematicnagnetic
helicity, and inviscid vortex dynamics as a fluid system iggbal contrast to ideal MHD. A corollary of these develomitseclar-
ifies the challenge of achieving a high degree of the froretnindition in numerical MHD. The second part treats fielpelogy
breakage centered around the Parker Magnetostatic Themrengeneral incompatibility of a continuous magnetic fielthwhe
dual demand of force-free equilibrium and an arbitrarilggaribed, 3D field topology. Preserving field topology asabal con-
straint readily results in formation of tangential magoeliscontinuities, or, equivalently, electric currenests of zero thickness.
A similar incompatibility is present in the steady forcestimal balance of a heated radiating fluid subject to an awisiatthermal
flux conducted strictly along its frozen-in magnetic fieldtire lowg limit. In a weakly resistive fluid the thinning of current
sheets by these general incompatibilities inevitably ltesn sheet dissipation, resistive heating and topoldgibanges in the
field notwithstanding the small resistivity. Strong Fanadtzduction drives but also macroscopically limits this roof energy
dissipation, trapping or storing free energy in self-oigad ideal-MHD structures. This property of MHD turbulergaptured by
the Taylor hypothesis is reviewed in relation to the Suniona, calling for a basic quantitative description of theadkdown of
flux conservation in the low-resistivity limit. A cylindréd initial-boundary value problem provides specificity retgeneral MHD
ideas presented.
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1 Introduction in Newtonian MHD have clarified and expanded our under-
standing of this singular limit. We review these developtaen

Magnetohydrodynamics (MHD) describes plasmas as arpased on the dissipative MHD equations for a single fluid:
electrical fluid conductor. The ideal fluid conductor is sin-

gular as the limiting case of highly conducting fluids. Recen p
investigations of the topological properties of magne#idf

ov 1
E+(V~V)V} = E(VX B)xB-Vp
+ 1V + vV (V - V), (1)
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9p +V-(ov) =0, 3) A highly conducting _fluid wit_h a wealg # 0 naturally

0 also conserves magnetic flux with the same tendency to form
describing a magnetic field in a fluid of densityo and pres- ~ TDs but only on length scales much larger than a lower
sure p moving with velocityv. Of the great complexity of  bound fixed by;. A steepening field gradient characterized
particle-particle and particle-field processes in a plaflra by some monotonically-decreasing small sdatventually
5], we retain only viscosity and Ohmic resistivity descdbe and inevitably undergoes resistive dissipation atfaantly
in their simplest forms by the constant ¢eents 1, v2, ). short difusion time-scalé; = = relevant to dynamics. Field
In the CGS units used in this paper= %, wherecis the  topology ceases to be preserved on the large scale in conse-
speed of light andr is a constant Ohmic conductivity, and quence of resistive magnetic reconnection on the smalkscal
properties will be discussed equivalently in terms of the-co [5,8,25-28]. Thus field steepening by high conductivityglea
ductivity or resistivity. For brevity, we refer t8 simply as  to resistive change in field topology and the highly conduct-
the field. The solenoidal condition- B = O is implied by the  ing fluid is distinct from the; = 0 ideal fluid. If a gas is hot

resistive induction equation (2). enough to be fully ionized, such a highly conducting fluid
The electric fieldE in the laboratory frame is a derived may sustain its high temperature via the spontaneous forma-
guantity in MHD, given by Ohm'’s law tion and resistive dissipation of CSs, an attractive exgian
1 o for the million-degree hot coronae of the Sun and billions of
E+ EVX B= cV xB, “) solar-like stars in our Galaxy [7,8,29].

where on the left side is the electric field in the rest frame 1hen = 0 ideal fluid being a singular limit corresponds
of an infinitesimal parcel of fluid. Charge separation and thet© the removal from Faraday’s law of induction equation (2)
electric force are negligible in the sub-relativistic mortien of its highest-order spatial fierential-operator that describes
equation (1) whereas the field exerts a Lorentz force on thdhe resistive diusion of the field. In classical hydrodynam-
fluid. The inductive &ect of the flowing conducting fluid to- ¢S, the regime of turbulent phenomena corresponds to the
gether with Ohmic dissipation influence the field under Fara-CO&icients of viscosity ¥, v2) being stficiently small by
day’s law of induction equation (2). Introducing the temper SOme measure [30]. The complete removal of ttéugion
atureT of the fluid by an equation of state, the system of OPerator orv from momentum equation (1) with{,v2) = 0
equations can then be closed by mass conservation equatiéﬁ similarly a singular limit. Thus we also expect turbulent
(3) plus an energy-transport equation, yet to be specified, tfield behaviors when is suficiently small. Recent theoreti-
determine the variablep(p, T, Vv, B). cal studies [16,31] have shown that the degree of complexity
Our interest is focused on the fluid and field behaviors inin the time-dependent MHD solutions may increase without
the regime of high conductivity, i.e; — oo, or, equivalently, bound, by some suitable measure,jas> 0. Our review
the regime of low resistivityy — 0. To that end we carry avoids such formidable fundamental problems but will in its
out two tasks in our review, to construct a physically com- COurse encounter this turbulent nature of high-condugtivi
plete description of the field in ap= 0 ideal fluid conductor In sect. 2 a physically complete description of the
and, based on the description as a reference, to understafigld frozen in an ideal fluid is constructed, treating in
the nonlinear couplings in the regime— 0 among Faraday @ logical sequence magnetic flux conservation as a fun-

induction, the dynamical forces and energy transport. damental property, Lagrangian and Eulerian descriptions
The ideal conductor is described by [32,33], Chandrasekhar-Kendall [33—35] and Euler-paéént
5B [32,33,36] field representations, magnetic helicity [33;3

5t =V x(vxB), () 41]and, inviscid vortex dynamics in an incompressible neu-

tral fluid in physical contrast to ideal MHD. In sect. 3

an overview is given on the breaking of field topologies in
E = —}vx B, (6) a weakly resistive fluid via spontaneous CSs, treating the

c Parker Magnetostatic Theorem [8,10,17,18], the Taylor hy-

due entirely to Faraday induction. The conservation of thepothesis [35,42—-46] and and its generalization, and a CS-

magnetic flux acrossveryfluid surface in an MHD evolu-  producing coupling between MHD and anisotropic thermal

tion is the defining property of the ideal induction equation conduction [19]. The solar corona [13,14,47-50] is briefly

Derived from it is the well known property that the evolv- described to provide physical context and motivation fer th

ing field preserves its topology. The field-fluid interaction developments reviewed. The review takes the approach of

at each point in space subject to this global topologicat con first clarifying a physical idea and then seeking matherahtic

straint can readily produce tangential discontinuitieBY  rigor whenever possible in its description. Sect. 4 gives a

in the field [6—24]. TDs contain unbounded but integrable summary and discussion.

electrical current densities, i.e., current sheets (CEgg®

thickness, and we shall discuss physical issues in terms 0 Frozen field topologies in ideal fluids

TDs or CSs interchangeably. Such current singularities are

physically admissible in the complete absence of resfgtivi  Rewrite ideal induction equation (5) for a perfect fluid ie th

settingn = 0 in eq. (2), with the electric field given by
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form each fluid particle is located at a given time. This descrip-
oB +(v-V)B=(B-V)V—(V-V)B @) tion is traditionally the preferred one because of its irgi¢

ot ' simplicity, especially in numerical computations. The La-

The left side is the rate of change®bbserved by a fluid par- ~ grangian description identifies specific fluid parcels todde f
ticle moving with velocity. The change is due to a stretching lowed in the course of their motions and mutual interactions
and compression of the field described by the two terms onf he fluid parcels do not have to be point like. The nature
the right side. The induction equation describes the censerof an investigation may conceivably motivate adopting a La-
vation of magnetic flux: grangian description that partitions a fluid into composent
to be followed during an evolution. Such a description is put
dF _ Ef B.dS— Ef A.ds=0 (®) to good use in this section, recognizing the following essen

dat  dt Jyp (1) ' tial point of the review. Flux conservation is the fundanaént
physical property from which aly = 0 field properties are

whereF is the total magnetic flux across aftyid surfaceX,  derived and this conservation law is a Lagrangian statement
with oriented area elemengdevolving in the velocity field

v. The above alternative statement of flux conservation ex- S
presse§ as a line integral of the vector potentialalongthe 2.1 A cylindrical initial-boundary value problem

closed boundary of %, with directed path elementdwhere The following initial-boundary value problem provides ghy

B=VsxA (9) ical specificity in the general ideas to be discussed. Censid
’ a field B in a perfect fluid filling the upright cylindrical do-
Unless otherwise stated we treat simply-connected closef@inV : R < Ry, |2 < 2, of length Z, and radiusRy, using
potential A is not unique up to a free gaug® so every ary conditions:
magnetic property expressed in termsfofust be rendered

gauge-independent. That is, the property must be invariant R=Ro. Br=0, (11)
under the transformatioA — A+ VG for anyG which is the z==7, B;=b.(Ry), (12)
case forf.

