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Abstract In this analysis, the boundary layer viscous flow of nanofluids and heat transfer
over a non-linearly-stretching sheet in the presence of a magnetic field is presented. Velocity
and thermal slip conditions are considered instead of no slip conditions at the boundary. A
similarity transformation set is used to transform the governing partial differential equations
into non-linear ordinary differential equations. The reduced equations are solved numerically
using the Keller box method. The influence of the governing parameters on the dimensionless
velocity, temperature, nanoparticle concentration as well as the skin friction coefficient, Nusselt
number, and local Sherwood number are analyzed. It is found that as the velocity slip
parameter increases, the velocity profile is decreased and the skin friction and heat transfer
decreased while the mass transfer is increased. Increasing the thermal slip parameter causes
decreases in the heat and mass transfer rates. The results are presented in both graphical and
tabular forms.
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Nomenclature

u; v velocity components in the x- and y-axis, respectively
(unit: m/s)

uw velocity of the wall along the x-axis (unit: m/s)
x; y Cartesian coordinates measured along the stretching

sheet (unit: m)
BðxÞ magnetic field strength (unit: A �m�1)
C nanoparticle concentration (unit: mol �m�3)
Cfx skin-friction coefficient (pascal)
Nux Nusselt number
Shx Sherwood number
Cw nanoparticle concentration at the stretching surface

(unit: mol �m�3)
C1 nanoparticle concentration far from the sheet (unit:

mol �m�3)
cp specific heat capacity at constant pressure (unit: J � kg�1 �K)
DT Brownian diffusion coefficient
DB thermophoresis diffusion coefficient
Ec Eckert number
c constant parameter
n non-linear stretching parameter
f dimensionless stream function
Le Lewis number
M magnetic parameter
Nb Brownian motion parameter
Nt thermophoresis parameter
Pr Prandtl number
N1 velocity slip factor
D1 thermal slip parameter
T fluid temperature (unit: K)

Greek symbols

σ electrical conductivity (unit: S �m�1)
ψ stream function
η dimensionless similarity variable
μ dynamic viscosity of the base fluid (unit: kg/(m � s))
ν kinematic viscosity (unit: m2 � s�1)
ρf density of the fluid (unit: kg �m�3)
ðρcÞf heat capacity of the base fluid (unit: kg/(m � s2))
ðρcÞν heat capacity of the nanoparticle (unit: kg/(m � s2))
θ dimensionless temperature (unit: K)
p pressure (unit: N/m2)
ϕ nanoparticle volume fraction
ϕw nanoparticle volume fraction at wall temperature
ϕ1 ambient nanoparticle volume fraction
λ velocity slip parameter
δ thermal slip parameter
Tw temperature at the surface (unit: K)
T1 temperature of the fluid far away from the stretching

sheet (unit: K)
Rex Reynolds number

Subscripts

f fluid
w condition on the sheet
qw surface heat flux (unit: W/m2)
qm surface mass flux
1 ambient conditions
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1. Introduction

