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Abstract  Various configuration-based multi-reference second order perturbation approaches
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The second order Moller-Plesset perturbation theory (MP2) is widely used as one of the most

efficient methods for evaluating the electron correlation effect in molecules. Usually for systems

where one configuration is strongly dominant in the wave-function, as this requirement is often

fulfilled for molecules in their ground state around their equilibrium geometries, the single HF

reference MP2 could provide a convenient and reliable description. However, for molecules in

excited states and radicals and the large-scale PES calculations, where the degeneracy or quasi-

degeneracy effects should be considered, multi-reference techniques would be the only choice to

give a correct and balanced description of the electron structure. Among various multi- reference

treatments, e.g. multi-reference configuration interaction (MRCI) and multi-reference perturbation

theory (MRPT), only the second order perturbation theory (MRPT2) is efficient enough to be ap-

plied to the study for large-size systems. For this reason, much research interest has been focused

on the development and application of MRPT2 methods since the past deca-  des[1 12].

Various MRPT2 methods could be implemented by adopting different algorithms. Generally

speaking, they can be viewed as either the method based on orbitals or that based on configura-

tions. The differences between the both mainly come from the different definitions of the zeroth-

order Hamiltonian operator H0. Each method has its advantages as well as shortcomings. In the

methods based on orbitals, graphical techniques and the linked graph theorem could be exploited

to simplify the calculation[13]. However, the energy of the one-electron orbitals (especially of the

active orbitals) should usually be redefined or modified, and the reordering of the orbital energy

may lead to the convergence difficulty. In the methods based on configurations, the convergence

could also fail when there is an intruder state encountered, but it is often comparably easier to find

a suitable solution. The major computational task in the MRPT2 method based on configurations
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consists of CI matrix elements between configurations or the coupling coefficients. In the previous

work we developed a series of advanced algorithms to obtain the coupling coefficients of CI ma-

trix elements in a very efficient way[14] and therefore the efficiency of the method could be guar-

anteed in our codes. In addition, in this paper we propose an MPRT2 method, which may avoid

intruder states. Practice calculations show that our proposed method has good convergence prop-

erties even for molecules far away from their equilibrium geometries.

1  Theory and algorithm

For a preselected reference space MR with dR configurations, the whole configuration space

M is constructed through applying all possible single and double substitution operators to the ref-

erence configurations.
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After diagonalization of Hamiltonian matrix in the reference space, the zeroth-order approximate

wave function and zeroth-order energy could be obtained:
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The complete configuration space could be partitioned into model space P and its complementary

space Q. The project operators in spaces P and Q are then defined as
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Obviously there is a relationship between the two operators:

P + Q = 1.

According to Lowdin[15], it is always possible to write Schrödinger equation in an equivalent

form:

Heff (PΨ)= E(P Ψ ),                         (3)
where E is the exact energy and Heff  an effective Hamiltonian operator:

Heff = PHP + PHQ (E − QHQ)−1 QHP. (4)

In the perturbation theory, Hamiltonian operator is divided into the zeroth-order Hamiltonian and

the perturbation operator:

H = H 0 + V.

Using the above relationship, the perturbation series could be obtained by expanding the factor

(E − QHQ)−1 by hierarchy. The equation
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could be used to get the expansion result. There are different means to expand the term
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(E− QHQ)−1. In Brillouin-Wigner perturbation expansion we set

X = E −H0 , Y = V,

and the effective Hamiltonian is derived as

,)( BWBWBWeff PVVRVRVVRHPH L+++=             (6)
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When truncating the series to the second-order, we have the second-order BW perturbation op-

erator
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In Rayleigh-Schrödinger perturbation expansion, we define

X = E − H0,   Y = V − E + E = V –∆ E,

where E could be the zeroth-order energy or any modified energy. The effective Hamiltonian for

RS perturbation theory is expanded as
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where
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Thus the second-order RS effective Hamiltonian operator is obtained by truncating the expansion

to the second-order:
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In principle, the definition of the zeroth-order Hamiltonian and the choice of the model space

in MRPT2 are arbitrary by its definition. In practice, however, the choice strongly determines the

convergence properties of the perturbation expansion and is critical to the success of the perturba-

tion theory. It is desirable to have the zeroth-order energy as close as possible to the total energy.