Magnetic fluxF is not a diferential property at a point whereb. (R, ¢) are prescribed. Since the field is tangential at
in space but an integral over a 2D surface. A field line of athe cylindrical side oV, the boundary-flux distributions at
given fieldB described by the ordinaryfiiérential equations z = +7 are subject to the solenoidal condition:

(ODEs):
dx_dy dz
Bx B, B,
in Cartesian coordinates,(y, z) carries no flux. Itis a com-
mon notion that a single field line represents a thin tube of

flux with the field line passing through the small cross-gecti f‘”o""'lng for a fg”ls;an:v”etthax'ar'] ﬂILIRO a";”QVa ?hfdre are
of the tube. Let us put aside this notion until we return to it Wo classes ot fields IV, the whofly contained neids wi

in sect. 2.3. The conservation law &hover any fluid sur- b.(R,¢) = 0, for whichF, = 0, and the anchored fields with

face makes a basic point concerning whether to treat a qui(Pi(R? 90). # 0, for which both cases dfo = 0 andFo # 0 are
in terms of its local properties at each point in space or itsadm'ss'_ble', ) , .
globally defined properties. Among the latter properties ar O Simplicity suppose the wall at boundaty is a rigid
those of a topological nature. p_erfgct.conductor. UnIes; stated otherwise Iet. the fluidhbe i
A geometric object is defined by the metric of distance in Viscid, i.e.,vy = V2 = 0in _momentum equa_tl_on (1). The
3D Euclidean space. Such an object has topological propelmom_entum equation then IMPOSES no con_dltlon_on th_e tan-
ties independent of the metric that remain meaningful whe ential bound_aryvglocny ﬁV: For the contalned field, with .
the object is subject tall continuousdeformations. For ex- _i(R’ ¢) =0, |nduct_|on equgtlon (5) also imposes no gondl—
ample, consider two closed tubes of fluid identified at a giventlorl on the tange_nt|al yelouty a‘l\/ I_:or the anchored_fl_eld,
time to be linked an integetN times about each other, signed b.(R.¢) # 0.’ the mdl.JCt'on equation imposes no condition on
according to whether the link is right or left handed, respec the tangential velocity & = R, but demands that the veloc-

tively. This linkage is a global property invariant as thetw 'tﬁ' valnlshes ak = *2. Tdhgse bhoundlary popdlthns ertl)sure
fluid tubes evolve in a continuous flow. Global properties arethe electromagnetic condition that electric ididgiven by

expressed by integral equations whereas the PDEs describe" (6) is tangentially contln_uous acradéinto E = 0 m_t_he
local conditions. oundary wall. We summarize these boundary conditions:

MHD eqgs. (1)—(3) are an Eulerian description in terms of be(R¢)=0= R=Ry, V= 0; = 47, V; = 0
functions of -time with no interest in knowing wher ReAP TR VL0 i Ve, @
unctions of space-time with no interest owing where  p, (R¢)#20=R=Ry, Vr=0; z= %2, V=0,

Ro 27T Ry 271

(10) f b.(R ) dgRdR = f b_(R.¢) dgRdR
0 0 0 0

= Fo, (13)
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to be referred to as the electromagnetic conditions on the vesurface closing the hole of the toroid. The total flag, v)

locity. If friction is present with {1,v2) # 0, then the mo-

passing through that hole is contributed entirely By be-

mentum equation independently imposes the boundary concauseB. makes no contribution. For all fields of the form

ditions:

atR=Ryandz=+z, v=0, (15)

which take precedence over the electromagnetic conditions

2.2 Atoroidal Lagrangian description of MHD

Consider the partition [32,33] of a given fluid Yhinto an ex-
haustive set of disjoint contiguous toroids denoted byhis

B = B, + B,, the toroidal partition of the fluid based @}
yields two sets of Lagrangian constants of motion, namely,
[f(7), F(z,v)]. It follows that the summation

H= ) FlH@).Fro)l. (18)

to be referred as the general Lagrangian helicity, is alsma c
stant of motion, wher& is any prescribed function of two

construction is quite independent of whether the fluid has avariables for eachr. The arbitrary functiorn; generates a

magnetic field. To keep the partition topologically elemen-

two-dimensional continuum of conserved values-bfas an

tary thet toroids are constructed unlinked in the sense thatexpression of the fact that magnetic flux is conserved on all
any number of them can be continuously deformed to sepafluid surfaces in a flow.

rate one from another without entanglement.

Consider a continuous fielB, in V with field lines that
are unlinked closed curvesh The field thus comprises un-
linked closed tubes of untwisted flux that serve as a pagticul
realization of ther toroid partition of the fluid. We shall refer
to the fluid and field in terms of theirtoroids (of fluid) and
7 flux-tubes, respectively, keeping the two partitions cgace
tually separate for a reason that will become clear.

Once the common partition of field and fluid definediy
is given at any initial time, it is permanently identified falf
time under flux conservation. Initially the boundary of each
7 toroid is a flux surface, across each sub-area of which ther
is zero flux. Along the interior of eachtoroid is a constant
net axial fluxf (). In subsequent evolution flux conservation
ensures that the fluid boundary ofdoroid of fluid remains

a flux surface bounding a flux tube with the unchanging ax-

ial flux f(r). The care taken in this description recognizes
that only the fluid has identity whereas a flux tube under flux
conservation acquires its identity by the fluid in which it is

permanently embedded.

Let eachr toroid have an infinitesimally narrow cross-
sectiondo-(r)f varying along the toroid; there is an enor-
mously large total number aftoroids. Then at any time by
locating each of thesetoroids we can construct the evolved
field B, as a function of space from the conserved flux:

f(r) = B, - do(2), (16)

to any desired precisiof being the unit vector along a nar-
row 7 toroid.

Now consider a more complicated field obtained by the lin-
ear superpositioB = B, + B, whereB, is an independently
prescribed field satisfying boundary conditions (11) arit) (1
SupposeB., B,) each satisfies induction equation (5) for the
same fluid velocity. In addition to the constants of motion
f(r), we also have the constants of motion

F(r,v) = f B-dS= f B, -dS a7)
(7) (7)

Consider the special case #f as a sum of simple prod-
ucts:

H =) f(DF(@) =) B cla(r)FfZ

@

B,-dS. (19)
Denote byy(r) the closed path defined by the toraidof
infinitesimal cross-sectiodo(r) and express the solenoidal
B, = V x A, in terms of its vector potential. One application
of Stokes law gives

Ho= > B da(r)rgg
T Y

(@)
- Z A, - B-do(r)dl

= f A, - B dV,
v

writing dV = do(7)dl in the limit of an infinitesimatlo(z). In
that limit, B; is directed in the directiohalong each toroid
anddo(r)dl defines a dterential volume so that summing
over r gives the volume integral obtained. The helidity

is a constant of motion, an integral over the fluid voluvhe
involving [A,, B;] as Eulerian variables at any given tirhe
The Lagrangian nature dfl_ is inseparable, its calculation
requiring knowledge of all the toroids at timet, where each
is located and how each has been deformed from its shape at
initial time to.

The central point of the construction is tHatin its topo-
logical complexity has been expressed in terms of two com-
ponent field§B-, B,) that are topologically simpler. Here we
have shown that the Lagrangian statement of flux conserva-
tion has led naturally to the concept of a heliclitly that is
only a number in a continuum of constants of motion. We
next show that such a linear decomposition can, in fact, be
carried out for any prescribdglin V.

A, -dl
e

(20)

2.3 Field representations by linear decomposition

The simple prescription oB as a function of space hides a

whereX(r) is any fluid surface subtended by the closed curvegeneral topological complexity of its field lines and flux-sur

represented by a toroid. That is,X(r) is just a geometric

faces defined by the ODEs (10). In the neighborhood of a
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chosen pointin space, this pair of first order ODEs has a genfield lines that diverge exponentially in a finite subdomain
eral solution [8,11,15,23,53]. To be sure, non-ergodic fields constitute
infinite set, but this set by their nature is a subset of measur
[X. Y] = [X(z £o, £0), Y(Z éo, {0)], (21)  zero of the set of all field topologies admissiblévn
There are two resolutions to thefiitulty of describing a
field in terms of a pair of Euler potentials. We may so repre-
sent a field in as many localities in space as needed but suit-

treatingz as the independent variable and introducing a pair,
of integration constantsq, {o). This solution describes the

field _Ilnes in the neighborhood, |(_jent|fy|ng each field _Ilrye b ably connecting the distinct Euler-potential represeéontest
a pair of values ofp, ¢p) determined from the coordinates : . ..
across the boundaries separating the localities, an anattr

of any particular p0|nt>(q,yo, 20) on.the T'eld line. Visualize . tive formidable undertaking. The other resolution [32]ts a
the two-parameter continuum of field lines so constructed in

terms of two independent families of flux surfaces on whichtracuve’ which is to decompose the field into a linear sum

the field lines lie. To describe these flux surfaces, treat eq. N N
(21) as a pair that determine integration constags ) as B= Z Bi = bi(&, &)V&E x V&, (24)
unknowns. Denote the solution formally as: i=1 i=1

[£.4] = [£(x. Y. D), {(x. Y, 2)]. (22)  of N fields of simpler topologies, simplicity to be defined

shortly, each field evolving according to induction equatio
Each field line is then given by (?) = (&, {o) as the inter-  (5) with the common fluid velocity governed by the momen-
section between two level surfaces of constant), defining  tum equation. The Lorentz force is defined in term®Bads

two independent families of flux surfaces. the linear sum of these fields. The induction equation can
then be integrated once with respect to space to give
2.3.1 Euler potentials .
% +Vv-V& =0
Flux surfaces can be used to express a solenoidal field in the ot >t ’ (25)
form: ¢
B = b(¢. {)VE X VL. (23) a tVva=0

geometrically d_escribing the field_ to be along field_ lines Simpler topology is meant that eaéh has a global pair of
(€. 0) = ({0, {o) with a constant amplitude(&, £) on eachfield  single-valued Euler potentials. Therefore, represemig@4)

line. The pair £, ¢) called the Euler potentials [32,33,36] is s global. Now we turn to an explicit decomposition of this
not unique, for it depends on how the two constants of inte-kind for the cylindrical field.