The study of a viscous fluid flow of a stretching surface
is an important flow occurring in several engineering
processes. These processes are wire drawing, heat-treated
materials travelling between a wind-up roll and a feed role
or materials manufactured by extrusion, paper and glass
fiber production, cooling of metallic sheets or electronic
chips, drawing of plastic sheets, crystal growing, and
many others. In this way, the final product of desired
characteristics depends on the cooling process in the
stretching sheet [1]. Sakiadis [2] was initiated the study
on axi-symmetric and two-dimensional boundary layer
flow problems. Various aspects have been studied by
several authors in the past decades. However, all these
investigations are restricted to linear stretching of the
sheet. It is meant by that the stretching is no need linear.
In view of this, Kumaran and Ramanaiah [3] studied flow
over a quadratic stretching surface, but only some recent
investigations focused on non-linearly and exponentially
stretching sheet were showed here. Cortell [4] analyzed
the heat transfer and viscous flow and over a non-linear
stretching sheet numerically. Hayat et al. [5] analyzed the
mixed convection flow over a non-linear stretching sheet
of a micropolar fluid by using Homotopy analysis method.
Rashidi et al. [6] observed the problem on free convective
heat and mass transfer for magnetohydrodynamic fluid
flow over a permeable vertical stretching sheet in the
presence of the radiation and buoyancy effects using
homotopy analysis method. Prasad et al. [7] studied the
fluid properties on the magnetohydrodynamics (MHD)
flow and heat transfer over a stretching surface by using
Keller-box method. Rapits and Perdikis [8] studied
viscous flow over a non-linearly stretching sheet in the
presence of magnetic field and chemical reaction para-
meters by using shooting method. The magnetohydrody-
namic flow of an electric conducting, visco-elastic fluid
past a shrinking sheet was studied by Turkyilmazoglu [9]
for two classes, namely second-grade and Walter liquid B
fluids. Umar khan et al. [10] investigated the effect of
thermo diffusion on stagnation point flow of a nanofluid
towards a stretching surface with applied magnetic field
with the help of similarity transforms. Uddin et al. [11]
investigated magneto-convective boundary layer slip flow
along a non-isothermal continuously moving permeable
non-linear radiating plate embedded in Darcian porous
media using Runge-Kutta-Fehlberg fourth-fifth order
numerical method.
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Nanofluid is a fluid having nanometer-sized particles,
called nanoparticles. These fluids of nanoparticles are
engineered colloidal suspensions in a base fluid. The
nanoparticles are used in nanofluids and typically made of
metals (Cu, Ag), oxides (Al2O3), carbides (SiC), Nitrides
(AlN, SiN) or Nonmetals (Carbon nanotubes, Graphite) and
the base fluid is usually a one of the conductive fluid, such
as water, glycol, ethylene, toluene and oil. The choice of
base fluid-particle combination depends up on the applica-
tion for which the nanofluid is intended. They have several
engineering and biomedical applications in cancer therapy,
cooling and process industries. Major advantages of nano-
fluids are that they are very stable, have sufficient viscosity,
spreading, better wetting and dispersion properties on solid
surface even for modest nanoparticle concentrations. Nano-
particles are ranged between 1–100 nm in diameter. Experi-
mental studies have shown that nanofluids generally need
only contain up to a 5% nanoparticle volume fraction to
ensure effective heat transfer enhancements. Nanofluids
offer many diverse advantages in application such as fuel
nuclear reactors cell, microelectronics, biomedicine and
transportation. The term was coined by Choi [12]. The
boundary layer heat transfer from a stretching sheet circular
cylinder in a nano fluid was investigated by Gorla et al.
[13]. Fakour [14] conducted similar research for a Study of
heat transfer and flow of Nano fluid in permeable channel in
the presence of magnetic field. Makinde and Aziz [15]
investigated the boundary layer fluid flow of past a
stretching sheet with a convective boundary conditions in
nanofluids with the help of RK method. Mustafa et al. [16]
investigated the boundary layer flow of an exponential
stretching sheet by using homotopy analysis method for the
computation of analytical solutions. Hamad [17] found the
similarity solutions of heat transfer and viscous flow of
nanofluid over a non-linearly stretching sheet using RK
method. The steady boundary layer stagnation-point flow
toward a stretching/shrinking sheet and heat transfer of a
nanofluid past a non-linearly permeable stretching/shrinking
sheet was numerically studied by Bachok et. al. [18] and
similar research on boundary layer flow and heat transfer
over a non-linearly permeable stretching/ shrinking sheet in
a nanofluid was studied by Zaimi et al. [19]. The steady
two-dimensional stagnation-point flow over a linearly
stretching/shrinking sheet in a viscous and incompressible
fluid in the presence of a magnetic field was studied by
Fazlina Aman et al. [20]. In this research work, The
governing partial differential equations were reduced to
non-linear ordinary differential equations by a similarity
transformation, before being solved numerically by a
shooting method. Uddin et al. [21] presented an analysis
of two dimensional MHD free convective, viscous, bound-
ary layer nanofluid flow from a convectively heated perme-
able vertical surface in presence of chemical reaction. In
this research work, the authors were used scaling group of
transformations for solving the governing equations with
the corresponding the boundary conditions. Uddin et al.
[22] studied steady two-dimensional magnetohydrodynamic
laminar free convective boundary layer slip flow of an
electrically conducting Newtonian nanofluid from a trans-
lating stretching/shrinking sheet in a quiescent fluid. Uddin
et al. [23] studied two-dimensional, steady, laminar mixed
convective boundary-layer slip nanofluid flow in a Darcian
porous medium due to a stretching/shrinking sheet in
presence of thermal radiation theoretically and numerically.
Uddin et al. [24] studied the effect of constant convective
thermal and mass boundary conditions of two-dimensional
laminar g-jitter mixed convective boundary layer flow of
water-based nanofluids. In this research work, the govern-
ing transport equations were converted into non-similar
equations using suitable transformations, before being
solved numerically by an implicit finite difference method
with quasi-linearization technique. Rashidi et al. [25]
studied the effect of heat transfer on steady, incompressible
water based nanofluid flow over a stretching sheet in the
presence of transverse magnetic field with thermal radiation
and buoyancy effects. In this paper, the authors were used
similarity transformation for reducing the governing
momentum and energy equations into non-linear ordinary
differential equations, and the resulting differential equa-
tions with the appropriate boundary conditions were solved
by shooting iteration technique together with fourth-order
Runge-Kutta integration scheme. Several other studies have
addressed in various aspects of nanofluids (including
comparison) with stretching sheet [26–31].

The fluid's effect of boundary slip has important applica-
tions such as in the polishing of artificial internal cavities
and heart valves. Velocity and thermal jump conditions are
adequate for the flow of liquids at the micro-scale level
especially in this way the lack of data on the thermal digs
coefficient. Among the application of several complex
micro-channels and micro-devices arise. For instance, the
micro-conducts of rectangular, trapezoidal and triangular
sections crossing are very familiar and easy to make in the
micro-scale thermal fluid system. Mustafa et al. [32] studied
the slip effects of nanofluid in a channel with wall proper-
ties on the peristaltic motion by using homotopy analysis
method (HAM). Recently, the combined effects of velocity
slip and thermal slip on unsteady stagnation point flow of a
nanofluid over a stretching sheet were investigated numeri-
cally by Malvandi et al. [33]. Umar Khan [34] Investigated
effects of viscous dissipation and slip velocity on two-
dimensional and axisymmetric squeezing flow of cu-water
and cu-kerosene nano fluids. Turkyilmazoglu [35] presented
an analysis of magnetohydrodynamic flow and heat transfer
over permeable stretching/shrinking surface taking into
account a second order slip. In this paper, the author found
analytical solutions for the flow and heat valid under
various physical conditions. Turkyilmazoglu [36] found
on dual and triple solutions for MHD slip flow an
electrically conducting, non-Newtonian fluid past a shrink-
ing sheet under the influence of slip flow conditions. The
correspondence between certain nanofluids and standard
fluid flow was studied by Turkyilmazoglu [37] by introdu-
cing a rescaling approach that greatly simplifying the
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evaluation of flow and physical parameters such as skin
friction and heat transfer rate. Turkyilmazoglu [38] studied
the nanoparticles across the condensate boundary layer
which was the most used model (single phase) and the
concentration of nanoparticles through the film was allowed
to vary from the wall to the outer edge of the condensate
film in the light of modified Buongiorno's nanofluid model
(multi-phase). In this paper the author solved momentum
and energy equations analytically in both theoretical cases
to deduce the flow and heat transport phenomena. The
homotopy analysis method was employed by Rashidi et al.
[39] for examining free convective heat and mass transfer in
a steady two-dimensional magnetohydrodynamic fluid flow
over a stretching vertical surface in porous medium. Rashidi
and Erfani [40] studied the combined effects of thermal-
diffusion and diffusion-thermo on steady MHD convective
and slip flow due to a rotating disk with viscous dissipation
and Ohmic heating in presence of heat and mass transfer.
Abbasbandy et al. [41] found both the numerical and
analytical solutions for Falkner-Skan flow of magnetohy-
drodynamic Oldroyd-B fluid using homotopy analysis
method and numerical Keller box method.

