Oct. 2013

α -氨基酰胺类化合物的合成新方法

郭文彦 " 陈建新 "*

("山西师范大学化学与材料科学学院 临汾 041004; ⁶山西师范大学现代文理学院 临汾 041000)

摘 要 以三氟化硼-乙醚配合物为催化剂,研究了亚胺与氨甲酰基硅烷的反应。考察了亚胺碳原子连接基团(乙基、异丙基、三氟甲基、苯乙烯基、苯基、呋喃基、噻吩基和吡啶基)对反应的影响,合成了几种 α -氨基酰胺;当亚胺氮原子连接的烃基和氨甲酰基硅烷中氮原子连接的烃基为手性基团 S-1-苯乙基和 R-1-苯乙基时,得到了具有高度立体选择性的产物(非对映异构体比率为 14:1),是一种不对称合成 α -氨基酰胺的新方法。

关键词 亚胺,氨甲酰基硅烷, α -氨基酰胺,不对称合成

中图分类号:0621.3

文献标识码:A

文章编号:1000-0518(2013)10-1114-06

DOI:10.3724/SP. J. 1095.2013.20600

α-氨基酰胺是多肽和蛋白质的最小结构单元,研究 α-氨基酰胺的立体选择性合成方法对药物和多肽及蛋白质的合成具有广阔的应用前景^[14]。在已研究的 α-氨基酰胺合成方法中^[5],常用的是通过 Ugi 反应在羧酸的 α 位建立一个新的立体中心来实现不对称合成。这一方法的缺点是去氨基保护困难,有异腈残留及难控制氮上单一取代酰胺的唯一性,当使用手性胺时,立体选择性较低^[6]。虽然最近对该方法做了一些改进^[7-8],但仍难避免反应本身的缺陷。为了克服这些不足,本文探索了利用氨甲酰基硅烷合成 α-氨基酰胺的方法。氨甲酰基硅烷具有亲核性,通过亲核反应可直接将氨酰基引入到分子中^[9-11],这对合成氨基酸、多肽以及蛋白质是非常有价值的。在我们过去的工作中,已建立了合成氨甲酰基硅烷的方法^[12],并实现了与亚胺盐碳-氮双键的加成反应,得到了 α-氨基酰胺^[13]。但亚胺盐在空气中吸水性强,不稳定,给操作带来了困难,不易推广应用。为此,我们又研究了氨甲酰基硅烷与亚胺的反应^[14]。其中手性合成的研究另文发表^[15]。本文在详细介绍这一工作的同时,进一步研究了它在不对称合成 α-氨基酰胺中的应用,探讨了可能的反应机理,各合成反应如 Scheme 1 所示。

Scheme 1 Synthesis of α -aminoamides by the reaction of imines with carbamoylsilane

1 实验部分

1.1 仪器和试剂

Bruker AV600 型核磁共振波谱仪(瑞士布鲁克公司),TMS 为内标; IMPACT-410 型傅里叶红外光谱仪(美国尼高力公司),KBr 压片;EA-1108 型四元素分析仪(意大利卡劳尔巴公司)。

所用试剂均为分析纯,液体试剂经重蒸后使用。四氢呋喃(THF)和苯需加钠后加热回流,直至二苯甲酮变蓝即可使用。实验中所用亚胺 $2a \sim 2h$ 和 6 是按文献 [16]方法由相应的醛和胺自己合成,其中制备亚胺 6 的起始原料(S)- α -苯乙胺由阿拉丁公司购得。亚胺 4 是按照文献 [17]方法,由二乙氧基乙酸乙酯和水合乙醛酸,在对甲苯磺酸存在下,90 ℃加热 27 h,再加入五氧化二磷加热 2 h 后,减压蒸馏得到乙醛酸乙酯,然后与胺反应制得。氨甲酰基硅烷 1 和 7 是按文献 [12]方法自己合成,其中 N-甲基-N-[(R)-1-苯乙基]甲酰胺的合成是由(R)- α -苯乙胺与甲酸乙酯回流先制得 N-[(R)-1-苯乙基]甲酰胺,然后在氢化钠的作用下与碘甲烷反应制得。