gration ¢, (o) reside in the actual calculated expression of
the solution (21). This non-uniqueness is not physicatly si

nificant because it merely indicates that any given set af fiel
lines may be ordered in an infinite number of ways into two Any solenoidal fieldB in V can be expressed as the linear

2.3.2 Chandrasekhar-Kendall representation

independent families of flux surfaces. superposition of the two solenoidal fields:
The Euler-potential field representation has a fundamental
difficulty. Unlike fields with an ignorable coordinate, solu- B = Bo + By, (26)
tion (21) for a 3D field generally exists only as a local so- By = V x (@) = 1094 3295’ @7)
lution around the chosen point without an assurance that the R dyp oR
Euler potentials can be defined globally. By = VX[V x (¥2)]
Fully 3D fields not anchored to the domain boundary gen- 15X SN
erally may be ergodic [51,52], with field lines each of infnit =V V2
length and filling up a finite-sized volume. By integrating ¥ . 1 92Y )
ODEs (10) far enough along such a field line will bring the = 6R62R ﬁﬁso Vivz (28)

line to as close to any point in the sub-volume as desired. In
the language of chaos dynamics [53], ODEs (10) are not in-This representation is the cylindrical version of the
tegrable in the sense of a general absence of globally define@handrasekhar-Kendall (CK) representation first presente
integrals. If a field line is volume filling, so are any two sur- [34] for the field in a spherical domain. The essential pant i
faces intersecting along that line. Then we have the geometo let By account forB; so that the residual fielB, = B— By
ric absurdity that every point in the 3D volume lies on theselies on thez planes, i.e., planes of constantAs given above
surfaces. Yet solution (21) exists in any local neighborthoo the pair By, Bg] is not unique. This field representation can
This mathematical trouble manifests itself via the Euler po be rendered unique [33,35] for any fieRlin V satisfying
tentials €, £) being necessarily multi-valued on global scales. boundary conditions (11) and (12) by the following algo-
Anchored fields in the cylindrical domaivt may embed  rithm, referring the reader to the original publicationstite
sub-systems of ergodic flux. Anchored fields may also haveletails.
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First construct the generating functiihas a solution of  fluid in V. A given field B(R, ¢,z t) in CK representation

the Neumann boundary value problem (BVP): att = ty yields the fieldBy(R, ¢, z to) to define the parti-
5 tion of the fluid into the unlinked toroids. Thus we have
Vi¥+BAR¢,21) =0, (29)  theidentification B:. Buli=t, = [Bw, Boli=t,- The Lagrangian

oP Fo description in terms of the toroidal partition then tracts the

R= Ry, R- om (30)  evolution of B,, B,], each field separately satisfying the in-

) ) o duction equation with the common fluid velocity and the two
on anyz-plane at time whereV? is Laplacian in that plane.  fig|ds together conserving the general Lagrangian heliity
Boundary condition (30) ensures thBi is tangential on |, contrast, the CK representatiofiers an Eulerian descrip-
R = Ro; see eq. (28). The solutioH to this BVP is unique s of B in terms of an instantaneous decomposition into the
up to a functiont’o(z 1), just a constant insofar as the above |inear pair By, B,] at each time with no reference to where

Neumann BVP is concerned. Sin& is invariant under  gach fluid parcel is located at that time. This result shows
Transformation I'¥Y — ¥ + Wo(z 1) for an arbitrary¥o(z 1), hat the contruction 0B = B, + B, in sect. 2.2 is completely
it follows that By is uniquely defined. general.

With no loss of generality, we may s#}(zt) = 0. Note
that the above Neumann BVP can also be solved sntz, h | ials of th fiel
where boundary conditions (12) apply. Denote the BVP so—2'3'3 The Euler potentials of the CK fields

lutions by'V..(R, ) and we may replace boundary conditions The CK representation is a mathematical proof that any

(12) by given field is a linear superposition of not more than three
z=zx7, ¥Y=Y.(Ro), (31)  solenoidal fields each represented by a pair of global Euler

an equivalent Dirichlet condition. For contained fielts=  Potentials. This proof follows simply from rewriting egs.
v, =0. (26)—(28) as:

By their constructionBy as well as the residual field pras 1 52y
Bo = B— By are unique, solenoidal and tangentiaRat Ry. B=Vx (02 + R+ =—@-V2¥2
Since By and B have identicak-componentsBy, lies in z oRoz Rdyoz
planes, in the Euler-potential representation (27) withd fie _ VRxV (} 5_‘P) FVoxV (Ra_\l’) L VOXVZ  (35)
lines as curves of intersection between flux surfaces of con- R oy dR

stant®(R, ¢, 2) and thez-planes. WithBg, being tangential at
R = Ry, its field-lines must close withiR < Ry and are un-
linked, including the one running along the circular bouryda
R = Ry expressed by the boundary condition,

displaying the three pairs of Euler potentials explicifigain
we note that this field representatiofiers two basic means
of description, the first being the Eulerian method in a per-
manent representation in terms @y[, Bp]. The other is
the Lagrangian method that identifies at some initial time
the three fields defined by the pairs of global Euler poten-
tials, (R, 32% ), (¢, R%%) and (@, 2), whose evolutions are sep-
arately tracked by their Euler potentials moving as fluid sur
faces according to advection equations (25).
The presence of multi-valuggas an Euler potential in eq.
R=0, ®=0. (33) (35) is a removable feature. The description of a vector field
in terms of scalar functions has the non-trivial advantage t
The construction of the unique paB{, By] at any instant of ~ scalar functions have the same value at each point in pHysica
time is now complete foB as given by egs. (26)—(28). space independent of the coordinate system. In contrast, th
The defining property of8e, By] is that the componentof 3 components of a vector field do not preserve their values at
By in the z-planes is potential; see eq. (28). The circulation @ physical point under a transformation between twiedent

R=0, o0 =0. (32)

de
Transformation Il:®@ — ® + ®y(z t) leaves®d(R, ¢, z t) in-
variant by eq. (27) for an arbitradyo(z t). With no loss of
generality, we may replace boundary condition (32) with

of By vanishes arounanyclosed curvey on az-plane: coordinate systems. This advantage is seen in the same field
B given by eq. (35) taking the following form in Cartesian
gg By -dl =0, (34) coordinatesX, y, 2):
Y
and the CK representation may be physically characteriged a B =-Vxx Va_y VXV +VexVz,  (36)

follows. The fieldBy accounts forB, everywhere as a ver-

tical flux passing untwisted through eaziplane with zero  without involving any multi-valued Euler potential.

circulation in that plane. The circulation 8fin eachz-plane The result (36) has a practical corollary for numerical

is entirely accounted for by the complementary fiBlgl MHD. It is impractical to represent an ergodic field line by
The CK representation is the Eulerian counterpart to theapproximatingB as a discrete function of space, such as de-

Lagrangian description using thetoroidal partition of the  fined on a fixed computational grid. The fundamental reason
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is given in the theory of chaos and integrability in nonlin- under induction equation (5) subject to the electromagneti
ear dynamics [53] but easy to understand intuitively. Nu-conditions. Although helicity densitih = A - B is physi-
merically integrating ODEs (10) with a discreBerequires  cally ambiguous because of its dependence on the free gauge
extrapolating for the field between the grid points. Without G of A, the helicityH is gauge independent and physically
analytical knowledge of the field being approximated, tnue e meaningful. Under a gauge transformatién- A + VG,

godicity and the artificial complicated meandering of a com-

puted field line cannot be distinguished, the latter resglti He — He + GB.-dS=H,, (38)
from numerical errors accumulated in the computation. In N

other words, ergodicity in a field is information irrevocgbl for all gauge functiois by virtue of B being tangential at do-
lost to a discrete variable. main boundary)VV. WhatH; measures is represented by the

Each of the three component fields on the right in eq. (36)case of two closed toroidal tubes of magnetic flux, linked an
has global flux surfaces, their ODEs being integrable in theinteger=N times about each other, signed for the handedness
language of chaos theory. Representing these flux surfacednd ignoring the internal twist structures of these tubes. |
numerically involves the usual computational and trurorati  this caséH. = £2N f; f; wheref; andf; are the axial fluxes of
errors, of course. But, if these geometric surfaces are dethe two tubes, i.eHc may be described as the flux-weighted
scribed with sificient computational accuracy, information invariant linkage between two fluxes. For closed flux tubes,
of B being ergodic resides in thgeometric relationships if one goes around the othbrtimes, the converse is true, so
among the Euler potentials. Therefore, ergodicity as afpropHc carries the factor 2 to count both links.
erty of B is retained as faithfully as the individual Euler po- ~ Consider a contained field i comprising contiguous
tentials are numerically precise. sub-systems of flux wholly contained within their respec-

The computational advantage pointed out here is clear ifive, outer-most closed flux surfaces. These containing flux
the fact that the advective equation (25) are the result of arfurfaces could also exist as a continuum of nested closed
analytical integration of induction equation (5). Thisstar-  Surfaces, not necessarily simply connected. In these cases
ries out a pre-computational integration for the field lires ~ €ach of the infinitely-many containing flux-surfaces has a
stead of performing this integration numerically as a post-¢onservedi. under the induction equation [43,45]. The gen-
computation analysis of a numerical calculation in terms oferal presence of ergodic field lines in 3D fields presentsrothe
B as a discrete variable. possible flux sub-systems. There is an infinity of field¥in