At the same time, there are also other requirements, which may need to be considered, e.g. the

size-consistency of the method, the treatment of intruder states, and the implementation of the

algorithms. Several approaches are proposed in this paper in order to meet these requirements.

1.1  The model space P is equal to MR

In the first approach, the reference space is chosen as the model space. Diagonalization of the

Hamiltonian in the reference space will give the zeroth-order energy 0
0E  and wave function Ψ0.

Perturbation corrections are then to be found for this single reference wave function. The zeroth-

order Hamiltonian H0 could be defined as



570 SCIENCE IN CHINA (Series B) Vol. 43

              ,0 ∑ ∑
∈ ∈

+=
RMR Q

RRR ÖÖEÖÖEH
β

βββ                    (11)

where
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The above definition actually corresponds to Epstein-Nesbet (EN) partitioning scheme[13]. Because

H0 is defined as the diagonal operator in space M, the zeroth-order wave function is generally not

the eigenfunction of H0, unless all the configuration functions in the model space are degenerated.

The zeroth-order energy can be written as

               .|| 2
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By using formulae (7) and (10) we obtain the perturbation energy for the second-order BW and

RS perturbation methods:
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Since H 0 is a diagonal operator, the perturbation matrix elements in eqs.(13a) and (13b) are

essentially the off-diagonal elements of H. The only difference between the second-order BW and

RS perturbation energy appears in the denominator of eqs. (13a) and (13b). In the RS formula E

is equal to E0 or 0
0E ,while in BW formula E is an unknown energy and should be determined

iteratively.

1.2  The model space P is not equal to MR

In order to accelerate the convergence of PT series and avoid the intruder states, the larger

model space P could be selected, implying that all the configurations having a strong interaction

with reference configurations or the energy which nears the zeroth-order energy should be includ-

ed into P space. For this purpose, two thresholds T1 and T2 are defined as criteria parameters for

selecting configurations:

βÖVØ 0 T1, βEEE −′)( T2.

The configurations which meet either of the above requirements are chosen to construct the P

space, together with all the configurations in the reference space. The unselected configurations

consist of the Q space. Thus the zeroth-order Hamiltonian is expressed as
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With the methods similar to the first scheme, the zeroth-order perturbation energy and corre-
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sponding wavefunction could be obtained by solving equations
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and the perturbation energy is
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The perturbation approach discussed above is analogous to Ak approximation method[16] and CIPSI

(configuration interaction with perturbation selection iteratively)[17]. However, the zeroth model

space is selected from different considerations. In our method the importance of avoiding intruder

states is more emphasized.

1.3  Perturb-then-diagonalized method

Both the two approaches described above belong to the mode called “first-diagonalize-then-

perturb”, in which the reference space is represented as a single zeroth-order wave function, thus

only one state and its energy could be generated once a time. Besides these, MRPT2 calculation

could also be realized by the mode called “first-perturb-then-diagonalize”. In this mode, the di-

agonalization of an effective Hamiltonian Heff is performed after perturbation correlation is done.

In this approach the same zeroth Hamiltonian H0 of eq. (11) is employed, but the effective Hamil-

tonian matrix in the model space could be given by different ways, e. g.
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To derive the above two formulae, the fact that the perturbation correction comes only from

off-diagonal Hamiltonian elements was considered. Formula (17) is adopted from ref. [9], where

the definition of configuration energy is different from that in ref. [9]. The eigenvalues and the

wavefunctions could be obtained by solving the following equation,

.  ,  ,2  ,1   ,)20(
eff Riii diØEØH L==−                  (18)

In principle, the diagonalization of the effective Hamiltonian could give us several lowest eigen-

values and the corresponding eigenfunctions.

In summary, the most costly computational task in the implementation of the three ap-

proaches discussed above is to calculate the matrix elements of the perturbation operator. In this

paper they actually correspond to the off-diagonal elements of Hamiltonian matrix, i.e.

βÖHØ 0  and βα ÖHØ . The former term involves only the matrix elements between the

reference space and the complementary space Q, and the calculation is very simple and efficient.

