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Abstract Various configuration-based multi-reference second order perturbation approaches
were investigated and a new scheme averting intruder states was suggested. The codes based on
these schemes were tested by example calculations.

Keywords: perturbation theory, multi-reference, configuration interaction.

The second order Moller-Plesset perturbation theory (MP2) is widely used as one of the most
efficient methods for evaluating the electron correlation effect in molecules. Usually for systems
where one configuration is strongly dominant in the wave-function, as this requirement is often
fulfilled for molecules in their ground state around their equilibrium geometries, the single HF
reference MP2 could provide a convenient and reliable description. However, for molecules in
excited states and radicals and the large-scale PES calculations, where the degeneracy or quasi-
degeneracy effects should be considered, multi-reference techniques would be the only choice to
give a correct and balanced description of the electron structure. Among various multi- reference
treatments, e.g. multi-reference configuration interaction (MRCI) and multi-reference perturbation
theory (MRPT), only the second order perturbation theory (MRPT2) is efficient enough to be ap-
plied to the study for large-size systems. For this reason, much research interest has been focused
on the development and application of MRPT2 methods since the past deca-  des* 2,

Various MRPT2 methods could be implemented by adopting different algorithms. Generally
speaking, they can be viewed as either the method based on orbitals or that based on configura-
tions. The differences between the both mainly come from the different definitions of the zeroth-
order Hamiltonian operator H,. Each method has its advantages as well as shortcomings. In the
methods based on orbitals, graphical techniques and the linked graph theorem could be exploited
to simplify the calculation!®®. However, the energy of the one-electron orbitals (especialy of the
active orhitals) should usually be redefined or modified, and the reordering of the orbital energy
may lead to the convergence difficulty. In the methods based on configurations, the convergence
could also fail when there is an intruder state encountered, but it is often comparably easier to find
a suitable solution. The major computational task in the MRPT2 method based on configurations
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consists of Cl matrix elements between configurations or the coupling coefficients. In the previous
work we developed a series of advanced algorithms to obtain the coupling coefficients of Cl ma-
trix elements in a very efficient way!' and therefore the efficiency of the method could be guar-
anteed in our codes. In addition, in this paper we propose an MPRT2 method, which may avoid
intruder states. Practice calculations show that our proposed method has good convergence prop-
erties even for molecules far away from their equilibrium geometries.

1 Theory and algorithm

For a preselected reference space M; with d, configurations, the whole configuration space
M is constructed through applying all possible single and double substitution operators to the ref-
erence configurations.
My ={0x 1 My, R=1, 2, ---, dg},

M:{a,i=L2,...,dM|<oi|0j>=dij}.

After diagonalization of Hamiltonian matrix in the reference space, the zeroth-order approximate
wave function and zeroth-order energy could be obtained:
Yo~ é CxOr, Eqg :<@0 |H|@o>- (1)
Rl My
The complete configuration space could be partitioned into model space P and its complementary
space Q. The project operators in spaces P and Q are then defined as
P=340.)0.| 2=a10s )0 | @
al P bi Q
Obviously thereis arelationship between the two operators:
P+0=1
According to Lowdin™, it is always possible to write Schrodinger equation in an equivalent

form:
Hy (PY)=E(PY ), ©)
where E isthe exact energy and Hy; an effective Hamiltonian operator:
Hy = PHP + PHQ (E - QHQO) ' QHP. (4)

In the perturbation theory, Hamiltonian operator is divided into the zeroth-order Hamiltonian and
the perturbation operator:

H=H,+V.
Using the above relationship, the perturbation series could be obtained by expanding the factor
(E - QHQ) * by hierarchy. The equation

¥
(X-1nt=xty exy ©)
i=0
could be used to get the expansion result. There are different means to expand the term
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(E- QHQ) . In Brillouin-Wigner perturbation expansion we set
X=E-H,, Y=V,
and the effective Hamiltonian is derived as

Hys = P(H +VRgyV +VRgyVRgwV +---)P, (6)
with
o0 g 100
BW — . — -
E' HO bTQ E' Eb

When truncating the series to the second-order, we have the second-order BW perturbation op-
erator
(Hgr)? = P(H +VRgyV)P. )
In Rayleigh-Schrodinger perturbation expansion, we define
X=E'-H, Y=V-E+E =V-DE,
where E ’ could be the zeroth-order energy or any modified energy. The effective Hamiltonian for
RS perturbation theory is expanded as

Hg =P(H +VRgsV +VRgs(V - DE)RpsV +--+)P, (8)
where
0 _s o] o
" ECH, §, E¢-E,’

Thus the second-order RS effective Hamiltonian operator is obtained by truncating the expansion
to the second-order:
(Hgt )@ ? = P(H + VRggV)P. (10)
In principle, the definition of the zeroth-order Hamiltonian and the choice of the model space
in MRPT2 are arbitrary by its definition. In practice, however, the choice strongly determines the
convergence properties of the perturbation expansion and is critical to the success of the perturba-
tion theory. It is desirable to have the zeroth-order energy as close as possible to the total energy.
At the same time, there are also other requirements, which may need to be considered, e.g. the
size-consistency of the method, the treatment of intruder states, and the implementation of the
algorithms. Several approaches are proposed in this paper in order to meet these requirements.