Having to deal with up to three pairs of Euler potentials 88Ch comprising a finite number of contiguous sub-systems

instead ofB seems computationally more intensive. This Of flux and each sub-system containing a single, infinitely-
concern is mitigated by the manifestly solenoidal form of long, volume—f_llh_ng field line. In a field of thls_ kind, there_
the fields represented by Euler potentials and by the advec@" be only a finite number of conserved classical total helic

tive equation being one of the simplest transport equationdli€s. one for each of the sub-systems. From this persgectiv
to treat numerically. The linear decomposition (36) has athese conserved helicities, finite in number, are not capur

simple geometric interpretation. At some initial tim@,is the property of a continuum of conserved fluxes on all fluid

decomposed into the sum of 3 planar solenoidal fields residSurfaces. o _ .

ing in the respective planes of constanty, andz At any For an anchored field il, the classical total helicity.
subsequent timeB is the sum of those 3 fields deformed by IS Not gauge-independent and, in its place, one may use the
the fluid velocityv since the initial time. Each of the three (otal relative helicityHr(B, Brer; V) as a formal measure of a
fields is untwisted and their mutual entanglements defined by!Ven field B relative to a similar measure of a chosen refer-
their superposition describe the twisted topologyBofThe ~ €nce fieldBrer [38,40,41]. The construction ¢ir is involved
fundamental computational point here is that if a high degre @nd will not be reproduced here. ffoe for our purpose here
of the frozen-in condition is essential for a physical peshl 1S 10 recall [38] that the construction renders &efience in
[54-57], the faithful description of this geometric piatyor  N€licity betweerB andBer that is independent of the gauges
some equivalent description of this kind, is what it takes to of the vector potentials of both fields that feature in the for
achieve that essential degree. The Lagrangian repreigentat Mula. the fieldBres required to have the same boundary-flux

eq. (36) has been successfully used in recent studies of c&istribution as the given field. There is a unique poten-
formation [16,24]. tial field Bpot in the simply connecte®/ meeting this re-

quirement, which has been generally used as the reference
field. By definition, applyindHgr to a contained field leads to
2.4 Magnetic helicity Hr = H¢ because, in the absence of flux across the boundary,
Bpot = O for the simply-connected domains considered here.
The CK representatioB = B + By defines a total abso-
lute helicity

A contained field inV with B,(R, ¢, +z5) = 0 evolves with
conservation of the classical total helicity [58,59]

Hc (B; V) = fv A-BdVv (37) Haps(B; V) = fv [(VXxW¥2) VX (VxW¥Y2
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+2 (VX ¥2) - (Vx ®2]dV, (39) Z < zy between infinite planes = +z; and the finite spher-
ical domainr; < r < rp bounded by a pair of concentric
applicable to the contained and anchored fields on the samgpheres of radii; < r». In these two domains [32,33,63-65]
conceptual basis. We describigssas absolute to distinguish  H,, . = 0 for all potential fields, so thdtir = Haps Whereas
it from Hgr. The pair Bo, By] as well as the scaladtlapsare  in v/, Hg # Hapsgenerally. A simple topological or physical
invariant under Transformation't! — W+¥o(z t) and Trans-  explanation of this mathematical result is not availableatT
formation Il: ® — @+ @o(z t) for arbitrary (Fo, o). Subject  Hg + H.ysgenerally in the cylindrical domai is probably
to boundary conditions (30) and (31) &h boundary condi-  representative of most simply connected domains.

tion (32) on®, and the electromagnetic conditions (14)won All three total helicitiesHe, Hr and Haps are Eulerian

Hapsis conserved [33] under induction equation (5). quantities, defined according to the stateBadt a given time
This development allows us to redefifig in an absolute  with no interest in where each fluid parcel is located at the

sense for the anchored field: time. The CK representation defines a Lagrangian helicity

H_ in V, gauge independent:
HR (B, Bpot; V) = Habs(B; V) - Habs(Bpot; V) P (40)

. , . H H GB,-dS=H,, 42

giving each of the f|eldéB, Bpot) an independent measure of Lo f,;v ’ - (42)

its helicity. We may regar#ii;nsto be the closing of a concep- ) . .

tual gap remaining in the development from the constructionby virtue OT ST being tangential at boundaf/. Note th?t

of H. to that ofHg. We point out a few interesting implica- all four helicities Hc, Hr, Haps Hi) have the same physical

tions derived fromHa, dimension of the square of magnetic flux. This heli¢ityis
An anchored potae:tial fiel,y = VP satisfyingv2p = 0 Well defined irrespective of whether the given fi@ds con-

pot = =

in the CK representatio& = P, ® = 0 has the total absolute tained or a”Ch‘?Ted- We note again thiatis gomphcated to .
helicity z compute, requiring knowledge of the location of every fluid

parcel identified by a specific partition of the fluid. If this
) ) Lagrangian information is available, we can calculate atwo
HabS(Bpot? V) = fv VXWpZ-Vx(Vx¥p2 dV.  (41)  parameter set of conserved flufdgr), F(z, v)], in terms of
which a continuum of general helicitif can be stipulated,
If Bpot is axisymmetricHaps = 0, and we havélaps = Hg. If of which H, is a particular case.
Bpot is not axisymmetric, for example, the boundary fluxes at  The existence of{ suggests that in addition to these sim-
z = +7y depend orp, then generallyaps # 0. ple Eulerian helicitiesH¢, Hr, Hans Hy, there exists a cor-
In such a case, let us fiB; = b.(R¢) atz = +zp and  responding continuum of general Eulerian helick§ con-
consider a continuous deformativn— V' from a length of  served for the whole volum¥ under perfect conductivity.
27, to a diferent length, say,2, by a uniform compression Worthy of note is thatH by its definition is a summation
strictly in thez-direction of the fluid and its embedded field, over all ther toroids but, with the exception dfl_, H is
holding fixed the boundary flux distributiors.(R,¢). Let  generally not a simple integral over the domsinAlthough
Bpot in V deform intoBgeformedin V’. It can then be shown  the formidable mathematical complexities#f andH* are
[33] thatHapsis conserved, which is to be expected since theinteresting in their own rights, with useful applicationscer-
field topology has not changed. On the other hand, the uniqueain problems, our review in this section reminds us thag the
potential fieldBj,; in the new domailv’” has a total absolute are equivalent properties derived from the simple Lagramgi
helicity H, . # Hapns generally. This result follows from an  statement of flux conserved @il fluid surfaces. This under-
interesting property thaBpot in V and By, in V” generally  standing is built upon translating the induction equatién d
are not topologically identical although both fields sh&ie t  rectly into a physically complete descriptionBfin terms of
same boundary flux-distributions. a superposition of up to three topologically simple soleabi
Take a simple case k. (R, ) being positive and negative fields. We next present a physically contrasting system vher
definite inz = +2z, respectively. Then each of the field lines such a description is also useful, before turning to treat-ne
has one foot-point at = —z, and the other at = 7z defining ideal MHD.
a foot-point map. In such a case, the foot-point maBgjk
in Vis in general distinct [60-62] from the foot-point map of 5 5 |4eal vortex dynamics
Bpot in V'. This property gives an insight intdg. Whereas _ _ S o
Bpot — Budetormeaincurs no change in field topology and in Consider an incompressible inviscid fluid in the absence of
total absolute helicity, itslr shows a change in value due not the magnetic field. Momentum and mass-conservation equa-
to a change in field topology but, instead, to a change of thdions (1) and (3) reduce to the Euler equations:
reference potential field in thé — V’ frozen-in deforma- oV
tion. — +(v-V)v=-Vp, (43)
Consider the total absolute helicitieky,s defined by CK at
fields in two special domains, the unbounded spazge < V-v=0, (44)
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where the uniform density of the fluid has been set to unity.py being an integration constant, and reduces to the ad-

Rewrite eq. (43) as:

ov
— +(Vxv)xv=-V

ot (45)

(m%vz),

vection equation (25) rewritten for the six Euler poterstial
[wi,&], | =1,2,3 moving with the common fluid velocity
given by eq. (54). These advection equations together with
Poisson equation (55) constitute a complete set of 7 govern-

from which the pressure can be eliminated by taking the curling ppEs for 7 scalar unknowns, subject to the rigid boundary

across: P
W
— =V x(VvXWw),
ot ( )

introducing the vorticity

(46)

w=VXV. (47)

conditions ornv.

As in the corresponding MHD problem, the advection
equations for the six Euler potentials constitute an aialyt
cal integration of the vorticity equation (46). This intaton
allows a high degree of frozen-in vorticity to be describad n

For each solutiow of eq. (46), the pressure is determined at Merically, as high a degree as the computed Euler potentials

each instant in time by the Poisson equation:

Vip=-V-[(v-V)V], (48)

are numerically accurate. This level of accuracy is esakenti
in the simulations of formation of singularities in ideartex
dynamics in parallel to CS formation in ideal MHD.

given by the divergence of eq. (43). Consider the following ©On a historical note, Clebsch (1857) was the first to rep-

alternative to the above standard treatment.