To the best of authors’ knowledge, there is not any
investigation to address the slip effects of viscous flow of
nanofluids and heat transfer over a non-linearly stretching
sheet in the presence of a magnetic field effect. The aim of
the present study is to extend the work of Hamad [17]. The
boundary layer flow and heat transfer of a nanofluid which
exhibits wall slip conditions is considered and the governing
partial equations are transformed into ordinary differential
equations and solved numerically by using the Keller-box
method.
2. Formulation of the problem

Consider steady, two-dimensional and incompressible
viscous laminar flow of an electrically-conducting fluid
over a non-linearly stretching surface (Figure 1). The sheet
is extended with a velocity uw ¼ axn with fixed origin
location, where n is a non-linear stretching parameter, a is a
constant and x is the coordinate measured along the
stretching surface. The flow takes place at yZ0 where y
is the coordinate measured to the stretching sheet, a steady
uniform stress leading to equal and opposite forces is
applied along the x-axis, the sheet is stretched keeping the
origin fixed. The wall temperature Tw and the nanoparticle
fraction Cw are assumed constant at the stretching surface
while the ambient temperature and nanoparticle fraction
have constant values T1 and C1, respectively. In addition,
velocity slip and thermal slip conditions are taken into
account at the wall and the effect of the magnetic field is
incorporated through the momentum equation [17]. Under
the above assumptions, the governing continuity, momen-
tum and thermal energy and nanoparticles equation of the
nanofluid can be written in vector form using Cartesian
coordinates x and y as [42].
∇UV ¼ 0 ð1Þ

ρf
∂V
∂t

þ V U∇V
� �

¼ �∇Pþ μ∇2V�σB2 ∇UVð Þ ð2Þ

ρcð Þf
∂T
∂t

þ V U∇T
� �

¼ K∇2T

þ ρcð Þp DB∇CU∇T þ DT

T1

� �
∇T U∇T

� �
ð3Þ

∂C
∂t

þ V U∇C
� �

¼ DB∇2C þ DT

T1

� �
∇2T

� �
ð4Þ

Here we write V is a function of u and v. We now make
the standard boundary-layer approximation, based on a
scale analysis, and write the governing equations [43]:

∂u
∂x

þ ∂v
∂y

¼ 0 ð5Þ

u
∂u
∂x

þ v
∂u
∂y

¼ ν
∂2u
∂y2

� σB2

ρf
u ð6Þ

u ∂T
∂x þ v ∂T

∂y ¼ α ∂2T
∂y2 þ ν

cp
∂u
∂y

� �2
þ τ DB

∂T
∂y

∂C
∂y þ DT

T1
∂T
∂y

� �2
� 	

ð7Þ

u
∂C
∂x

þ v
∂C
∂y

¼DB
∂2C
∂y2

þ DT

T1

∂2T
∂y2

� �
ð8Þ

Where α¼ K
ðρcÞf m2=s


 �
is the thermal diffusivity, and

τ¼ ðρcÞp
ðρcÞf is the ratio between the effective heat capacity of

the fluid. We assume that the variable magnetic field
BðxÞ ¼ B0xn�1=2. This form of BðxÞ has also been consid-
ered many authors.
2.1. Boundary conditions

The appropriate boundary conditions [44] for the pro-
blem are given by



Dodda Ramya et al.186
u¼ uw þ Nυf ∂u
∂y

� �
; v¼ 0;

T ¼ Tw þ D ∂T
∂y

� �
; C¼Cw as y¼ 0

u-0; v-0; T ¼ T1; C¼C1 as y-1

9>>=
>>; ð9Þ

Here uw ¼ cxn is the stretching velocity, Tw ¼ T1 þ bx2n

is the temperature at the sheet, c; b are constants is the non-
linear stretching parameter, N ¼ N1x

� n� 1
2 is the velocity slip

factor which changes with x, and N1 is the initial value of
velocity slip factor and D¼D1x

� n� 1
2 is the thermal slip

factor which changes with x, and D1 is the initial value of
thermal slip, no-slip case is recovered for N ¼ 0¼D:
Introducing the similarity variables as

η¼ y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðnþ 1Þ=2νf

p
xðn�1Þ=2;

u¼ axnf 0ðηÞ;
v¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ1Þaνf

2

q
xn�1=2½f ðηÞ þ n�1

nþ1 ηf
0ðηÞ�;

T ¼ T1 þ bx2nθðηÞ; φðηÞ ¼ ðC�C1Þ=ðCw�C1Þ

9>>>>>>=
>>>>>>;

ð10Þ

Using Eq. (9), Eqs. (5)–(8) become

f ″0 þ f f ″� 2n
nþ 1

� �
f
02�Mf 0 ¼ 0 ð11Þ

1
Pr

θ″þ f θ0 � 4n
nþ 1

� �
f 0θ þ Nbθ0φ0 þ Ntθ

02 þ Ecf ″2 ¼ 0 ð12Þ

ϕ″þ Lefϕ0 þ Nt

Nb
θ″¼ 0 ð13Þ

and the corresponding boundary conditions (9) become

f 0 ¼ 1þ λf ″ð0Þ; f ¼ 0;

θ¼ 1þ δθ0ð0Þ; φ¼ 1 at η¼ 0

f 0-0; θ-0; φ-0 as η-1

9>=
>; ð14Þ

where primes denote differentiation with respect to η.
The involved physical parameters are defined as