1.2 N,N-二甲基-2-(N'-苄基) 氨基丁酰胺(3a)的合成

将聚四氟乙烯真空塞的 schlenk 管,在减压下用火焰烧烤后,反复充 Ar 气,在 Ar 气保护下,向其加入 68 mg(0.460 mmol) 亚胺 $\mathbf{2}$ a 和 1.8 mL THF。在 -78 ℃下冷却 20 min 后,加入 66 mg(0.460 mmol) BF₃·O(C₂H₅)₂后搅拌 30 min,再加入 134 mg(0.930 mmol) 氨甲酰基硅烷 $\mathbf{1}$ 。将反应温度升至 25 ℃, TLC 跟踪反应 15 h 后完成反应。加入饱和碳酸钠溶液水解,二氯甲烷萃取,萃取液加无水硫酸镁干燥后浓缩。上硅胶柱色谱分离(V(丙酮):V(乙酸乙酯) = 2:1 洗脱),得 50 mg 无色液体 $\mathbf{3}$ a,产率 50%。

按同样操作分别合成化合物 3b~3h 及化合物 5 和 8。

3-甲基-N,N-二甲基-2-(N'-苄基) 氨基丁酰胺(3b):将 87 mg(0.540 mmol) 亚胺 2b,1.5 mL THF, 77 mg(0.540 mmol) BF $_3$ ·O(C_2 H $_5$) $_2$,118 mg(0.810 mmol) 氨甲酰基硅烷 1,反应 20.5 h 后,蒸馏得 116 mg无色液体 3b,产率 92%。

3,3,3-三氟-N,N-二甲基-2-(N'-苄基) 氨基丙酰胺(3c):将 112 mg(0.600 mmol) 亚胺 2c, 1.8 mL 苯,85 mg(0.600 mmol) BF $_3$ ·O(C_2 H $_5$) $_2$,87 mg(0.600 mmol) 氨甲酰基硅烷 1,反应 17.5 h 后,上硅胶柱 色谱分离(乙酸乙酯洗脱)得 87 mg 无色液体 3c,产率 56%。

4-苯基-N,N-二甲基-2-(N'-苄基) 氨基-3-丁烯酰胺(3d):将 136 mg(0. 614 mmol) 亚胺 2d, 1.8 mL THF,88 mg(0. 614 mmol) BF $_3$ ·O(C_2 H $_5$) $_2$,134 mg(0. 921 mmol) 氨甲酰基硅烷 1,反应 26 h 后,上硅胶柱色谱分离(V(丙酮):V(正己烷)=1:1 洗脱),得 147 mg 无色液体 3d,产率 81. 2%。

N,N-二甲基-2-(N'-苄基) 氨基-2-苯乙酰胺($\bf 3e$):将 88 mg($\bf 0$. 450 mmol) 亚胺 $\bf 2e$, 1.6 mL 苯,64 mg ($\bf 0$. 450 mmol) BF₃·O($\bf C_2H_5$)₂,66 mg($\bf 0$. 450 mmol) 氨甲酰基硅烷 $\bf 1$,在 0 ℃加入,常温下反应 14 h 后,上硅胶柱色谱分离(乙酸乙酯洗脱),得 103 mg 无色液体 $\bf 3e$,产率 85%。

N,N-二甲基-2-(N'-苄基) 氨基-2-(2'-呋喃基) 乙酰胺($\mathbf{3}$ f):将 154 mg(0. 831 mmol) 亚胺 $\mathbf{2}$ f,2 mL 二 氯甲烷,180 mg(0. 831 mmol) BF₃·O(C_2 H₅)₂,120 mg 氨甲酰基硅烷 $\mathbf{1}$,反应 20. 5 h 后,蒸馏得 147 mg 无色液体 $\mathbf{3}$ f,产率 73%。

N,N-二甲基-2-(N'-苄基) 氨基-2-(2'-噻吩基) 乙酰胺($\mathbf{3}_{g}$):将 99 mg(0. 490 mmol) 亚胺 $\mathbf{2}_{g}$,1.6 mL 苯,70 mg(0. 490 mmol) BF $_{3}$ ·O(C_{2} H $_{5}$) $_{2}$,72 mg(0. 490 mmol) 氨甲酰基硅烷 $\mathbf{1}$,反应 14 h 后上硅胶柱色谱 分离(V(正己烷):V(乙酸乙酯) = 2:1 洗脱),得 98 mg 淡黄色液体 $\mathbf{3}_{g}$,产率 73%。

N,N-二甲基-2-(N'-苄基) 氨基-2-(2'-吡啶基) 乙酰胺(3h):将 97 mg(0.500 mmol) 亚胺 2h, 1.5 mL THF, 71 mg(0.500 mmol) BF₃·O(C_2 H₅)₂,71 mg(0.500 mmol) 氨甲酰基硅烷 1,反应 12 h 后,上硅胶柱 色谱分离(V(乙酸乙酯):V(丙酮) = 1:1 洗脱),得 82 mg 无色液体 3h,产率 62%。