Vorticity equation (46) has the form of induction equation
(5) identifying B with w, as is well known. It follows from
our development in this paper that the incompressibleorti
ity w has the CK representation:

3

w= " W&, §)VE x Vi, (49)
i=1
[é:l’ 52» §3] = [X7 Y, Z] B (50)
oY oV
(1,42, 83] = [_6_y g,—d) , (51)

at any given instant of tim&, in a simple application of eq.

resent incompressible inviscid vorticity in terms of a pafir
Euler potentials [66] but little development ensued frotis th
important work because the single-pair representation is i
general not global. This neutral fluid system is an instruc-
tive contrast to ideal MHD in the correspondence between
(w,v, W) and B, A,G). Whereas @, G) are physically am-
biguous becaud@ is an arbitrary free gauge, the correspond-
ing pair (v, W) are physically unique quantities. If limited to
a single pair of Euler potentials to represé@tthis repre-
sentation is generally local because the Euler-potenél p
generally are multivalued scalar functions of space, raugii
distinct Euler-potential pairs to descriBan different spatial
regions of applicability. The issue of the correspondind-mu

(36). If we pick one such representation and keep it for alltivalued nature of vector-potential can be bypassed by not

timet > to, we have a Lagrangian descriptionwfas a lin-
ear superposition of 3 topologically simple solenoidalfel

using it. For example, the CK representation in sect. 2.3.2
expresses in terms of By, By) as uniquely defined single-

Simplicity is meant that each field is expressible in terms ofyalued vector functions of space. In the case of the neutral

a pair of globally defined Euler potentials.

Define
owi(&, &i)

Wi (&, &) = %

in order to obtain three equivalent pairs of Euler potesgtial

(52)

3 3
1
w= ; Vi, ) x Vi = > ; VX(wiVii = GVwi). (53)
By definition eq. (47), the velocity is explicitly given by
1 3
v=VW+§; [wiVEG - GV wi] (54)

introducing an arbitrary potenti&V which must satisfy the
Poisson equation,

1 3
V2W = - Z V- [wiVG - GVwil, (55)
i=1
under incompressibility.
Euler equation (43) then yields the pressure
W 1S [ a6 dwi| 1
= — - i =l | = SV 56
P=Por 5t "2 L, [‘”‘at G| =27 9

fluid the velocityv, as the vector potential of, and the po-
tential W, as the equivalent of the free magnetic ga@e
both have direct physical meanings. In both cases, we have a
completely general, global, linear decomposition of thielfie

B orw, into three simple solenoidal fields.

3 Breaking of field topology in weakly resistive
fluids

The motion of a perfect fluid in 3D space may be visualized
locally as the interactions among contiguous magnetic flux
tubes. No exchange of fluid among the flux tubes is allowed.
The interaction among three (non-parallel) tubes in the ab-
sence of artificially imposed geometric symmetries can pro-
duce a TD or CS; Figure 1. Two tubes pressing into a third
tube between them can readily push it clear out of the way
to meet partially at a contact flux-surface. The nonlinear dy
namics of a particular situation determines which threesub
in the continuum field should behave in this manner. Mag-
netic neutral point defined b = 0 have no special signifi-
cance [67]. What is essential in this generally 3D process is
the interaction of three or more locally distinct flux system
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Figure 1 Relating the Parker Magnetostatic Theorem (top) to the):® K corona (bottom) observed in X-ray emission [82]. Sketch obronal bipolar
flux tube (top left) with footprints anchored to the photosg the visible solar surface, with the tangled state ofithe lines suggesting that preserving such
a complex field topology would, during relaxation, resulflib formation illustrated by the inward collapse of the celbiflux surfaces (top right), creating
the hole in the central blue-colored flux surface, as desdrih the text. Structures numbered 1 and 2 in the X-ray codis@ay forward and reflected S
plasma morphologies discussed in the text. The sketch diifiidar flux tube is taken with permission from Parker E N, Rdpeconnection, In: Gonzalez
W, ed. Parker Reconnection Workshop 2014. New York: Sprjri2f#l5. The image of the corona is publicly available fromYbhkohMission of Institute

of Space and Astronautical Science (ISAS), Japan, madethétBoft X-ray Telescope prepared by the Lockheed-MartiarSmd Astrophysics Laboratory,
the National Astronomical Observatory of Japan, and theréssity of Tokyo with the support of US National Aeronautaned Space Administration (NASA)
and ISAS.

An extremely highly conducting fluid behaves similarly namical forces of the rich time-dependent processes of MHD
except that the monotonic steepening of a field at a contacinay act both ways depending on circumstance, to aid or to
surface proceeds to a point of dissipation at the small monze frustrate the formation of a TD. Therefore the Parker the-
resistivity. Resistive magnetic reconnection sets in agld fi orem is saying that, even if the complexity of these time-
topology is no longer preserved. Thus the highly conductingdependent MHD processes are removed, TDs are generally
fluid spontaneously creates dynamical situations in wheéeh r still inevitable if a field is to just attain equilibrium ewer
sistive dissipation is inevitable. where in a domain with its given.

The perfect fluid conductor as a singular limit of extremely ~ Time-dependent 3D MHD numerical computation is a
highly conducting fluids derives from the Parker Magneto- powerful practical means of demonstrating spontaneous for
static Theorem reviewed next. This theorem states that thenation of TDs. Ditferential calculus is the basis of most nu-
static equilibrium of a 3D field imposed with an arbitrarily merical computations. To successfully demonstrate a TD de-
prescribed topology generally must contain TDs as an in- veloping under the frozen-in condition to the verge of los-
trinsic component of the equilibrium. The discrete (sheet)ing differentiability requires mature understanding [57] of
currents flowing in the TDs and the continuous part of thethe computational demands of such a numerical undertaking
current density, subject to boundary conditions, togetleer  [16,20,24], as pointed out in sect. 2.3.3.
termine the distribution of the equilibriurB by Ampere’s
law. For this equilibrium field to possess topolo@y cur-
rents in the form of TDs must be present for most prescribe
T. The complete development of this fundamental theorem isSetn = 0 for a perfect fluid conductor in a cylindrical domain
presented in the monograph of Parker [8] and recent review and let the fluid be viscous, withr{, v2) # 0 in momentum
articles [9,10,17,22]. In this section we concentrate asidda equation (1). For our purpose consider a cold gas, setting
concepts. pressurep = 0. The closed system of equations, (1), (3) and

The inevitability of TD formation for a fixed extends be- (5), determinesR, v, p) subject to boundary conditions (11)
yond static consideration. Even in a dynamical state, TDs oand (12) and rigid frictional boundary condition (15). Con-
CSs may form, perhaps in finite time [54,55], in a locality tained and anchored fields are treated on the same basis here.
without the field attaining equilibrium everywhere. The dy- The problem being addressed is the end state of the viscous

d3.1 Parker Magnetostatic Theorem
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relaxation we have set up. interval on a real axis is an one-dimensional example of a
The field exerts a Lorentz force on the fluid as kinetic en-space not Cauchy complete, and more complicated exam-
ergy is continuously dissipated by viscosity. Field togylo ples are not dficult to construct [22,76]. Proving the prop-
T defined by an initial field at timg is invariantin time. By  erty Bi(T1) ¢ Br, is not trivial in any particular problem
artificially not feeding the lost kinetic energy back inteeth whereas the property of a function space not Cauchy com-
fluid, the total energ¥e of the system plete is common in variational calculus [77,78].
The essential point here is that the existence of a minimum

E=Ew+Ek. of the integraEy over the function spac8r, does notimply
Ey = 1 f B2 gV that the minimum value must be realized in that space. Vis-
8 Jv cous relaxation drives a field preserving topoldgyinavoid-
1 ably to a minimum inEy. SincereT; ¢ Ty, the relaxation
Ex == | pVaV, 57 M et .
K72 fv L ’ 7 then takes a path of monotonically decreadigthat is lo-

decreases monotonically in time starting from its boundedcate.q InBr, except for j[he path’s end-poiBk .« (Ty) ¢ BT}'
Intuitively one may think of the analogy of an open inter-

valueE = Eo attimeto. The invariantT implies thatthe " yo veal line. It bears emphasis that TDs and CSs are
field cannot be completely removed whereas kinetic energy

) . . . ) admissible in a perfect conductor, so fields of topoldgy
is being removed irretrievably at the expense of field eNnergy . tainina TDs are phvsically meaninaful. This end-state i
Therefore Ex — 0 asEy tends to a minimum, defining the 9 phy y gi.

end state in which botk and the Lorentz force vanish, de- a _weak solution Of. the fqrce-free equations, the TDs satis-
. . fying these PDEs in the integral sense [78]. The hydrody-
scribed by the force-free equations

namic shock given by the Rankine-Hugoniot conditions in
(VxB)xB=0, (58)  compressible hydrodynamics is a familiar example of a weak

solution.
V-B=0, 59 . . .
(59) Fundamental to the theorem is the three-tube interaction.