Pr ¼ ν
α ; Le¼ α

DB
; Nb¼ ρcð Þf DB Cw �C1ð Þ

ρcð Þf α ;

Nt¼ ρcð Þf DT Tw �T1ð Þ
ρcð Þf T1α ; M ¼ 2σB2

o
cρf nþ1ð Þ ;

λ¼ N1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aνf nþ1ð Þ

2

q
; δ¼D1

ffiffiffiffiffiffiffiffiffiffi
a nþ1ð Þ
2νf

q
;

Ec¼ u2w
cp Tw �T1ð Þ

9>>>>>>>>>=
>>>>>>>>>;

ð15Þ

The quantities of the practical interest, in this study, are
the local skin friction

Cfx ¼ μf
ρu2w

∂u
∂y

h i
y ¼ 0

;

Nux ¼ xqw
k Tw �T1ð Þ ;

Shx ¼ xqm
DB Cw �C1ð Þ

9>>>=
>>>;

ð16Þ

where k is the thermal conductivity of the nanofluid, and
qw; qm are the heat and mass fluxes at the surface, given by
qw ¼ � ∂T
∂y

� �
y ¼ 0

; qm ¼ �DB
∂C
∂y

� �
y ¼ 0

ð17Þ

Substituting Eq. (9) into Eqs. (11)–(13), we obtain

Re1=2x Cf x ¼
ffiffiffiffiffiffi
nþ1
2

q
f ″ð0Þ;

Re�1=2
x Nux ¼ �

ffiffiffiffiffiffi
nþ1
2

q
θ0ð0Þ;

Re1=2x Shx ¼ �
ffiffiffiffiffiffi
nþ1
2

q
φ0ð0Þ

9>>>>>=
>>>>>;

ð18Þ

where Rex ¼ uwx=ν is the local Reynolds number.
3. Solution of the problem by Keller-box
method

As Eqs. (11)–(13) are non-linear, it is impossible to get
closed-form solutions. Consequently, the equations with the
boundary conditions (14) are solved numerically by means
of a finite-difference scheme known as the Keller-box
method. Keller [45] developed the scheme. This method
has been shown to be particularly accurate for parabolic
problems It is much easier and faster to program and it is
chosen because it seems to be the most flexible of the
common methods, we have used the procedure outlined in
Cebeci and Pradshaw [46], which has been found to be very
suitable in dealing with non-linear problems easily adap-
table to solving equations of any order. The principal steps
in the Keller box method is to get the numerical solutions
are the following:

i. Transform the given first-order equations of ODEs to a
system.

ii. Write the reduced ODEs in finite differences.
iii. By using Newton's method, linearized the algebraic

equations and write them in a vector form.
iv. Solve the linear system by the block tri-diagonal

elimination technique.

3.1. Solution procedure

3.1.1. Finite difference method
To solve the transformed differential Eqs. (11)–(13)

subjected to the boundary conditions (14), Eqs. (11)–(13)
are first converted into a system of seven first-order
equations, and the difference equations are then expressed
using central differences. For this purpose, we introduce
new dependent variables p(η), q(η), θ(η), t(η), ϕ(η) and v(η)
so that Eqs. (11)–(13) can be written as

f 0 ¼ p ð19Þ
p0 ¼ q ð20Þ
θ0 ¼ t ð21Þ
ϕ0 ¼ v ð22Þ
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q0 þ f q� 2n
nþ 1

� �
p2�Mp¼ 0 ð23Þ

1
Pr t

0 þ f t� 4n
nþ1

� �
pθ þ Nb tvð Þ þ Nt t2


 �þ Ec q2

 �¼ 0

ð24Þ

v0 þ Le f vð Þ þ Nt

Nb

� �
t0 ¼ 0 ð25Þ

In terms of the new dependent variables, the boundary
conditions (14) are given by

pð0Þ ¼ 1þ λqð0Þ; φð0Þ ¼ 1

f ð0Þ ¼ 0; θð0Þ ¼ 1þ δtð0Þ;
pðηÞ-0; θðηÞ-0; φðηÞ-0 as η-1

9>=
>; ð26Þ

We now consider the segment ηj�1ηj with ηj�1=2 as the
midpoint, which is defined as below:

η0 ¼ 0; ηj ¼ ηj�1 þ hj; ηj ¼ η1 ð27Þ
Where hj is the Δη-spacing and Δη ¼ 1,2,…,J is a
sequence number that indicates the coordinate location.
The finite difference approximations (11)–(17) written for
the midpoint ηj�1=2 and arranging the expression

f j� f j�1�
1
2
hj pj þ pj�1


 �¼ 0 ð28Þ

pj�pj�1�
1
2
hj qj þ qj�1


 �¼ 0 ð29Þ

θj�θj�1�
1
2
hj tj þ tj�1

 �¼ 0 ð30Þ

ϕj�ϕj�1�
1
2
hj νj þ νj�1

 �¼ 0 ð31Þ

qj�qj�1�
1
2
hj f qð Þj�1=2�hj

2n
nþ 1

� �
p2j�1

� �
�Mpj�1=2 ¼ 0 ð32Þ

1
Pr

tj� tj�1

 �þ hj f tð Þj�1=2�hj

4n
nþ 1

� �
pθð Þj�1=2

þhjNb tvð Þj�1=2 þ hjNt t2j�1=2

� �
þ hjEc q2j�1=2

� �
¼ 0

ð33Þ

vj�vj�1 þ Lehj f vð Þj�1=2 þ
Nt

Nb
tj� tj�1

 �¼ 0 ð34Þ

Eqs. (27)–(33) are imposed for j ¼ 1,2,…,J, and the
transformed boundary layer thickness ηJ is to be sufficiently
large so that it is beyond the edge of the boundary layer.
The boundary conditions are