N,N-二甲基-2-{N'-[(S)-1-苯乙基]} 氨基-2-乙氧羰基乙酰胺($\mathbf{5}$):将 113 mg(0.550 mmol) S-亚胺 $\mathbf{4}$,2 mL THF,78 mg(0.550 mmol) BF $_3$ ·O(C_2 H $_5$) $_2$,80 mg(0.550 mmol) 氨甲酰基硅烷 $\mathbf{1}$,反应 11 h 后,上硅胶柱色谱分离(乙酸乙酯洗脱),得 87 mg 无色液体 $\mathbf{5}$,产率 57%,两种异构体含量比为 2:1(由 1 H NMR谱确定)。

表 1 化合物 3a~3h、5 和 8 的 IR 和元素分析数据

	Table 1	IR and elemental analysis da	ita of compounds 3a ~ 3	h, 5 and 8
--	---------	------------------------------	-------------------------	------------

Compd	R	IR, σ /cm ⁻¹	Elemental analysis(colcd)/%		
			C	Н	N
3 a	CH ₃ CH ₂ —	3 522 ,1 643 ,1 262	71.15(70.87)	8.90(9.15)	12.50(12.72
3 b	$(CH_3)_2CH$ —	3 317 , 1 642 , 1 264	71.77(71.76)	9.60(9.46)	11.75(11.95
3 e	F ₃ C—	3 321 , 1 656 , 1 264	55.66(55.38)	5.63(5.81)	10.58(10.76
3d	(E) -PhCH==CH-	3 314 , 1 649 , 1 261	77.50(77.52)	7.29(7.53)	9.50(9.52)
3 e		3 329 ,1 648 ,1 263	75.96(70.09)	7.80(7.51)	10.34(10.44
3 f	O	3 328 ,1 649 ,1 263	69.75(69.75)	7.05(7.02)	10.64(10.84
3g	S	3 319 ,1 649 ,1 258	65.39(65.66)	6.56(6.61)	10.24(10.21
3 h	N	3 312 ,1 649 ,1 261	71.10(71.35)	7.34(7.11)	15.70(15.60
5	*	3 327, 1746, 1656, 1266	64.65(64.73)	7.92(7.97)	10.08(10.06
8		3 306 , 1 642 , 1 451 , 1 318	77.71(77.74)	8.99(8.70)	8.53(8.63)