1.1 Themodel space P isequa to M,
In the first approach, the reference space is chosen as the model space. Diagonalization of the
Hamiltonian in the reference space will give the zeroth-order energy E and wave function Y .

Perturbation corrections are then to be found for this single reference wave function. The zeroth-
order Hamiltonian H, could be defined as
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Hy= é ER|OR><OR | + é Eb|0b ><Ob | (11)

Rl My bl Q

where
E, =(0,|H|0,),x1 P,Q.

The above definition actually corresponds to Epstein-Nesbet (EN) partitioning scheme™®l. Because
H, is defined as the diagona operator in space M, the zeroth-order wave function is generally not
the eigenfunction of H,, unless all the configuration functions in the model space are degenerated.
The zeroth-order energy can be written as

ES =&, | H |0,i= § CZE,. (12)

R

By using formulae (7) and (10) we obtain the perturbation energy for the second-order BW and
RS perturbation methods:

. \|2
ES? :<@o |Heff |@o> =Ey+ é w’ (139)
bl 0 b
o |@lro, )

ER? = @y |Het|9,) =Eo + Q

bl

Since His a diagona operator, the perturbation matrix elements in egs.(13a) and (13b) are
essentially the off-diagonal elements of H. The only difference between the second-order BW and

RS perturbation energy appears in the denominator of egs. (13a) and (13b). In the RS formula E’

13b
EC¢ E, (13)

is equal to E, or EJ ,whilein BW formula E is an unknown energy and should be determined
iteratively.

1.2 Themodel space P is not equal to M,

In order to accelerate the convergence of PT series and avoid the intruder states, the larger
model space P could be selected, implying that all the configurations having a strong interaction
with reference configurations or the energy which nears the zeroth-order energy should be includ-
ed into P space. For this purpose, two thresholds 7; and 7, are defined as criteria parameters for
selecting configurations:

(o|V[0, ) =T, |E(EY- Ey| <T.

The configurations which meet either of the above requirements are chosen to construct the P
space, together with all the configurations in the reference space. The unselected configurations
consist of the O space. Thus the zeroth-order Hamiltonian is expressed as

Ho =@ Ea|0, )(O: |+ @ Eu|0s )(0n | -

al P bi 0

With the methods similar to the first scheme, the zeroth-order perturbation energy and corre-
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sponding wavefunction could be obtained by solving equations
HOEE%0¢, 0¢=3Q C.0,, (14)
al P
and the perturbation energy is
. 2
o |<@ 10, >|
ECI-PT2:E0+a 0 - (15
bl Q E°-E b
The perturbation approach discussed above is analogous to 4, approximation method!*®! and CIPSI
(configuration interaction with perturbation selection iteratively)*”. However, the zeroth model
space is selected from different considerations. In our method the importance of avoiding intruder
states is more emphasized.

1.3 Perturb-then-diagonalized method

Both the two approaches described above belong to the mode called “ first-diagonalize-then-
perturb”, in which the reference space is represented as a single zeroth-order wave function, thus
only one state and its energy could be generated once a time. Besides these, MRPT2 calculation
could also be realized by the mode called “first-perturb-then-diagonalize” . In this mode, the di-
agonalization of an effective Hamiltonian H; is performed after perturbation correlation is done.
In this approach the same zeroth Hamiltonian H, of eq. (11) is employed, but the effective Hamil-
tonian matrix in the model space could be given by different ways, e. g.

H.,. H
(Hg )& = Hppo+ 8 — 2%, (16)
vio £o ™ Eb
. o HoypHyo(E, +Eye- Ey - Ep)
(Ha) o) =Hpet @ —— . (17)

bl 0 (Ea - Eb)(Eaﬂ:' Eb)

To derive the above two formulae, the fact that the perturbation correction comes only from
off-diagonal Hamiltonian elements was considered. Formula (17) is adopted from ref. [9], where
the definition of configuration energy is different from that in ref. [9]. The eigenvalues and the

wavefunctions could be obtained by solving the following equation,
HSP0,=E0,, i=1,2, -, dg. (18)
In principle, the diagonalization of the effective Hamiltonian could give us severa lowest eigen-
values and the corresponding eigenfunctions.
In summary, the most costly computational task in the implementation of the three ap-

proaches discussed above is to calculate the matrix elements of the perturbation operator. In this
paper they actualy correspond to the off-diagonal elements of Hamiltonian matrix, i.e.