f 0 ¼ 0; p0 ¼ 1þ λq 0ð Þ; θ0 ¼ 1þ δt 0ð Þ;
φ0 ¼ 1; pJ ¼ 0; θJ ¼ 0; φJ ¼ 0

)
ð35Þ

3.1.2. Newton's method
To, linearized the non-linear system (28)–(34), We

use Newton's method, by introducing the following expres-
sions:

f ðkþ1Þ
j ¼ f ðkÞj þ δf ðkÞj ; pðkþ1Þ

j ¼ pðkÞj þ δpðkÞj ;

qðkþ1Þ
j ¼ qðkÞj þ δqðkÞj ; θðkþ1Þ

j ¼ θðkÞj þ δθðkÞj ;

tðkþ1Þ
j ¼ tðkÞj þ δtðkÞj ; ϕðkþ1Þ

j ¼ ϕðkÞ
j þ δϕðkÞ

j ;

vðkþ1Þ
j ¼ vðkÞj þ δvðkÞj

ð36Þ

Where k ¼ 0,1,2,3,….
We then insert the left-hand side expressions in place of

δpðkÞ, δqðkÞ, δθðkÞ, δtðkÞ, δϕðkÞ and δvðkÞ.
This procedure yields the following linear system (the

superscript k is dropped for simplicity):

δf j�δf j�1�
hj
2
ðδpj þ δpj�1Þ ¼ ðr1Þj�1=2 ð37Þ

δpj�δpj�1�
hj
2
ðδqj þ δqj�1Þ ¼ ðr2Þj�1=2; ð38Þ

δθj�δθj�1�
hj
2
ðδtj þ δtj�1Þ ¼ ðr3Þj�1=2; ð39Þ

δϕj�δϕj�1�
hj
2
ðδvj þ δvj�1Þ ¼ ðr4Þj�1=2; ð40Þ

ða1Þδqj þ ða2Þδqj�1 þ ða3Þδf j þ ða4Þδf j þ ða5Þδpj
þða6Þδpj�1 ¼ ðr5Þj�1=2 ð41Þ

ðb1Þδtj þ ðb2Þδtj�1 þ ðb3Þδf j þ ðb4Þδf j þ ðb5Þδpj
þðb6Þδpj�1 þ ðb7Þδθj þ ðb8Þδθj�1 þ ðb9Þδtj þ ðb10Þδtj�1

þðb11Þδqj þ ðb12Þδqj�1 ¼ ðr6Þj�1=2 ð42Þ

ðc1Þδvj þ ðc2Þδvj�1 þ ðc3Þδf j þ ðc4Þδf j þ ðc5Þδtj
þðc6Þδtj�1 ¼ ðr7Þj�1=2 ð43Þ

where

ða1Þj ¼ 1þ hj
2 f j�1=2;

ða2Þj ¼ ða1Þj�2;

ða3Þj ¼ hj
2 qj�1=2;

ða4Þj ¼ ða3Þj;
ða5Þj ¼ � 2n

nþ1 hjpj�1=2� M
2 hj;

ða6Þj ¼ ða5Þj;

ð44Þ



3
7777777777775
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ðb1Þj ¼ 1
pr þ

hj
2 f j�1=2 þ NbU hj

2 νj�1=2 þ NtUhjtj�1=2;

ðb2Þj ¼ ðb2Þj� 2
pr ;

ðb3Þj ¼ hj
2 tj�1=2;

ðb4Þj ¼ ðb3Þj;
ðb5Þj ¼ � hj

2 U
4n
nþ1 Upj�1=2;

ðb6Þj ¼ ðb5Þj;
ðb7Þj ¼ � hj

2 U
4n
nþ1 Uθj�1=2;

ðb8Þj ¼ ðb7Þj
ðb9Þj ¼ hj

2 tj�1=2 UNb;

ðb10Þj ¼ ðb9Þj;
ðb11Þj ¼ EcU hj

2 qj�1=2;

ðb12Þj ¼ ðb11Þj;

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð45Þ

ðc1Þj ¼ 1þ hj
2 LeU f j�1=2;

ðc2Þj ¼ ðc1Þj�2;

ðc3Þj ¼ LeU hj
2 νj�1=2;

ðc5Þj ¼ Nt
Nb ;

ðc6Þj ¼ �ðc5Þj;

9>>>>>>>=
>>>>>>>;

ð46Þ

ðr1Þ ¼ f j�1� f j þ hjðpj� 1
2
Þ;

ðr2Þ ¼ pj�1�pj þ hjðqj� 1
2
Þ;

ðr3Þ ¼ θj�1�θj þ hjðtj� 1
2
Þ;

ðr4Þ ¼ ϕj�1�ϕj þ hjðνj� 1
2
Þ;

ðr5Þ ¼ qj�1�qj�hjðf qÞj� 1
2
þ 2n

nþ1 p
2
j�1=2�ðMÞpj;

ðr6Þ ¼ 1
pr ðtj�1� tjÞ�hjðNbU ðvtÞj� 1

2
�NtU t2

j� 1
2
�

EcUq2
j� 1

2
� 4n

nþ1 ðpθÞj� 1
2
þ ðf tÞj� 1

2
Þ

ðr7Þ ¼ νj�νj�1�hjðLeU ðf vÞj� 1
2
Þ� Nt

Nb ðtj� tj�1Þ;

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ð47Þ

The boundary conditions (34) become

δf 0 ¼ 0; δp0 ¼ 0; δq0 ¼ 0; δθ0 ¼ 0; δϕ0 ¼ 0;

δpj ¼ 0; δθj ¼ 0; δϕj ¼ 0 ð48Þ

which just express the requirement for the boundary
conditions to remain constant during the iteration process.
3.1.3. Block-elimination method
The linearized difference Eqs. (42)–(48) can be solved by

the block-elimination method as outlined by Cebeci and
Bradshaw [46], since the system has block-tridiagonal
structure. Commonly, the block-tridiagonal structure con-
sists of variables or constants, but here an interesting feature
can be observed that it consists of block matrices. In a
matrix-vector form, Eqs. (42)–(48) can be written as
Aδ¼ r ð49Þ
Where