表 2 化合物 3a~3h、5 和 8 的¹H NMR 数据

Table 2 1 H NMR data of compounds 3a ~ 3h, 5 and 8

	Tubic 2 II Table dum of compounds ou on, o und o
Compd	1 H NMR(600 MHz, DCCl $_{3}$), δ
3 a	$7.20 \sim 7.40 \text{ (m,5H)}, 3.83 \text{ (d,} J = 13 \text{ Hz,} 1\text{H}), 3.54 \text{ (d,} J = 13 \text{ Hz,} 1\text{H}), 3.43 \text{ (t,} J = 6 \text{ Hz,} 1\text{H}), 3.02 \text{ (s,} 3\text{H}), 2.95 \text{ (s,} 3\text{Hz,} 1\text{Hz,} 1\text{Hz,}$
	3H),2.19(s br,1H),1.50 ~1.70(m,2H),0.98(t, $J = 7.5$ Hz,3H)
3 b	$7.20 \sim 7.40 \text{ (m,5H)}, 3.85 \text{ (d,} J = 13.5 \text{ Hz,} 1\text{H)}, 3.50 \text{ (d,} J = 13.5 \text{ Hz,} 1\text{H)}, 3.23 \text{ (d,} J = 6 \text{ Hz,} 1\text{H)}, 3.02 \text{ (s,} 3\text{H)}, 2.91 \text{ (s,} 3\text{H)}, 3.02 \text{ (s,} 3\text{H)}$
	(s,3H),2.20(s br,1H),1.82(m,H),1.00(d,J=6.5 Hz,3H),0.95(d,J=6.5 Hz,3H)
3 e	$7.25 \sim 7.40 \text{ (m,5H)}, 4.02 \text{ (q,} J = 7 \text{ Hz,} 1\text{H)}, 3.90 \text{ (d,} J = 13.5 \text{ Hz,} 1\text{H)}, 3.71 \text{ (d,} J = 13.5 \text{ Hz,} 1\text{H)}, 3.01 \text{ (s,} 3\text{H)}, 2.92 \text{ (g,} J = 7 \text{ Hz,} 1\text{H)}, 3.01 \text{ (s,} 3\text{H)}, 3.01 $
	(s,3H),2.89(s br,1H)
3d	$7.25 \sim 7.45 \text{ (m,10H)}, 6.54 \text{ (d,} J = 16 \text{ Hz,1H)}, 6.19 \text{ (dd,} J = 16 \text{ Hz,} J = 7.5 \text{ Hz,1H)}, 4.20 \text{ (d,} J = 7.5 \text{ Hz,1H)}, 3.81$
	(AB Pattern, $J = 14.5 \text{ Hz}$, 2H), $3.04(s,3H)$, $3.01(s,3H)$, $2.66(s,3H)$
3 e	$7.20 \sim 7.40 \text{ (m,10H)}, 4.52 \text{ (s,1H)}, 3.73 \text{ (AB Pattern, } J = 13 \text{ Hz,2H)}, 3.01 \text{ (s,3H)}, 2.84 \text{ (s,3H)}, 2.77 \text{ (s br,1H)}$
3 f	$7.25 \sim 7.40 \text{ (m,6H)}$, $6.33 \text{ (dd,} J = 3 \text{ Hz,} J = 2 \text{ Hz,} 1\text{H})$, $6.25 \text{ (d,} J = 3 \text{ Hz,} 1\text{H})$, $4.56 \text{ (s,} 1\text{H})$, $3.72 \text{ (AB Pattern,} J = 3.25 \text{ (d,} J = 3.25 \text{ Hz,} 1\text{H})$), $4.56 \text{ (s,} 1\text{H})$,
	14.5 Hz,2H),2.99(s,3H),2.88(s,3H),2.79(s br,1H)
3g	$7.2 \sim 7.45 \text{ (m,6H)}$, 6.97 (m,1H) , $6.92 \text{ (d,} J = 3.5 \text{ Hz,1H)}$, 4.78 (s,1H) , $3.77 \text{ (AB Pattern,} J = 13 \text{ Hz,2H)}$, 3.0 (s,most)
	3H),2.93(s,3H),2.71(s br,1H)
3 h	$8.50(\mathrm{d}, J = 4.5~\mathrm{Hz}, 1\mathrm{H})~, 7.70(\mathrm{t}, J = 8~\mathrm{Hz}, 1\mathrm{H})~, 7.48(\mathrm{d}, J = 8~\mathrm{Hz}, 1\mathrm{H})~, 7.20~, 7.39(\mathrm{m}, 6\mathrm{H})~, 4.82(\mathrm{s}, 1\mathrm{H})~, 3.78)$
	(AB Pattern, $J = 13 \text{ Hz}, 2\text{H}$), $3.01(s, 3\text{H}), 3.00(s, 3\text{H}), 2.96(s \text{ br}, 1\text{H})$