(@0|H|0, ) and (@, |H|0, ). The former term involves only the matrix elements between the

reference space and the complementary space Q, and the calculation is very simple and efficient.
This is because only the loops which appear in V-D, V-T and V-S pairs should be generated and
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considered, while the large amount loops relative to S (7)-S (7), S (T7)-D and D-D interaction type
are neglected. For the latter terms, some loops with interaction type like S (7)-S (T) should be
calculated, but the number of such loops is cut down greatly compared with that in MRCISD cal-
culations. Thus all MRPT2 approaches could improve the program efficiency to some extent, as
shown by the example calculations.

2 Applications

2.1 Ground state energy of C,Hg
The ground state energy obtained by the perturbation and MRCISD calculations having the

same reference functionsis given in table 1. The last column in the table lists the timing compari-
son.

The molecule has the symmetry C,, and the basis set DZP is chosen. Thus there are 94 orbitals:
36 4a,,36Db,,11b;and 11 &, . The reference space is CAS(6/5), i.e. 6 electronics are distributed in
5 active orbitals: 1-2 b, , 1-3 3,. 4 lowest orbitals are frozen. The number of configurations in-
volved in MRCISD space is 9 539 571. The MRPT2-1a energy is obtained from eq. (13a) by it-
eration, while the MRPT2-1 energy from eq. (13b), where E' = E, (eg. (1)). The energy for
MRPT2-2 and MRPT2-3 is obtained by using egs. (15) and (16), respectively.

Tablel MRPT2and MRCISD calculations for C,Hg

Methods No. of ref. func. D';na'ag; P Dim. of Cl space Energy(a.u.)? Timing/ s”
MRCISD 56 9539571 - 155.461 66 55 408 (22 293)
MRPT2-1a 56 56 - 155.466 85 240
MRPT2-1b 56 56 - 155.577 63 240
MRPT2-29 56 134 - 155.466 49 4095
MRPT2-3 56 56 - 155.566 45 1041

a) 1 au. = 2 624.87 kJmol; b) computer: K7-500. The time in the parenthesis is for the new MRCISD program; c)
thresholds: 7,=1.0X102and 7,= 1.0.

It can be seen from table 1 that among all results presented, MRPT2-2 energy remains in
better agreement with MRCISD' s, but takes more time than other perturbative schemes. The non-
iterative RS scheme, MRPT2-1b, is the fastest and has larger deviation in energy with respect to
MRCISD. The deviation can be reduced if the preliminary MCSCF calculation is performed. It
seems that the iterative BW scheme, MRPT2-1a, works well in energy and efficiency, however is
not generally size-consistent. The result based on formula (17) is not reported for its poor conver-
gence.

2.2 Splitting energy between the singlet and triplet states of CH,

The computation results of different methods and the experiment values are compared in ta-
ble 2. It could be seen from the table that both the HF method and the single reference MP2 have
very poor results compared with the experimental values, while al the multi-reference methods
predict much better values. The results obtained by MRPT2-1a are in the best agreement with the
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experimental values, however, this does not indicate MRPT2-1a method is more theoretically
advantageous because of possible error cancellation. The results of MRCISD are not as good as
expected because the configuration spaces for singlet and triplet states have many different sizes.
For calculation of triplet, the dimension of the configuration space is 257 791, while for singlet the
dimension is 163 115. The weight ratio for the reference configurations in the final wavefunction
i50.947 1 and 0.944 5, respectively. The computed results could be improved if alarger configu-
ration space is used for singlet. In fact, if 16 reference configurations are selected for singlet cal-
culation and 6 reference configurations for triplet calculation, the dimension of the configuration
is 219 492 and 226 556, and the weight actor for reference space is 0.950 7 and 0.951 1 respec-
tively. The splitting energy using the balanced configuration spaces is 9.95 kcal/mol for MRCISD
and 9.86 kcal/mol after the Davidson correction (MRCISD+Q), which are in excellent agreement
with the experimental value*®. However, such a reference space is not suitable for perturbation

calculations.
Table2 Energy splitting of B, and 4, for CH, (kcal / mol)