A¼

½A1� ½C1�
½B2� ½A2� ½C2�

⋱
⋱
⋱

½Bj�1� ½Aj�1� ½Cj�1�
½Bj� ½Aj�

2
666666666664

3
777777777775
ð50Þ

δ¼

½δ1�
½δ2�
⋮

½δj�1�
½δj�

2
6666664

3
7777775
and r¼

½r1�
½r2�
⋮

½rj�1�
½rj�

2
66666664

3
77777775

ð51Þ

The elements of the matrices are as follows:

½A1� ¼

0 0 0 1 0 0 0

� hj
2 0 0 0 � hj

2 0 0

0 � hj
2 0 0 0 � hj

2 0

0 0 � hj
2 0 0 0 � hj

2

ða2Þ1 0 0 ða3Þ1 ða1Þ1 0 0

ðb12Þ1 ðb2Þ1 ðb10Þ1 ðb3Þ1 ðb11Þ1 ðb1Þ1 ðb9Þ1
0 ðc6Þ1 ðc2Þ1 ðc3Þ1 0 ðc5Þ1 ðc1Þ1

2
6666666666664

ð52Þ
2r jrJ:

½AJ � ¼

� hj
2 0 0 1 0 0 0

�1 0 0 0 � hj
2 0 0

0 �1 0 0 0 � hj
2 0

0 0 �1 0 0 0 � hj
2

ða6ÞJ 0 0 ða3ÞJ ða1ÞJ 0 0

ðb8ÞJ ðb6ÞJ 0 ðb3ÞJ ðb11ÞJ ðb1ÞJ 0

0 0 0 ðc3ÞJ 0 ðc5ÞJ ðc1ÞJ

2
66666666666664

3
77777777777775

ð53Þ

½Bj� ¼

0 0 0 �1 0 0 0

0 0 0 0 � hj
2 0 0

0 0 0 0 0 � hj
2 0

0 0 0 0 0 0 � hj
2

0 0 0 ða4ÞJ ða2ÞJ 0 0

0 0 0 ðb4ÞJ ðb12ÞJ ðb2ÞJ ðb10ÞJ
0 0 0 ðc4ÞJ 0 ðc6ÞJ ðc2ÞJ

2
6666666666664

3
7777777777775

ð54Þ
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1 r j r J-1:

½CJ � ¼

� hj
2 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

ða5ÞJ 0 0 0 0 0 0

ðb7ÞJ 0 0 0 0 0 0

0 0 0 0 0 0 0

2
666666666664

3
777777777775

ð55Þ

2r jrJ:

½δ1� ¼

δq0
δθ0

δϕ0

δf 1
δq1
δt1
δv1

2
666666666664

3
777777777775
; ½δj� ¼

δqj�1

δθj�1

δϕj�1

δf j
δqj
δtj

δvj

2
666666666664

3
777777777775

ð56Þ

1r jrJ:

½rj� ¼

ðr1Þj�1=2

ðr2Þj�1=2

ðr3Þj�1=2

ðr4Þj�1=2

ðr5Þj�1=2

ðr6Þj�1=2

ðr7Þj�1=2

2
6666666666664

3
7777777777775

ð57Þ

We assume that A is non-singular and it can be factorized
as

A¼ LU ð58Þ
Where

L¼

½α1�
½β2� ½α2� ½c2�

⋱
⋱

½αj�1�
½Bj� ½αj�

2
6666666664

3
7777777775

ð59Þ

And

U¼

½I1� ½Γj�1�
½I1�

⋱
⋱

½Ij�1� ½Γj�1�
½I�

2
6666666664

3
7777777775

ð60Þ

Where [I] is a 7� 7 identity matrix, while ½αi� and ½Γi� are
7� 7 matrices in which elements are determined by the
following equations:
½αi� ¼ ½A1� ð61Þ

½A1�½Γ1� ¼ ½C1� ð62Þ

½αi� ¼ ½A1��½Bj�½Γj�1� ; j¼ 2; 3;…; J ð63Þ

½αj�½Γj� ¼ ½Cj� ; j¼ 2; 3;…; J�1 ð64Þ
Substituting Eq. (61) into Eq. (49), we obtain

LUδ¼ r ð65Þ
If we define

Uδ¼W ð66Þ
Then Eq. (66) becomes

LW ¼ r ð67Þ
Where

W ¼

½W1�
½W2�
⋮

½Wj�1�
½Wj�

2
6666664

3
7777775

ð68Þ

The elements of W can be determined from Eq. (68) by
the following relations:

½α1�½W1� ¼ ½r1�; ½αi�½Wj� ¼ ½rj��½Bi�½Wj�1� ; 2r jrJ

ð69Þ
When the elements of W have been found, Eq. (69) gives

the solution for δ in which the elements are found from the
following relations:

½δJ � ¼ ½WJ �; ½δi� ¼ ½WJ ��½Γj�½δjþ1�; 1r jrJ�1 ð70Þ
These calculations are repeated until some convergence

criterion is satisfied and calculations are stopped when

δv0 rε1jj ð71Þ
where ε1 is small prescribed value. One of the factors that
are affecting the accuracy of the method is the appropriate-
ness of the initial guesses. The accuracy of the method
depends on the choice of the initial guesses. The choices of
the initial guesses depend on the convergence criteria and
the boundary conditions (14).

The following initial guesses are chosen

f 0ðηÞ ¼ ð1=ð1þ λÞÞ�ð1=ð1þ λÞÞe� η;

g0ðηÞ ¼ ð1=ð1þ δÞÞe� η; h0ðηÞ ¼ e�η

)
ð72Þ

In this study, a uniform grid of size Δη ¼ 0.006 is found
to be satisfy the convergence and the solutions are obtained
with an error of tolerance 10�5 in all cases. In our study,
this gives about four decimal places accurate to most of the
prescribed quantities.