This is because only the loops which appear in V-D, V-T and V-S pairs should be generated and
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considered, while the large amount loops relative to S (T)-S (T), S (T)-D and D-D interaction type

are neglected. For the latter terms, some loops with interaction type like S (T)-S (T) should be

calculated, but the number of such loops is cut down greatly compared with that in MRCISD cal-

culations. Thus all MRPT2 approaches could improve the program efficiency to some extent, as

shown by the example calculations.

2  Applications

2.1  Ground state energy of C4H6

The ground state energy obtained by the perturbation and MRCISD calculations having the

same reference functions is given in table 1. The last column in the table lists the timing compari-

son.

The molecule has the symmetry C2h and the basis set DZP is chosen. Thus there are 94 orbitals:

36 ag , 36 bu , 11 bg and 11 au . The reference space is CAS(6/5), i.e. 6 electronics are distributed in

5 active orbitals: 1-2 bg , 1-3 au. 4 lowest orbitals are frozen. The number of configurations in-

volved in MRCISD space is 9 539 571. The MRPT2-1a energy is obtained from eq. (13a) by it-

eration, while the MRPT2-1 energy from eq. (13b), where E = E0 (eq. (1)). The energy for

MRPT2-2 and MRPT2-3 is obtained by using eqs. (15) and (16), respectively.

Table 1  MRPT2 and MRCISD calculations for C4H6

Methods No. of ref. func. Dim. of P
space

Dim. of CI space Energy(a.u.)a) Timing / sb)

MRCISD 56 9 539 571 −155.461 66 55 408 (22 293)
MRPT2-1a 56 56 −155.466 85 240
MRPT2-1b 56 56 −155.577 63 240
MRPT2-2c) 56 134 −155.466 49 4 095
MRPT2-3 56 56 −155.566 45 1 041

a) 1 a.u. = 2 624.87 kJ/mol; b) computer: K7-500. The time in the parenthesis is for the new MRCISD program; c)

thresholds: T1 = 1.0 10−2 and T2 = 1.0.

It can be seen from table 1 that among all results presented, MRPT2-2 energy remains in

better agreement with MRCISD’s, but takes more time than other perturbative schemes. The non-

iterative RS scheme, MRPT2-1b, is the fastest and has larger deviation in energy with respect to

MRCISD. The deviation can be reduced if the preliminary MCSCF calculation is performed. It

seems that the iterative BW scheme, MRPT2-1a, works well in energy and efficiency, however is

not generally size-consistent. The result based on formula (17) is not reported for its poor conver-

gence.

2.2  Splitting energy between the singlet and triplet states of CH2

The computation results of different methods and the experiment values are compared in ta-

ble 2. It could be seen from the table that both the HF method and the single reference MP2 have

very poor results compared with the experimental values, while all the multi-reference methods

predict much better values. The results obtained by MRPT2-1a are in the best agreement with the
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experimental values, however, this does not indicate MRPT2-1a method is more theoretically

advantageous because of possible error cancellation. The results of MRCISD are not as good as

expected because the configuration spaces for singlet and triplet states have many different sizes.

For calculation of triplet, the dimension of the configuration space is 257 791, while for singlet the

dimension is 163 115. The weight ratio for the reference configurations in the final wavefunction

is 0.947 1 and 0.944 5, respectively. The computed results could be improved if a larger configu-

ration space is used for singlet. In fact, if 16 reference configurations are selected for singlet cal-

culation and 6 reference configurations for triplet calculation, the dimension of the configuration

is 219 492 and 226 556, and the weight actor for reference space is 0.950 7 and 0.951 1 respec-

tively. The splitting energy using the balanced configuration spaces is 9.95 kcal/mol for MRCISD

and 9.86 kcal/mol after the Davidson correction (MRCISD+Q), which are in excellent agreement

with the experimental value[19]. However, such a reference space is not suitable for perturbation

calculations.
Table 2  Energy splitting of 3B1 and 1A1 for CH2 (kcal / mol)

Methods E (3B1) E(1A1) Splitting
HF −38.932 36 −38.892 33 25.12

MP2 −39.070 99 −39.046 06 15.64
MRPT2-1aa) −39.100 85 −39.085 06  9.91
MRPT2-1ba) −39.091 19 −39.072 35 11.82
MRPT2-2b) −39.087 59 −39.069 19 11.55
MRPT2-3 −39.101 16 −39.082 99 11.40
MRCISD −39.087 51 −39.069 33 11.41