Methods E CB) E(4y) Splitting
HF - 38.932 36 - 38.892 33 25.12
MP2 - 39.070 99 - 39.046 06 15.64
MRPT2-1a8 - 39.100 85 - 39.085 06 9.91
MRPT2-1b? -39.091 19 -39.07235 11.82
MRPT2-29 - 39.087 59 - 39.069 19 11.55
MRPT2-3 -39.101 16 -39.082 99 11.40
MRCISD - 39.087 51 - 39.069 33 1141
MRCISD+Q? - 39.096 64 - 39.079 45 10.78
Experiment (7,)? 9.65

a) Activeorbitals: 1a, 2a, 3a, 1b,, 1b,, 2b,. The dimension of the complete is 257 791(triplets) and 163 115 (singlets);
b) thresholds: 7,=1.0X10"% and 7,= 2.0. The dimension of the P space is 2 806 (triplets) and 2 241 (singlets); c) the Davidson
correction: AE = (Eyraso- Erer ) (1- Cp) 1 (2Cy- 1), where Cj, is the square sum of coefficients in MRCISD function; d) the
relativism and zeroth-energy revision are not included in 7.8,
2.3 Potentia energy curves of BH

The determination of the ground-state potential energy curve of BH molecule is a “touch-
stong” for many ab initio methods and gives ones useful direction for selecting proper theoretical
methods to calculate potential energy curves. Many methods, including HF and various post-HF,
are tested in this paper. The basis set cc-pVTZ is selected. In order to determine the potential en-
ergy curves of BH under multi-reference condition, a preliminary CASSCF calculation is first
performed for reference space CAS(4/5), i.e. 4 electrons are distributed in 5 active orbitas: 2s, 3s,
1p, 2p, and 4p. The results for single and multiple references are shown in fig. 1(a) and (b), re-
spectively. Fig. 1 (a) was obtained by Gaussian-98w!%. We notice that MP2, MP3 and MP4 of
single reference perturbation methods cannot lead to correct decomposing limit and therefore are
not reliable for the calculation of potential energy surfaces. Asiswell known that MPr are akind
of perturbation schemes based on orbital energy, whose difference between occupied and non-
occupied orbitals is involved in the denominator and molecular integrals in the numerator of the
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energy formula. Let us investigate the energy at the two different nuclear separations, 0.32 nm
(near the top of the MP4 potential energy curve) and 0.6 nm(the point having lower energy), and
we found out that the energy deference between HOMO and LUMO at 0.6 nhm decreases more
than that of molecular integrals, which leads to the decreasing of the total energy. This is why
MPr are not successful for the geometry far away from equilibrium. The curves for QCISD and
QCISD (T) are basically correct though the QCISD(T) curve slightly descents owing to the per-
turbation treatment in the third order.

Fig. 1 (b) shows the multi-reference results obtained by the program of this paper except for
CASSCF. The multi-reference methods, no matter whether they are MRPT2 or MRCISD, give the
correct shape of a potential energy curve for a stable molecule.

-24.8 —24.8
24850 | pgroaispneepyesy) 24851
249 2491
-24.95 | - L
24.95 E[MRCISD(B(P)+H(%S))]
~  Br % ~ Ty
= >
S -2505) MP37| 3 2505} CASSCF
= QCISD(T) =
-25.1F \/ -25.1F — —
QCISD
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/ l MRPT2-2
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2525 -2525} "
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Fig. 1. The potential energy curves of BH.
3 Conclusions

Several multi-reference perturbation theories based on configurations are investigated in this
paper. For the second-order perturbation calculations, the major computation task involves only
the matrix elements in MRCISD. So our previous UGA methods to fast determine the coupling
coefficients could be employed in the new MRPT2 codes. In MPRT2 methods based on configu-
rations, the zeroth-order Hamiltonian operator is defined as the diagonal operator, whose expecta-
tion value is the diagonal element of Hamiltonian matrix. By this definition the matrix elements of
a perturbation operator are actually the off-diagona elements of Hamiltonian matrix. Four conclu-
sions could be drawn from the studies in this paper. (1) All MP2 methods are much more effi-
cient than the standard MRCISD calculations. The first method can reduce the computation time
by more than two scales, and the accuracy of results is comparable to that of contracted ClI meth-
ods. It is thus possible to extend this method into larger systems. (ii) Compared with the single
reference MP2 methods, the multi-reference perturbation theory gives a more reliable and correct



No. 6 MULTI-REFERENCE SECOND ORDER PERTURBATION THEORY 575

description for open-shelled systems and for molecules far away from its equilibrium geometry.
(iii) The second MRPT2 method could give results very close to that of MRCISD calculations and
has the advantage avoiding intruder states. However, its efficiency is not very satisfactory and the
size-consistency property always fails. For the other two methods the size-consistency is also not
obvious because it is difficult to apply the linked graph theorem directly to the methods based on
configurations. (iv) Multi-reference techniques are extremely important in the investigation of the
potential energy surface. Even for SCF calculation, MR techniques should be employed if the
guasi degeneracy exists.
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