Figure 5 Variation of concentration f 0ðηÞ with η for several values
of λ.
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4. Results and discussion

In order to study the results, a numerical computation effort
has been carried out using the method described in the previous
section for several values of the velocity slip parameter λð Þ,
thermal slip parameter δð Þ, magnetic parameter (M). The result
of the parametric study are plotted in Figures 2–17. For the
verification of the accuracy of the applied numerical scheme,
equivalence of the present results corresponding to the values
of heat transfer coefficient �θ0ð0Þ½ �, mass transfer coefficient
ϕ0ð0Þ for M ¼ 0, λ ¼ 0, δ ¼ 0 (i.e. in absence of velocity
slip, thermal slip and magnetic parameters) are made with the
available results of Hamad et al. [17] presented in Tables 1 and
2. The calculation for skin friction coefficient, heat transfer rate
Figure 3 Variation of temperature θðηÞ with η for several values of
M and n.

Figure 4 Variation of velocity ϕðηÞ with η for several values of M.

Figure 6 Variation of temperature θðηÞ with η for several values of
velocity slip parameter λ.Figure 2 Variation of velocity f 0ðηÞ with η for several values of

M and n.

Figure 7 Variation of concentration ϕðηÞ with η for several values of
velocity slip parameter λ.

Figure 8 Variation of temperature θðηÞ with η for several values of
thermal slip parameter δ.



Figure 11 Effects of Nb and Nt on temperature distribution.

Figure 12 Effect of Nb on concentration.

Figure 13 Effect of Nt on concentration.

Figure 14 Effect of Le on concentration.

Figure 10 Effect of Ec on temperature distribution.

Figure 9 Variation of concentration ϕðηÞ with η for several values of
thermal slip parameter δ.

Figure 15 Effects of M and n on skin friction coefficient.

Figure 16 Effects of δ and Pr on heat transfer coefficient.
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and mass transfer tate is showed in Table 3. The results are
found in good agreement. In this paper, numerical
solutions will be obtained with the help of the Keller-box
method.
Figure 2 shows the effect of the non-linear stretching
parameter n and the magnetic parameter M on the dimen-
sionless velocity. It is observed that the dimensionless
velocity decreases with increasing values of the non-linear



Table 2 Comparison of results for �θ0ð0Þ and ϕ0ð0Þ when
Pr ¼ 10, n ¼ 10, Le ¼ 10 and Nt ¼ 0.3.

�θ0ð0Þ

Nb Ec ¼ 0 Ec ¼ 0.1

Hamad [17] Present
study

Hamad [17] Present
study

0.1 3.7716 3.7715 3.6588 3.6588
0.2 3.2515 3.2514 3.1496 3.1496
0.3 2.8279 2.8278 2.7356 2.7356

ϕ0ð0Þ

Ec ¼ 0 Ec ¼ 0.1

Hamad [17] Present study Hamad [17] Present
study

5.6219 5.6212 5.3457 5.3451
0.9981 0.9977 0.8750 0.8746
0.4517 0.4521 0.5250 0.5255

Table 3 Calculation table for skin friction coefficient ð� f ″ð0ÞÞ
heat transfer rate ð�θ0ð0ÞÞ and mass transfer rate ð�ϕ0ð0ÞÞ for
various values of magnetic parameter M, velocity slip λ and
thermal slip δ when Pr ¼ 5, Nb ¼ Nt ¼ 0.3, Le ¼ 2, Ec ¼ 0.1.

M λ δ � f ″ð0Þ �θ0ð0Þ �ϕ0ð0Þ

0.1 0.2 0.2 0.878734 1.942967 0.759485
0.3 0.2 0.2 0.954825 1.886203 0.741617
0.4 0.2 0.2 0.990667 1.858135 0.731665
0.5 0.2 0.2 1.025242 1.830267 0.721117
1.0 0.3 0.1 1.070591 1.940784 0.919926
1.0 0.4 0.1 0.976827 1.925530 0.946561
1.0 0.5 0.1 0.897480 1.904185 0.963265
1.0 0.1 0.3 1.319597 1.502959 0.447819
1.0 0.1 0.4 1.319597 1.352161 0.320172
1.0 0.1 0.5 1.319597 1.219905 0.208106

Table 1 Comparison of results for skin friction f ″ð0Þ when
M ¼ Nb ¼ Nt ¼ λ ¼ δ ¼ 0, Le ¼ 1, Pr ¼ 6.8.

N Hamad et al. [17] Present study

0.0 0.6283 0.6283
0.2 0.7674 0.7675
0.5 0.8901 0.8901
1.0 1.0004 1.0005
3.0 1.1489 1.1490
10 1.2352 1.2352
20 1.2577 1.2578

Figure 17 Variation of local Nusselt number �θ0(0) with Nt for
different values of Nb.
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stretching parameter n and the magnetic parameter M.
According to the Lorentz force, a retarding body force is
introduced by the magnetic field which controverts the
direction of the applied magnetic field. By increasing the
value of the magnetic parameter M, the retarding body force
increases and consequently, the dimensionless velocity
decreases. Also, as the magnetic field increases, the
boundary layer thickness reduces. Figure 3 exhibits the
effects of the non-linear stretching parameter n and the
magnetic parameter M on the dimensionless temperature. It
is observed that the temperature profile increases with
increasing values of the magnetic parameter M. Figure 4
shows that the effect of the magnetic parameter M on the
concentration profile. As the magnetic parameter M
increases, the nanoparticle concentration also increases.
This is due to the Lorentz force which is a resistive force
that transverses the fluid motion and therefore, heat is
evolved. Hence, for a stronger magnetic field both the
thermal boundary layer thickness and the nanoparticle
concentration boundary layer thickness become thicker.