5	$(\text{ major diastereomer}) : 7.\ 20 \sim 7.\ 40 (\text{ m}, 5\text{H}), 4.\ 23 (\text{ q}, \textit{J} = 5\text{ Hz}, 2\text{H}), 4.\ 04 (\text{ s}, 1\text{H}), 3.\ 81 (\text{ q}, \textit{J} = 7\text{ Hz}, 1\text{H}), 2.\ 90 (\text{ s}, 3\text{H})$
	$2.79(\mathrm{s},3\mathrm{H})\ , 2.68(\mathrm{s}\;\mathrm{br},1\mathrm{H})\ , 1.38(\mathrm{d},\mathit{J}=7\;\mathrm{Hz},3\mathrm{H})\ , 1.23(\mathrm{t},\mathit{J}=5\;\mathrm{Hz},3\mathrm{H})\ .\ (\mathrm{minor\;diastereomer})\ ; 7.20\sim7.40(\mathrm{m},\mathrm{Hz})\ .$
	5H), 4. 17(m, 2H), 4. 16(s, 1H), 3. 69(q, J = 6 Hz, 1H), 3. 00(s, 3H), 2. 83(s, 3H), 2. 68(s br, 1H), 1. 30(d, J =
	7 Hz,13H). $24(t, J = 6 \text{ Hz}, 3\text{H})$
8	$(\text{major diastereomer}) : 7.\ 10 \sim 7.\ 40 (\text{m}, 10\text{H}) , 6.\ 00 , 4.\ 98 (2\text{q}, \textit{J} = 7\ \text{Hz}, 1\text{H}) , 3.\ 80 (\text{m}, 1\text{H}) , 3.\ 56 , 3.\ 37 (2\text{t}, \textit{J} = 7\ \text{Hz}, 1\text{Hz}) , 3.\ 10 \sim 7.\ 10 $
	$1 \text{H}) , 2. 68 , 2. 41 (2\text{s}, 3\text{H}) , 2. 4(\text{s} \text{ br}, 1\text{H}) , 1. 6 , 1. 7(\text{m}, 2\text{H}) , 1. 54 , 1. 40 (2\text{d}, \textit{\textit{\textit{J}}} = 7 \text{ Hz}, 3\text{H}) , 1. 37 , 1. 28 (2\text{d}, \textit{\textit{\textit{\textit{J}}}} = 7 \text{ Hz}, 3\text{Hz}) , 1. 37 , 1. 28 (2\text{d}, \textit{\textit{\textit{J}}} = 7 \text{ Hz}, 3\text{Hz}) , 1. 37 , 1. 28 (2\text{d}, \textit{\textit{\textit{J}}} = 7 \text{ Hz}, 3\text{Hz}) , 1. 37 , 1. 37 , 1. 38 (2\text{d}, \textit{\textit{J}} = 7 \text{ Hz}, 3\text{Hz}) , 1. 37 , 1. 38 (2\text{d}, \textit{\textit{J}} = 7 \text{ Hz}, 3\text{Hz}) , 1. 37 , 1. 38 (2\text{d}, \textit{\textit{J}} = 7 \text{ Hz}, 3\text{Hz}) , 1. 37 , 1. 38 (2\text{d}, \textit{\textit{J}} = 7 \text{ Hz}, 3\text{Hz}) , 1. 37 , 1. 38 (2\text{d}, \textit{J} = 7 \text{ Hz}, 3\text{Hz}) , 1. 38 (2\text{d}, \textit{J} = 7 \text{ Hz}, 3\text{Hz}) , 1. 37 , 1. 38 (2\text{d}, \textit{J} = 7 \text{ Hz}, 3\text{Hz}) , 1. 38 (2\text{d}, \textrm{J} = 7 \text{ Hz}, 3\text{Hz}) , 1$
	3H), 1.00, 0.98 (2t, $J = 7$ Hz, 3H). (minor diastereomer); 7.1 ~ 7.4 (m, 10H), 6.19, 4.75 (2q, $J = 7$ Hz, 1H), 3.69,
	$3.50(2q, J=7 \text{ Hz}, 1\text{H}), 3.30, 3.46(2t, J=7 \text{ Hz}, 1\text{H}), 2.70, 2.29(2s, 3\text{H}), 2.0(s \text{ bs}, 1\text{H}), 1.7 \sim 1.2(m, 8\text{H}), 3.50(2q, J=7 \text{ Hz}, 1\text{H}), 3.30, 3.46(2t, J=7 \text{ Hz}, 1\text{H}), 3.70, 3.29(2s, 3\text{H}), 3.30, 3.46(2t, J=7 \text{ Hz}, 1\text{H}), 3.30, 3.46(2t, J=7 \text{ Hz}, 1\text{Hz}, 1\text{Hz}), 3.30, 3.46(2t, J=7 \text{ Hz}, 1\text{Hz}), 3.30, 3.40(2t, J=7 \text{ Hz}, 1\text{Hz}), 3.30, 3.40(2t, J=7 \text{ Hz}, 1\text{Hz}), 3.30, 3.40(2t, J=7 \text{ Hz}, 1\text{Hz}), 3.30$