subject to boundary conditions (11) and (12) and to a fixedThe coming together of two tubes, squeezing the fluid and
topologyT. its frozen-in field out from between them, results in a hole
The following is a mathematically useful restatement of punched in the contact flux surface where the two flux tubes
the Parker theorem [22]. Consider the spBaef all continu- ~ meet; see Figure 1. This process is neatly illustrated by the
ousfields inV, not necessarily in a force-free state, satisfying optical analogy constructed by Parker [76,79,80]. Intezlu
the given boundary conditions (11) and (12). Define the conthe scalar functior relating the current density to its parallel
tinuum set7” of all the field topologiedT realized in these field and rewrite the force-free equations as:
fields. By definition8 = Ut By, the union of all the dis-
joint subspacesr of fields, each subspace containing fields VxB=aB, (60)
of a common topologyl. It is formidable to stipulatd in B-Va=0. (61)
explicit mathematical terms [68—74], as is clear from sect.
2. However,T is conceptually unambiguous if defined by Therefore every magnetic flux surface is also a current-
its realization in a specific field iv from which all mem-  density flux surface in a force-free field. The absence of a
bers of the subspacBr can be generated by all the contin- curl of the field perpendicular to any flux surface impliesttha
uous velocities under the ideal induction equation sukiject the field is potential in each flux surface, the field lines dis-
boundary-condition (15). tributed exactly like light rays governed by a correspogdin
Next consider the subspaf®; containing all thecontin-  Fermat's principle. The refractive index is proportional t
uousforce-free fields with no TDs, satisfying boundary con- |B|, refracting field lines away from regions of strong field
ditions (11) and (12). Denote ¥ the continuum of field  strengths. Thus the field lines of a force-free field on a flux
topologies realized in the force-free fieldsfy. By defini- surface may be completely excluded a region of surficiently
tion By € Band7y € 7. The Parker theorem may then be strong|B|. These exclusion regions are the holes in the flux
stated that for most 3D fields M, By and7 5 are subsets of surface in 3D space where field lines external to the particu-

measure zero against their respective mother8etsd7 . lar flux surface stream in from either side to meet tangdntial
A random pick of topologyT; € 7~ has an unlikelihood of along a contact TDs.
belonging ta7. Consider the; ¢ 7. A relaxation start- Another physical approach to the Parker theorem investi-

ing from an initial state iMBt, must evolve with a monotoni- gates an infinitesimally small neighborhood of a given ferce
cally decreasing into an end-state force-free fieRl_..,(T1) free field B of topologyT in the function spac& of con-
containing TDs. i.e., the limit poinBi.,«(T1) ¢ Br,. In tinuous force-free fields. This neighborhood contains $eld
mathematical analysis, a function space is called Cauchyf topologies infinitesimally dferent fromT by some mea-
complete if all convergent infinite sequences of points & th sure. Using nonlinear perturbational analysis [6,18] it ba
space converge to end-points belonging to the space. Mosthown that, in general, the topologies in this neighborhood
functional spaces are not Cauchy complete [75]. The operin By is a subset of measure zero against the topologies of
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the fields in the bigger neighborhood of the given field thataway and there is no external source of energy, CSs may still

extends from withirBg into the mother spac8. be expected to form persistently but at monotonically weake
The stability with which the coronae of the Sun and bil- intensities [62].
lions of solar-like stars in our Galaxy maintain their olveet To fix ideas, consider an anchored field in the cylindri-

million-degree temperatures finds an attractive MHD expla-cal systemV, taking both the rigid boundary and fluid to
nation in the Parker theorem [8,29]. In the case of the Sin, th be perfectly conducting for the present. The unique poten-
field is of the order of 10 G in the low corona, commonly in tial field Byot has the lowest total enerdspo: among all the
the form of a bipolar magnetic loop with a pair of foot-prints fields in 8 admissible inV. A given field B of topology T

on the solar surface called the photosphere, sketched in Figand total energ¥y in V by the Parker Magnetostatic The-
ure 1. At its tenuous proton density of®®cm3, the ratio  orem defines an absolutely-minimum energy s&te..(T)

B of fluid to magnetic pressures is well less than unity. Thewith total energyE..(T) > Epot, Using the notations in sect.
field is a ready source of energy for heating and maintain-3.1. Therefore the fiel® of topologyT has the free energy
ing the corona’s temperature, provided, of course, the-elecAEy(T) = Ey — Eo(T).

tric current in the highly conducting corona can be dissigat Now keep the boundary d&f as a rigid perfect conductor
at its low resistivity. The free electrons of the fully ioett  but let the fluid inV be weakly resistive so that CSs form
corona conduct heat along the magnetic field but not acrosand dissipate resistively during a dynamical evolutionhef t
the field. Therefore, the magnetic flux surfaces are esdigntia field B. With breakage of field topology, both topology
thermal insulators. The two features of (1) heating despiteand free energpEy (T) vary with time asB evolves along
low resistivity and (2) ubiquitous supply of heat to flux tsbe a path that lies in the wide open space®fnstead of be-
thermally insulated one from another, are explained niyura ing confined within a subspace of fields of a fixed common
by the Parker theory of coronal heating [8,81]. The signif- topology. Nevertheless the highly conductive fluid is disti
icance for the latter feature is that all flux tubes have equafrom a resistive static medium. The high-conductivity €riv
likelihood of being heated because any flux surface may havéng the formation of CSs for resistive dissipation also sets
a hole punched into it to form a CS in the general 3D dy- macroscopic limits on the amount of free energy that can be
namical situation. The dissipation of spontaneous CSs in aemoved via CS dissipation. Strong Faraday induction read-
turbulent sea of reconnections breaks field topologies en thily produces strong fresh electric-currents in responsalfo
small scales to maintain the 2 to 3 million degree tempera-ideal and resistive, changes in the field. Whereas a rigbyrous
ture of the corona. As shown by the X-ray image in Figure lideal fluid must conserve a continuum of general heligity
taken from a recent publication [82], the corona at highvacti none is conserved in a static highly-resistive medium. fhei
ity is characterized with long-lived macroscopic struesiof tuition follows that perhaps some suitably defined set of gen
enhanced heating and density. The numbered structures idesral helicities may be approximately conserved in the lhit
tify two types: Nos. 1 and 2 display large-scale plasma loops; — 0, the essence of the Taylor hypothesis [42,44,45].

that are conspicuously twisted [83—-85] whereas Nos. 3 and The axial fluxFo remains a constant in time since the rigid
4 display relatively untwisted plasma loops. The relatiops  boundary is perfectly conducting. Note tHag is a special
between such large-scale organized magnetic structuces artase of the general helicitf{. By definition Fg = f(71)

the ubiquitous reconnections on the small scales is th@subj wherer; denotes any one of the infinitesimally thin toroids of
of our next subsection. fluid that runs along the boundaR/= Ry. In principle most
other forms ofH are not conserved. To capture the power-
ful inductive dfects of a near-perfect conductor, the Taylor
hypothesis postulates thidty,sis approximatelyconserved in
With each chaotic magnetic reconnection brought about byaddition toF,. This postulate constrains the viscous relax-
the dissipation of a CS, the reconnected field is as likelyeto b ation of B in 8 to be along a path of constaf and mono-
topologically compelled to form CSs as the pre-reconnactio tonically decreasing total enerdsg with Haps = Ho, a pre-
field that produced the newly dissipated CS. So CSs wouldscribed constant. Field topology is changing along this pat
form and dissipate in a perennial turbulent state. In a iecenUnless the constarty is compatible with a potential field,
3D numerical simulation [16] of the Parker theorem, the vis-a certain amount of current is always present in the evolv-
cous evolution to the first formations of CSs involves a lam-ing field under the conditiorl,,s = Ho and, in this case, the
inar continuous velocity but, upon the artificial dissipati end state is a non-potential force-free field. Since 0, this

of the CSs forming, resulting from numerical truncatiohg,t end-state contains no TDs.

computed field and flow rapidly develop into a turbulent state A recent study [35] treated the variational problem of
see Figure 18 in this study. Worthy of note is that the inten-6Ey, = 0 subject to a constarfify and Haps = Hg over the
sity of a CS forming depends on the free magnetic energyspaceB to show that the minimum-energy Taylor statevin
available, so the inevitability of a CS forming in a given sit is governed by the linear force-free equation (60)dct ao,
uation is separate from how energetic the consequent recora constant, subject to boundary conditions (11) and (12), th
nection is. It is conceivable that as the free energy drainssolenoidal condition (61) trivially satisfied in this cadee-

3.2 Taylor hypothesis and its generalization
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termining the constanty for a 3D system is a mathemati- mechanism of storing magnetic energy in the form of field-
cally formidable task, the 3D form of the problem unavoid- aligned currents in the solar corona [46].

able if, for example, the prescribed boundary fluke&R, ¢) The Sun’s global magnetic field undergoes global polar-

of the anchored_field ar@-depend_ent._ The boundary vglue ity reversal every eleven years, marked by the appearance
problem for the linear force-free field is governed by alinea ¢ 5 new generation of sunspots at the beginning of each

scalar integro-PDE [35], & novel result contrary t0 a 10ng-cycje [13,14,47-50,82]. The violence of solar activitias |
held but erroneous expectation that all linear force-frélel$i o forms of flares and coronal mass ejections are the con-
in VV are governed by the Helmholtz PDE [86-89]. For fixed goq,ences of two global fields of opposite polarities having
Haps = Ho and Fo, the force-free integro-PDE subject 10 4 miy to reach a new equilibrium in the electrically highly-
boundary conditions determines a spectrum of admisale  .,nqycting corona [13,14,92-100]. Within the first 5 yedrs o
analogous to the classical eigenvalue problem. Each admisy ne\y cycle, the old coronal global field of a particular polar
sible ao describes an extremuity = 0 force-free field. s reconfigured with the emerged new field into a similar
The absolutely-minimuriy Taylor state is then to be found dipolar form of the opposite global polarity. Not only are

among these extremum states. large amounts of magnetic energy liberated in episodes dur-

The Taylor hypothesis assumes ubiquitous magnetic rej,q s jarge-scale evolution of the corona, the formatién

connections. In the presence of an extremely high ele€tricayong jied structures that build up and store those amounts
conductivity, resistive dissipation takes place in theeext energy is an integral part of the global phenomenon. This

ingly small space-time volumes of individual CSs. So resis-yich phenomenology is outside the scope of the review. The
tive dissipation of bottHaps and total energ¥ey is a higher ¢416ing two points stfice for the purpose of this review.
order dfect in this sense. Ideal motions between events of CSp, significance of the long-lived structures Nos. 1 and 2

dissipation leaveH,ps unchanged whereas total energy
can change by ideal work, of either sign, done by the field.
A change in topologyl' by reconnection changes the free

energyAE(T) available for the work done, associated with . prominences [101-113], to give specificity to our pre-

a negligible change ifaps In @ compressible turbulence, e qing general remarks on long-lived coronal structures.
MHD shocks provide a ready means of dissipating kinetic

and magnetic energies. This impliesidg,s = Ho, constant- ] - g | yt
Fo evolution progresses with a statistically monotonicadyd  find @ basis for imposing additional helicities, selectemiir
creasingEw in the spaces. the continuum of general helicit#f, to define the end state of