Figure 5 shows the effect of the velocity slip parameter
(λ ¼ 0.0, 0.1, 0.3, 0.5) on the velocity profile. It is observed
that the dimensionless velocity profile decreases with
increasing values of λ. As the velocity slip parameter
increases, the slip velocity increases and the fluid velocity
decreases. This is because when the slip condition occurs,
the velocity of the stretching sheet is not same as the
velocity of the flow near the sheet. The effects of variation
of the velocity slip parameter on the temperature profile and
the concentration profile are presented in Figures 6 and 7. In
the presence of a magnetic field and a thermal jump, it is
observed that the temperature and concentration profiles
increase as the value of the velocity slip parameter λ
increases. Figures 8 and 9 exhibit the effects of the thermal
slip parameter δ on the dimensionless temperature and
nanoparticle volume fraction. It is clearly shown that by
increasing the values of δ, the temperature and concentra-
tion profiles decrease. As the value of the thermal slip
parameter increases, the thermal boundary layer thickness
decreases even when a small amount of heat is transferred
to the fluid from the sheet.

Figure 10 illustrates the effects of the viscous dissipation
parameter (Eckert number) Ec on the dimensionless tem-
perature. It is observed that the temperature increases with
increasing values of Ec and that the thermal boundary layer
thickness also increases. This is because the rate of heat
transfer is decreased at the stretching sheet surface. Figures
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11–13 illustrate the effects of the Brownian motion parameter
Nb and the thermophoresis parameter Nt on the dimension-
less temperature and concentration, respectively. It is
observed that with increasing values of the Brownian motion
parameter Nb, the temperature profile increases and the
concentration profile decreases. Further, we also notice that
by increasing the value of the thermophoresis parameter Nt,
the dimensionless temperature and nanoparticle volume
fraction increase. This is due to the fact that the thermo-
phoretic force is produced by the temperature gradient and it
creates a very high speed flow away from the stretching
sheet. In this way, the fluid is more heated and away from the
stretching surface and consequentially, as the thermophoresis
parameter Nt increases, the thermal boundary layer thickness
increases and the temperature gradient at surface decreases as
both Nt and Nb values increase.

Figure 14 depicts the influence of the Lewis number on
the dimensionless concentration. It is noticed that the
nanoparticle volume fraction experiences a strong reduction
for larger Le values. The dimensionless Lewis number is
defined as the ratio of thermal and mass diffusivity. By
increasing the value of Le, the thermal boundary layer
thickness is increased whereas the concentration boundary
layer thickness is reduced. Figure 15 shows that the nature
of the skin friction coefficient against the magnetic para-
meter M for increasing values of non-linear stretching
parameter n. As the non-linear stretching parameter
increases, the skin friction coefficient is decreased. This
means that fluid motion on the wall of the sheet is
accelerated when we strengthen the effects of parameters.

Figure 16 displays the effect of the thermal slip parameter
δ against the heat transfer rate for two values of Pr. An
increase in the Prandtl number, causes the rate of heat
transfer to increase. Consequently, it reduces the thickness
of the thermal boundary layer. This is due to the Prandtl
number, which is defined as the ratio of momentum
diffusivity to thermal diffusivity. Fluids with lower Prandtl
number will possess higher thermal conductivities and
thicker thermal boundary layer structures. So that heat can
diffuse from the sheet faster than for higher Pr fluids i.e.
thinner boundary layers. Hence Prandtl number can be used
to increase the rate of cooling in conducting flows.
Figure 17 reveals that the nature of rate of heat transfer
against the thermophoresis parameter Nt for increasing
values of Brownian motion parameter. It is observed that
the local Nusselt number is decreased.
5. Conclusions

The boundary layer viscous flow and heat transfer of a
nanofluid over a non-linearly stretching sheet with the effect
of velocity slip, thermal slip and magnetic field have been
studied numerically. The influence of the governing para-
meters: magnetic parameter M, velocity slip parameter λ,
thermal slip parameter δ, Eckert number Ec, Lewis number
Le, Brownian motion parameter Nb, thermophoresis
parameter Nt, Prandtl number Pr, Non-linear stretching
parameter n on the velocity, temperature & concentration
profiles. It is observed that the present results are equalized
with the previous work done by Hamad [17]. The results are
as follows:

1. When the magnetic parameter M raises, then it reduces
the velocity profile, and enhances the temperature and
concentration profiles due to the effect of Lorentz force.

2. When the magnetic parameter M and the velocity slip
parameter are increased individually, then the velocity
profile decreases while the temperature and concentra-
tion profiles increase.

3. When the velocity slip parameter increases, then it
diminishes the velocity profile, and slightly enhances
the temperature and concentration profiles.

4. By rising the thermal slip parameter, the temperature
and heat transfer rate diminishes when a small amount is
heat is transferred to the fluid from the stretching sheet.
In the same way the concentration increases and mass
transfer reduces.

5. By increasing the thermal slip parameter, the tempera-
ture decreases and the concentration increases. Also, the
heat and mass transfer reduce.

6. As the value of Ec increases, the temperature profile
increases.

7. By increasing the Browinian motion parameter Nb, the
temperature increases and the concentration decreases.

8. By increasing the values of the thermophoresis Para-
meter Nt, the temperature and concentration increase.
This is due to the fact that thermophoretic is produced
by the temperature gradient. In this case the fluid is
more heated and passes away from the stretching sheet.

9. As Le increases, the concentration decreases.
10. When the values of M and n are increased, then the skin

friction coefficient also increases.
11. Increasing the Prandtl number Pr increases the heat

transfer against increasing the thermal slip parameter δ.
12. An increase in the Brownian motion parameter Nb

decreases the local Nusselt number against increasing
the thermophoresis Parameter Nt.
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