 $0.9 \sim 1.5 (m, 3H)$

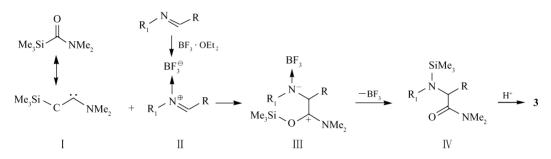
N-甲基-N-[(R)-1-苯乙基]-2- $\{N'$ -[(S)-1-苯乙基] $\}$ 氨基丁酰胺($\mathbf{8}$):将 82 mg(0.510 mmol) S-亚 胺 $\mathbf{6}$,1.6 mL 苯,73 mg(0.510 mmol) BF₃·O($\mathbf{C}_2\mathbf{H}_5$)₂,144 mg(0.611 mmol) R-氨甲酰基硅烷 $\mathbf{7}$,反应 23 h后,上硅胶柱色谱分离(V(石油醚):V(丙酮) = 4:1 洗脱),得 114 mg 无色液体 $\mathbf{8}$,产率 72%,两种异构体含量比为 14:1(按 $\mathbf{1}$ H NMR 谱确定)。

表 3 化合物 $3a \sim 3h$ 、5 和 8 的 13 C NMR 数据 Table 3 13 C NMR data of compounds $3a \sim 3h$, 5 and 8

Compd	¹³ C NMR(151 MHz, CDCl ₃),δ	
3 a	175. 0,140. 3,128. 6,128. 3,126. 9,58. 0,52. 1,36. 7,35. 6,26. 8,10. 4	
3 b	175. 1,140. 5,128. 5,128. 2,126. 8,62. 0,52. 3,36. 9,35. 6,31. 7,19. 8,18. 2	
3 e	166.5, 138.5, 128.5, 128.4, 127.5, 126.2 ($q, J = 282$ Hz) $,57.3$ ($q, J = 28$ Hz) $,51.7, 37.1, 36.2$	
3d	172. 0,139. 9,136. 3,133. 0,128. 6,128. 41,128. 37,127. 9,127. 0,126. 7,126. 5,59. 7,51. 1,36. 7,35. 9	
3 e	172. 1 ,139. 9 ,138. 6 ,128. 8 ,128. 4 ,128. 3 ,127. 8 ,126. 9 ,61. 6 ,51. 3 ,36. 7 ,35. 9	
3 f	171.7,153.7,141.9,138.3,128.9,128.4,127.9,110.1,107.2,61.6,44.1,36.7	
3g	171. 5 ,142. 2 ,139. 6 ,128. 4 ,127. 0 ,126. 6 ,125. 6 ,125. 3 ,56. 5 ,51. 1 ,36. 9 ,35. 9	
3 h	171.7,159.2,149.0,139.8,137.0,128.4,128.3,127.0,122.5,121.8,63.7,51.8,37.0,35.9	
5	major diastereomer; 170.0, 168.0, 144.2, 128.4, 127.2, 61.4, 60.0, 56.5, 37.2, 35.8, 24.4, 14.2	
	minor diastereomer; 168. 3, 168. 7, 144. 3, 128. 5, 127. 3, 127. 0, 61. 5, 59. 8, 56. 0, 37. 0, 36. 1, 24. 6, 14. 0	
8	major diastereomer; 175. 1, 174. 7, 145. 8, 145. 7, 140. 7, 140. 2, 128. 6, 126. 4, 57. 0, 56. 9, 56. 4, 55. 9,	
	53.6,50.4,28.9,28.6,26.4,23.5,23.4,17.7,15.3,10.4,10.3	

2 结果与讨论

2.1 反应过程


由于氨甲酰基硅烷亲核活性较低,与亚胺难以直接发生反应,即使提高反应温度和延长反时间,反 应也难以进行。因此需用催化剂增加亚胺碳原子的正电性,才可促使反应发生。通过对各种催化剂的 比较,发现三氟化硼-乙醚配合物是本反应的合适催化剂。在 BF,催化下,不同结构的亚胺能与氨甲酰基 硅烷发生反应,水解后生成相应的 α -氨基酰胺。当亚胺碳原子的 α 位有氢原子存在时(2a,2b),如果使 用等摩尔量的氨甲酰基硅烷与亚胺反应,以亚胺计的产物的产率较低(3a:31%,3b:58%);当以 1.5 倍 摩尔量的氨甲酰基硅烷与之反应,则产率较高(3a:50%,3b:92%)。我们认为,这是由亚胺碳原子 α -氢 的活性引起的,它对氨甲酰基硅烷有氢解作用,在反应中,与加成反应产生了竞争,使反应过程中消耗了 氨甲酰基硅烷,因而产率较低。当加大氨甲酰基硅烷的用量后,可保证加成反应的用量,因而产率会提 高。此现象在氨甲酰基硅烷与亚氨盐的反应中也已观察到 $^{[13]}$ 。当亚胺碳原子 α 位的位阻加大后,可降 低氢解作用,使产物产率增加(3b);当亚胺碳原子的 α 位没有氢原子,而烃基太大时,如叔丁基,发现反 应不能进行,这应该是空间位阻太大引起的。为了证明空间位阻的影响,我们尝试了环己基亚胺,二苯 基亚胺与氨甲酰基硅烷的反应,得到了同样的结果,没有产物生成。当 R 为三氟甲基时,不存在亚胺碳 原子的 α -氢原子,在 THF 中,当二者以 1:1 摩尔比反应,得到了 41% 产率,以 1:1.5 摩尔比反应,得到了 46% 产率,反应产率变化不大。改用苯作溶剂时,以 1:1 的摩尔比反应得到 56% 的产率。说明使用无 α 氢影响的亚胺时,产物的量只与反应物的本性有关。当 R 为空间位阻较小,又无亚胺碳原子的 α-氢的 结构,如:苯基、苯乙烯基、呋喃基、噻吩基和吡啶基(2d,2e,2f,2g,2h)时,均得到了较高产率的产物。在 N-苄基-3-苯基-3-丙烯亚胺 **2**d 与氨甲酰基硅烷的反应中,没有生成 1,4 加成产物。