We digress here to recall that the Taylor hypothesis wad turb_ulent_lleD relaxatio_n, extending an earlier study ef th
original formulated for the contained field in a simply con- contained field [43]. How is the weak breakdown of the flux-

nected domain likev, for which the classical totaH, is conservation law to be formulated from first principles ie th

meaningful and held constant under the hypothesis. For thdMitof 7 — 0? Thisis a problem of the coupling between the
anchored fieldH, is not a valid measure but the Taylor hy- resistive induction equation and the dynamics of CS forma-

pothesis may be recovered by replackgwith the relative  tion and dissipation. Numerical MHD modeling is a general
total helicity Hr, the latter a measure relative to its associ- Practical means of exploring these questions, but moawati
ated unique potential fielBpo. With the theoretical discov- and guidance with insightful analytical ideas seem esakenti

ery [33] of Haps Hg for an anchored field may be given an  Finally, the Taylor hypothesis also needs to be extended
interpretation as the flerence (40) between the total abso- to fields in an open corona [82,114-117]. There is no in-
lute helicities of the given field and its unique potentialdje  trinsic upper limit to the helicityHaps 0f a field confined by
both independently evaluated. Here we run into an interestrigid walls into a finite domain. In contrast, a force-free
ing issue [17,33,35,90,91], pointed out in sect. 2.4 that th field anchored to the base of an open atmosphere has a strin-
total absolute helicity of a 3D potential field is not necessa gent upper bound to the free energy it can store [13,14,118].
ily zero. We need to understand these novel properties in elRelated to this energy bound is a conjecture that in the ab-
ementary terms and re-examine the problems of defining theence of rigid walls, a large-scale field low in the corona
Taylor minimum-energy state in terms ldk andHgps cannot self-confine when its accumulated helicity is exces-
The Taylor hypothesis remains conceptually meaningfulsive by some MHD measure[13,14,98,119-125]. The low-
independent of such technical details as mentioned abovezoronal magnetic structures not only dump significant en-
In general physical terms, this hypothesis makes two pointergies as flares whenever a significantly-lower energy state
about the highly inductive fluid with a weak resistivity. By becomes available for a helicity-conserving transitiothie
the Parker theorem, this fluid isfieiently dissipative via the course of evolution. A significant part of an entire struetur
spontaneous CSs. On the other hand, the strong inductiomay also lose self-confinement and be ejected into the solar
of Faraday in the limit of; — O does not allow all the free wind [126] carrying along its excessively accumulateddzeli
magnetic energy to be discharged via CSs. Here we have iy [13,14,95,98,99,127-132].

in Figure 1 is that their plasma loops indicate twisted, non-
potential magnetic fields [83—85]. Figure 2 presents amothe
class of long-lived large-scale coronal structures, thesju

To generalize the Taylor hypothesis, one possibility is to
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Figure 2 The global state of the Sun on July 15, 2002. The white-ligidrssurface, the photosphere (left), has a cluster of damkots lined up along

a northern low latitude, north at top of subfigure. The lifiesight component of the Sun’s photospheric magnetic figight) indicates the strong 10°

G fields associated with the sunspots, white and black fotiy®snd negative polarities, respectively. Elsewhebglly the field is weak of the order of
10 G, in the form of peppery small-scale bipolar sourcesH/Jnemission (center) from a thin layer, the chromosphere, eltos photosphere, the general
mottled appearance is due to local magnetic structureh, wight heated regions over the sunspot cluster as well i@segnt, lengthy condensations, dark
in H, absorption, called prominences. The conspicuously lgngtbminence in the northern hemisphere, extending hoi@gnrmore than a solar radius
across the solar disk, is two orders of magnitude denser @mlércthan the surrounding tenuous hot corona over weak4féglions away from the sunspots.
Current interpretation suggests that such a prominencaligéded in a horizontal rope of twisted field [109-112] tes belf-organized out of the remnant,
still-twisted fields of sunspots that have decayed. Thednft central subfigures are publicly available from the BiguB®8olar Observatory, New Jersey
Institute of Technology, USA. The right subfigure is pubylieivailable from theSolar and Heliospheric Observatoiission of the European Space Agency
and NASA, made with the Michelson Doppler Imager [113].

3.3 Current-sheet formation via MHD-thermodynamic ested in situations characterized with a dimensionless con
interaction stante = K—}* < 1 where we have replaced thermal con-
ductivity x, with thermometric diusivity K_, for a typical
coronal densityK, andn having the same physical dimen-
sion. Consider electrical and thermal conduction due to the
free electrons in fully ionized hydrogen. The Spitzer plasm
model [1] gives an estimated~ 0.6 8, where the numerical
odficient Q6 is defined by atomic and thermodynamic con-
stants [19]. For a lovs plasma, cross-field thermalftlision

is significantly weaker than resistive fieldffdision. In other
words, as fluid and field gradients steepen monotonicaHy, re
sistive dfect becomes important before the cross-field ther-
mal insulation breaks down.

Now consider the energy transport equation (63) under the
assumption ofy = K, = 0. Each thin magnetic flux tube
+R-8=0, (63) is insulated thermally from the adjacent flux tubes. For a

given total mass in a given flux tube, the Lorentz force has no
whereg is the solar gravitational acceleration directed in the component along it, angd andp are related hydrostatically
(Cartesian) vertical-z direction in the force-balance equa- with the density scale height determined by the temperature
tion. The other equation describes anisotropic thermal conT. The profile of T along the tube in a steady state must di-
duction with conductivityk, directed everywhere along the rect a field-aligned thermal conduction that brings heanfro
magnetic field, its thermal flux balanced by radiative I®%ss over-heated regions, whe8| > |R|, to be radiated away in
and heat sourc§ per unit volume. We take, R andsS to be regions wheréR| > |S|. Force and thermal balance along the
explicitly known functions op, temperaturd and the mag- field generally cannot be maintained in the steady state for
netic field B. Adopting the ideal gas law to relatg,{, T) an arbitrarily prescribed total mass, typically resultinga
and imposing the solenoidal condition (59) &n we then  thermal-gravitational collapse [136]. Even if such a qodla
have a closed set of equations for the dependent variables avoidable, 3D fields of complex topology [11,15,23] pro-
(p,p, T, B). Let us derive an interesting conclusion about this duce temperature profiles along flux tubes that are generally
system, that CS formation is inevitable in the general solu-discontinuous across the tubes, one tube thermally iresiilat
tion involving a 3D magnetic field that is strong in the sensefrom another. It follows that the fluid pressure is also disco
of <« 1. tinuous across the flux tubes. For force balance between ad-

The above problem assumes zero resistivityy; 0, and  jacent tubes, a discontinuity jmmust be balanced by a com-
zero cross-field thermal conductivity, = 0. In the so-  pensating discontinuity il8%. This is easily accommodated
lar corona #,«,) are small but not zero. We are inter- by the strong field except that a field discontinuity implies a

To complete the physical picture of spontaneous CS forma
tion developed so far, we treat a field-fluid interaction in a
low-B environment. This interaction was discovered theoreti-
cally in the investigation of the dynamic interiors of quient
prominences [19,31,133-139]. Here it is presented as a ge
eral MHD process.

Consider the static equilibrium of a magnetic fi@dem-
bedding in a tenuous plasma of dengitgnd pressure, de-
scribed by the equations:

1 N
E(VxB)xB—Vp—pgz_O, (62)

V-[@(B-VT)B
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CS that must dissipate resistively at a small but nonzero reditionn = 0. A similar field steepening to form TDs can thus
sistivity. be expected in a tenuous & 1) fluid when the condition
The conditione = K7—1* < 1is crucial, indicating that the 7 = 0 fails weakly, except that unchecked field steepening
cross-field insulation as the principal cause of the disnant ~ results in resistive diusion of fields at dynamically relevant
ous temperature can hold up to induce a CS to the point of itdéime scales.
resistive dissipation. As the CS dissipates, not only isethe
a change in field topology by magnetic reconnection but the4  Summary
flux tubes would also exchange mass. The mass exchanges
take place over entire magnetic flux surfaces in a chaotidOur review begins with magnetic flux conservation as the
manner, a process likely to render the total mass along eactiefining property of ideal induction equation (5). This prop
flux tube to be a discontinuous function over the flux tubes.erty is Lagrangian in nature, to be observed only by follayin
Noteworthy is the fact that thiglect involves a weak CS, the a specific fluid surface as it deforms continuously in the flow.
strong field easily developing a small jumpRA to compen-  The exhaustive partition of the fluid into disjoint, unlinke
sate for the fluid pressure jump. Resistive dissipation 8a C thin t toroids sets the stage for just such an observation. Each
is inevitably induced by a tenuous fluid, the more tenuous ther toroid sees the given field in terms of two conserved fluxes,
fluid the greater theftect. Thus such a fluid can flow readily its axial flux f(r) and the fluxF(7) trapped in the hole of the
across the strong field it embeds. toroid. The solenoidal condition is the reason the givemlfiel
Recent unprecedented high-resolution observations fronis made up of only two independent flux systems, seen in the
the HinodeMission of Japan Aerospace Exploration Agency fact that a solenoidal vector field is defined by two free scala
and Solar Dynamics Observatorylission of US National  functions in 3D space, the CK field representation a case in
Aeronautics and Space Administration have revealed tleat thpoint. The general Lagrangian helicity defined by eq. (18)
plasma interior of a prominence is dynamic on its small scale then follows naturally. In its simplest form, the Lagrangia
despite its stable macroscopic appearance [103,104,133elicity H, is the sum of products of the two fluxé¢r) and
The cool prominence over these small scales take the fornfr (7, v) associated with each toroid, a measure of entangle-
of a multitude of vertical narrow filaments that fall stegdil ment between the two flux systems.
at less than free fall speeds across their detected hoalzont Historically magnetic helicity had been formulated in the
fields [31,133]. A global upward mass flux is ejected in- Eulerian description in common use: the classical total he-
termittently on the small scales everywhere from the rela-licity H. of a contained field and the relative total helicity
tively thin layer of partially-ionized atmospheric layalied Hg of an anchored field, the latter a relative measure against
the chromosphere, shown in the central subfigure in Figurean associated potential field as a reference. The discovVery o
2 [140]. The bulk of this ejected cool mass heats up tothe total absolute helicityaps dispenses with the need for
coronal temperature and returns as condensing plasma ee-reference field, describing the field entanglement in both
erywhere [141,142]. This return flow may be the source ofcontained and anchored fields on an equal conceptual basis.
the falling vertical filaments in the prominence interiol]3  The Eulerian total helicity, defined in thefiirent ways, is
a form of condensation due to the magnetic geometry of thgust one of a continuum of constants of motion describing the
prominence flux rope [109-112]. This cross-field drainagefrozen-in field topology under perfect electrical condvityi
can cycle through a quiescent prominence an estimated orddthe Lagrangian continuum of conservAdsuggests that cor-
of magnitude more mass in a day than the total mass mainresponding to it must exist a continuum of general Eulerian
tained quasi-steadily in the prominence over days to a weekelicity H* that awaits discovery.
[134]. The general MHD ideas discussed in the review are given
To apply to the drainage in a real prominence, we needspecificity by the cylindrical domai. The expression of the
physically more complete models that account for the globatltotal absolute helicitya,sin this domain depends on the use
field in realistic 3D geometry, the partially-ionized state  of a specialized CK field representation in terms®§ [ Bq],
the prominence, the fully ionized corona, and other rele-subject to boundary conditions (30)—(32) on the two gener-
vant physical features. The above analysis based en  ating functions ¥, ®). This specialized definition Offaps
% < 1 serves only as a simple demonstration of an MHD- leaves open for future development as to hidyys may be
thermodynamic #ect. This generalféect is physically dis- defined for general domains without the facility of a CK rep-
tinct from the Parker spontaneous CS formation but the tworesentation. The question can be posetedéntly: how may
effects share a common feature. Eafiee arises from the the CK representation be generalized for a field in a domain
demand of force (and thermal) balance imposed at each poiraf an arbitrary shape?
in space subject to a global constraint, a given total mass to We have centered our discussion on the cylindri¢dibr
be thermally distributed along a flux tube in one case and the reason worth pointing out. In the two other special do-
given field topologies invariant along three interactingcflu mains admitting CK representations, namely, the finite spac
tubes in the other case. Generally this demand can be métetween two concentric spheres and its limiting case of the
only in a discontinuous field containing TDs under the con-unbounded space between two parallel planes, the total abso
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lute helicity Haps and the relative total helcitidg have the  minimum-Ey points belonging t®r are possible minimum-
same value. A topologicgdhysical understanding of why Ey points representing force-free fields with equilibrium TDs
these two domains have this special property remains to balso of topologyT. These discontinuous force-free fields do
found. All three helicities g, Haps Hi] are typically dis-  not belonging toBt, of course, but each may be the limit
tinct [32,33,35]inV, likely to be representative of the general point of a path of viscous relaxation#y, an intuitive picture
domain. of what is meant by the spaé® not being Cauchy complete.
The CK field representation i is a physical realization There is a richness in the structure®f not trivial to con-
of the Lagrangiam-partition of a fluid. It can initiate a La-  struct, but this picture shows the way one might build explic
grangian description by the partition defined at an initial models to demonstrate the Parker theorem.
time. Alternatively, as an Eulerian description, the CK-rep  One possibility is to discover a field domain and a
resentation decomposes the given field into two linearly sufield topology T such thatBy is demonstrably without a
perposed fields at each moment in time without reference taninimum-Ey point contained in it. Then all paths of vis-
where each fluid parcel has moved. cous relation inBt must lead to a minimunky, force-free
The Lagrangian description seems conceptually simplerfield with TDs. In such a casefr may have one or more
although computationally complicated. The CK represen-6Ev = 0 extremum points except that none of them are local
tation at any given time partitions the given field into the minimuminEy. These extremum points describe continuous
two fields By, Be] that subsequently independently evolve force-free fields that are linearly unstable. When pertdrbe
in time with the common fluid velocity. At any subsequent the field evolves away from its unstable initial equilibrium
time, the two fields are greatly deformed, depending,dut  with an inevitability of forming TDs. The first demonstra-
their linear sum always defining the given field at each mo-tion [146] of the Parker theorem of this kind has opened up a
ment. Such a decomposition has value only if the two compo-promising approach of inquiry, investigating the struetiof
nents in the superposition are simple fields in terms of whichall vector function spacesr.
the given field in its admissible complexity can be expressed The dependence @Bt on the shape of the field domain
The relationship between the CK and Euler-potential reprepresents a dierent aspect of the Parker theorem. The reader
sentations shows that such a simple field may be defined tés referred to interesting results published on the availab
be one that can be represented by a pair of globally defineity of a continuous force-free state following a simultane-
Euler potentials. Then all fields can be expressed as the sumus, continuous deformation of the field and its domain
of up to three simple fields. Sect. 2.5 on vortex dynamics[12,17,60-62,81,90,91].

illustrates these field representations in instructivetrest to The spontaneous formation of CS is also encountered in
ideal MHD. Thus we have a physically complete descriptionthe thermal and force balance of a radiating heated fluid sub-
of the frozen-in field topology in ideal MHD. ject to an anisotropic thermal conduction strictly chatetel

The Parker theorem was discovered in the theoretical inalong a strong frozen-in magnetic field. Here a continuous
vestigation of the solar corona [7,8,29]. A large volume of field is incompatible with thermal and force balance at each
work has been published over many years and the reader igoint in space if the total mass loaded on each flux tube is
referred to recent comprehensive reviews [10,17,22]. Bhe b arbitrarily prescribed [136]. This CS formation is phydiga
sic point is that a continuous field is generally incompatibl distinct from that described by the Parker theorem, the &orm
with force-free equilibrium at each point in space if thediel a consequence of thermodynamics and the latter field topol-
is arbitrarily prescribed with a complex 3D topology. The ogy, the two &ects expected to be acting simultaneously in a
nature of the equilibrium at each point in space is not cru-real situation.
cial. The incompatibility arises between the point-byfoi Gravity plays an important role in the static MHD-
and global conditions, the former described by PDEs and thehermodynamic coupling treated. The gravitational gwitli
latter by integral equations [17]. For example, a similar in of a heated radiating fluid by the formation of CSs neces-
compatibility may be found in a steady field-aligned flow if sarily involves the drainage of the fluid across the field sup-
the field topology is to be arbitrarily prescribed [143—-145]  porting its weight. In the case of a quiescent prominence,

The partition of the spac8 of all continuous fields it/ this drainage has been estimated from observation to be sig-
into the disjoint subspaceB8r, each comprising fields with nificant [134]. The formation of an interstellar cloud sup-
a common topologyl, serves well to describe the theorem. ported by the galactic magnetic field is a similar MHD pro-
The mathematical structure of subsp&eis defined by the  cess [147-154]. The spontaneous formation of CSs via this
shape of the general field domaif) taken to be an upright MHD-thermodynamic coupling is a promising mechanism
cylinder for specificity in our review, and field topology. for an MHD fluid to separate from, or to flow across [31],
The continuous force-free fields, if any, belonging@p are  its embedding fluid in spite of a weak resistivity, an issue im
0Enm = 0 extremum points in that function space. The subsetportant to the current understanding of star-formationasut
of these extremum points correspondindsig being a local ~ a magnetized plasma.
minimum are the possible end-states terminating the viscou The theoretical developments reviewed are motivated by
relaxation of a field with topology. In addition to these the observed solar corona. This hydromagnetic atmosphere
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is almost a perfect electrical conductor at its million-ckegy 15
temperature. The ubiquitous heating of the corona maintain
ing its temperature with stability and the rapid liberatimin
dissipated energies in violent flares may be explainedimger
of spontaneous CSs in the rich variety of physical circum-
stances represented by these observed phenomena. CS for-
mation is due to high conductivity coupled to the dynami-
cal forces, but this same coupling also sets macroscopic con 18
straints on the amount of magnetic energy possible to libera
via this ubiquitous process in the solar corona. The Tayer h
pothesis is the simplest form of such constraints that predu
macroscopic magnetic structures. This self-organization
turbulent MHD is a possible energy-storage mechanism that
fuel flares and coronal mass ejections.

There has been considerable progress in the basic MHD 21
theory reviewed, leading to clarification of basic conceyid
clearly articulated problems for research. Among these-pro
lems, the most pressing might be the formulation of a general ,,
theory for the breakdown of flux conservation in the low-
resistivity limit, going beyond the Taylor hypothesis. Ras
MHD theory is essential for interpreting numerical simula-
tions as well as the phenomena observed in the solar corona
[155-158].
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