MRCISD+Q c) −39.096 64 −39.079 45 10.78
Experiment (Te)d)  9.65

a)  Active orbitals : 1a1, 2a1, 3a1, 1b2, 1b1, 2b1. The dimension of the complete is 257 791(triplets) and 163 115 (singlets);

b) thresholds: T1=1.0 10−3 and T2 = 2.0. The dimension of the P space is 2 806 (triplets) and 2 241 (singlets); c) the Davidson

correction: E = (EMRCISD − EREF ) (1−C0) / (2C0−1), where C0 is the square sum of coefficients in MRCISD function; d) the

relativism and zeroth-energy revision are not included in Te
[18].

2.3  Potential energy curves of BH

The determination of the ground-state potential energy curve of BH molecule is a “touch-

stone” for many ab initio methods and gives ones useful direction for selecting proper theoretical

methods to calculate potential energy curves. Many methods, including HF and various post-HF,

are tested in this paper. The basis set cc-pVTZ is selected. In order to determine the potential en-

ergy curves of BH under multi-reference condition, a preliminary CASSCF calculation is first

performed for reference space CAS(4/5), i.e. 4 electrons are distributed in 5 active orbitals: 2σ, 3σ,

1π, 2π, and 4π. The results for single and multiple references are shown in fig. 1(a) and (b), re-

spectively. Fig. 1 (a) was obtained by Gaussian-98w[20]. We notice that MP2, MP3 and MP4 of

single reference perturbation methods cannot lead to correct decomposing limit and therefore are

not reliable for the calculation of potential energy surfaces. As is well known that MPn are a kind

of perturbation schemes based on orbital energy, whose difference between occupied and non-

occupied orbitals is involved in the denominator and molecular integrals in the numerator of the



574 SCIENCE IN CHINA (Series B) Vol. 43

energy formula. Let us investigate the energy at the two different nuclear separations, 0.32 nm

(near the top of the MP4 potential energy curve) and 0.6 nm(the point having lower energy), and

we found out that the energy deference between HOMO and LUMO at 0.6 nm decreases more

than that of molecular integrals, which leads to the decreasing of the total energy. This is why

MPn are not successful for the geometry far away from equilibrium. The curves for QCISD and

QCISD (T) are basically correct though the QCISD(T) curve slightly descents owing to the per-

turbation treatment in the third order.

Fig. 1 (b) shows the multi-reference results obtained by the program of this paper except for

CASSCF. The multi-reference methods, no matter whether they are MRPT2 or MRCISD, give the

correct shape of a potential energy curve for a stable molecule.

3  Conclusions

Several multi-reference perturbation theories based on configurations are investigated in this

paper. For the second-order perturbation calculations, the major computation task involves only

the matrix elements in MRCISD. So our previous UGA methods to fast determine the coupling

coefficients could be employed in the new MRPT2 codes. In MPRT2 methods based on configu-

rations, the zeroth-order Hamiltonian operator is defined as the diagonal operator, whose expecta-

tion value is the diagonal element of Hamiltonian matrix. By this definition the matrix elements of

a perturbation operator are actually the off-diagonal elements of Hamiltonian matrix. Four conclu-

sions could be drawn from the studies in this paper. ( ) All MP2 methods are much more effi-

cient than the standard MRCISD calculations. The first method can reduce the computation time

by more than two scales, and the accuracy of results is comparable to that of contracted CI meth-

ods. It is thus possible to extend this method into larger systems. ( ) Compared with the single

reference MP2 methods, the multi-reference perturbation theory gives a more reliable and correct

Fig. 1.  The potential energy curves of BH.
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description for open-shelled systems and for molecules far away from its equilibrium geometry.

( ) The second MRPT2 method could give results very close to that of MRCISD calculations and

has the advantage avoiding intruder states. However, its efficiency is not very satisfactory and the

size-consistency property always fails. For the other two methods the size-consistency is also not

obvious because it is difficult to apply the linked graph theorem directly to the methods based on

configurations. ( ) Multi-reference techniques are extremely important in the investigation of the

potential energy surface. Even for SCF calculation, MR techniques should be employed if the

quasi degeneracy exists.
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