在使用非手性亚胺进行的加成反应中,没有获得立体选择性产物。因此,探索通过改变亚胺氮原子所连的烃基为手性结构,来实现立体选择性加成。首先选用了 S-1-苯基乙胺与乙醛酸乙酯反应,生成了有手性的亚胺 4,然后与氨甲酰基硅烷 1 作用,得到了产物 5。生成的产物中两手性异构体的比为 2:1,说明通过改变亚胺氮原子所连烃基的空间结构,可改变氨甲酰基的加成方向,使之在方向上有选择性地加到亚胺碳原子上,但选择性并不强,没有得到较高 de 值的产物。我们又改变了氨甲酰基硅烷的结构,使其氮原子上连上有手性的烃基,制得 R 构型的氨甲酰基硅烷 7。当化合物 7 与有手性的亚胺 6 反应得到了产物 8,产率为 72%,反应产物中 2 种旋光异构体的比为 14:1, ee 值可达到 86.3%,实现了对映选

择性加成反应。这可为立体选择性合成 α-氨基酰胺提供一个有效的方法。关于反应中的结构匹配关系,以及与旋光性的关系有待进一步研究。

2.2 反应机理

亚胺和氨甲酰基硅烷反应的可能机理可用 Scheme 2 说明:氨甲酰基硅烷在反应中可变成卡宾,具有亲核性^[18],可以进攻带正电荷的碳原子,但作用不强。而亚胺中双键碳原子正电性较弱,因此难进行反应。当反应混合物中加上三氟化硼-乙醚配合物后,由于氮原子的配位能力比氧原子强,三氟化硼可与亚胺氮原子配位,亚胺生成结构 Ⅱ,使亚胺中双键碳原子带强的正电性,容易与氨甲酰基硅烷 Ⅰ 反应,生成中间体 Ⅲ,而中间体 Ⅲ 不稳定,发生硅基团从氧原子向氮原子的转移,产生稳定的羰基,生成中间体 Ⅳ,Ⅳ在水中的质子作用下水解,生成产物 3。

Scheme 2 Proposed reaction mechanism for the reaction of imines with carbamoylsilane

3 结 论

氨甲酰基硅烷在三氟化硼-乙醚配合物催化下可与亚胺进行亲核加成反应,生成 α-氨基酰胺,反应 没有立体选择性;当亚胺氮原子上连上手性辅基时,反应具有立体选择性,但选择性不强;当亚胺和氨甲 酰基硅烷同时连上手性辅基时,反应具有高度立体选择性,辅基构型的匹配关系以及构型与旋光性关系 有待进一步研究阐明。

参考文献

- [1] Lin Y S, Alper H. A Novel Approch for the One-Pot Preparation of α-Aminoamides by Pd-Catalyzed Double Carbohydroamination [J]. Angew Chem Int Ed Engl, 2001, 40:779-781.
- [2] Pick R, Bauer M, Kazmaier U, et al. Ammonia in Ugi Reactions-Four-Component versus Six-Component Couplings [J]. Synlett, 2005, (3):757-760.
- [3] Katritzky A R, Kirichenko N, Regovoy B V, et al. Facile N-Derivatization of α-Amino Esters and Amides via Benzotriazolylmethyl Derivatives [J]. J Org Chem, 2003, 68 (23):9088-9092.
- [4] Sanchez L M, Lopez D, Vesely B A, et al. Almiramides A-C: Discovery and Development of New Class of Leishmaniasis Lead Compound [J]. J Med Chem, 2010, 53(10):4187-4197.
- [5] Domling A, Ugi I. Multicomponent Reactions with Isocyanides [J]. Angew Chem Int Ed, 2000, 39:3168-3210.
- [6] Marquarding D, Hoffmann P H, Ugi I. Stereoselective For-Component Condensations of α-Ferrocenylethylamine and Its Absolute Configuration [J]. J Am Chem Soc, 1970, 92(7):1969-1971.
- [7] Julia H S, Thorsten B, Michael U, et al. Diversity Oriented Synthesis of Benzoxazoles and Benzothiazoles [J]. Tetrahedron Lett, 2007, 48 (51):9030-9034.
- [8] Nazaret C, Jacinte J D, Mavia G V. Synthesis of Pseudopeptidic [(5H)-6-oxodibenzo [b,f] [1,5] diazocine-5-yl] arylgly Cinamides by an Ugi 4cc/Staudinger/aza-Wittig Sequence [J]. *Tetrahedron*, 2008, 64(9):2225-2232.
- [9] Chen J X, Cunico R F. Synthesis of α-Ketoamides from a Carbamoylsilane and Acid Chlorides [J]. J Org Chem, 2004, **69**(16):5509-5511.
- [10] Cunico R F, Motta A R. Addition of Carbamoylsilanes to Electrophilically Substituted Alkenes: Preparaton of Functionalized Tertiary Amides[J]. Org Lett, 2005, 7(5):771-774.
- [11] CHEN Jianxin, WEN Xueshan. Reaction of Carbamoylsilane with Nitrone and Tautomerism of Product[J]. *Acta Chim Sin*, 2009,64(14):1709-1711(in Chinese). 陈建新,温雪山. 氨甲酰基硅烷与硝酮的反应及产物的互变异构[J]. 化学学报,2009,67(14):1709-1711.
- [12] Cunico R F, Chen J X. On the Preparation of Carbamoylsilanes [J]. Synth Commun, 2003, 33(11):1963.

- [13] Chen J X, Cunico R F. α -(Dimethylamino) amides from a Carbamoylsilane and Iminium Salts[J]. *Tetrahedron Lett*, 2002, 43(47):8595-8597.
- [14] Chen J X, Cunico R F. α-Aminoamides from a Carbamoylsilane and Aldehyde Imines[J]. *Tetrahedron Lett*, 2003, 44(43): 8025-8027.
- [15] GUO Wenyan, YAO Yuan, CHEN Jianxin, et al. Asymmetric Synthesis of α-Aminoamides Derivatives [J]. Chinese J Medicinal Chem, 2013, 23(3):197-202 (in Chinese). 郭文彦, 姚远, 陈建新, 等. α-氨基酰胺衍生物的不对称合成[J]. 中国药物化学杂志, 2013, 23(3):197-202.
- [16] Bandini M, Cozzi P G, Umani R A, et al. Diastereoselective Addition of Higher Order Cupratesand Zinc-Copper Reagents to Imines Derived from (S)-1-Phenylethylamine [J]. Tetrahedron, 1999, 55 (26):8103-8110.
- [17] James M H. A Simple and Efficient Synthesis of Ethyl and Methyl Glyoxylate [J]. Synth Commun, 1984, 14(1):83-87.
- [18] Cunico R F. Aminooxycarbene Behavior of a Carbamoylsilane [J]. Tetrahedron Lett, 2001, 42 (16): 2931-2932.

A New Method for Synthesizing α -Aminoamide Compounds

GUO Wenyan^{a,b}, CHEN Jianxin^a*

(^aCollege of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China; ^bModern College of Arts and Science, Shanxi Normal University, Linfen 041000, China)

Abstract It was found that boron trifluoride etherate was an effective catalyst for the reactions between carbamoylsilane and imines. The influences of various substitution groups (ethyl, isopropyl, trifluoromethyl, styryl, phenyl, furyl, thienyl, pyridyl) on the C-terminus of the parent iminium to the reaction have been studied and some α -aminoamides were synthesized. The stereoselectivety of the reaction was found by connecting chiral alkyl (S-1-phenylethyl) on the N-terminus of the iminium and the highly stereoselective product was obtained (diastereomer ratio of 14:1) by connecting chiral alkyl both on the N-terminus of the iminium structure (S-1-phenylethyl) and on the N-terminus of carbamoylsilane (R-1-phenylethyl). So this is a new method for stereoselectively synthesizing α -aminoamides.

Keywords imine, carbamovlsilane, α -aminoamide, asymmetric synthesis