150 2012, Vol.33, No.23 **食品科学** ※基础研究

免疫初乳与双歧杆菌复合微胶囊的加工特性

杨 柳, 尤丽新*, 张英楠, 陈海燕, 杨 斌, 张凤宽 (吉林农业大学发展学院, 吉林 长春 130600)

摘 要:采用空气悬浮微胶囊化方法制成免疫与微生态双活性的免疫初乳与双歧杆菌复合微胶囊,对其加工特性进行研究,包括复合微胶囊的溶解性、耐酸性、耐胆汁盐性及稳定性。结果表明:研制成的微胶囊在人工胃液中2h不崩解,而在人工肠液中40min时崩解完全;人工胃液处理2h后,活菌存活率达87%,IgG的活性仍可达到2⁸,表观回收率达90.5%;在高胆汁盐溶液中处理3h后,活菌数仍可以达到67.7%,IgG活性为2⁷,仅下降了1个滴度;在室温下贮存10个月,双歧杆菌的存活率仍可达31.7%,活菌数仍在10⁸CFU/mL以上;IgG活性没有发生变化,仍为2⁸。

关键词:双歧杆菌;免疫球蛋白;复合微胶囊;加工特性

Processing Characteristics of Compound Microcapsules of Immune Colostrum and Bifidobacteria

YANG Liu, YOU Li-xin*, ZHANG Ying-nan, CHEN Hai-yan, YANG Bin, ZHANG Feng-kuan (College of Development, Jilin Agricultural University, Changchun 130600, China)

Abstract: Compound microcapsules of immune colostrums and bifidobacteria were prepared by air suspension technique and analyzed for processing characteristics including solubility, acid resistance, bile salt resistance and stability. The prepared microcapsules could maintain its stability in simulated gastric fluid after 2 h treatment and the survival rate of bifidobacteria and the activity and apparent recovery rate of IgG were still as high as 87%, 28 and 90.5%, respectively, while complete disintegration was observed when they were treated with simulated intestinal fluid for 40 min. After 3 h of treatment with high-concentration bile salt solution, the survival rate of bifidobacteria was 67.7% and the activity of IgG was 27. The survival rate of bifidobacteria was 31.7%, the surviving population of bifidobacteria was more than 108 CFU/mL and the activity of IgG showed no change and remained 28 during 10 months of storage at room temperature.

Key words: bifidobacteria; immunoglobulin; microcapsule; process characteristics

中图分类号: TS252.1

文献标识码: A

文章编号: 1002-6630(2012)23-0150-05

免疫乳(immune bovine milk, IBM)是一种天然、安全,并具有一定保健疗效的功能性乳制品,是指运用基因工程经免疫化学处理有意识地给奶羊、奶牛等哺乳动物有选择性的接种一些能够引起人或动物疾病的细菌和病毒或其他一些外来的抗原刺激抗体产生免疫应答,分泌出具有特异性的抗体或免疫球蛋白进入乳中,从而使动物乳汁具有重要的免疫作用,这种含有丰富的特异性抗体的乳汁就是免疫乳^[1-2]。根据整个泌乳期免疫球蛋白含量变化,可将免疫乳区分为免疫初乳和免疫常乳,免疫注射的奶牛产后3d(72h)内的免疫乳,免疫球蛋白含量特别高,为50~150mg/mL,称为免疫初乳;3d后的为免疫常乳,免疫球蛋白含量急剧下降至3~0.5mg/mL以下^[3-4]。人服用免疫乳,小肠无需吸收抗体即可起到被动免疫保护作用,只要乳中的免疫球蛋白到达肠道后活性不丧失,就可特异性地中和并清除肠道中的病原菌,从而对疾病有一定

地预防和治疗作用^[5-6]。然而,抗体具有蛋白质通性,即不耐热、能被多种蛋白酶水解、可被中性盐类沉淀,使蛋白质变性的物质同样能够破坏抗体活性等特点^[7],从而限制了免疫球蛋白功能性食品的开发。

双歧杆菌是1899年在法国巴斯德研究所由帝赛博士首次从健康的母乳哺育婴儿的粪便中发现并分离出来的^[8],双歧杆菌作为肠道有益菌^[9],具有如下生理功能: 1)抑制肠道致病菌的生长; 2)降低血清中胆固醇含量; 3)激活免疫系统,提高人体免疫机能; 4)具有抗癌活性^[10]。目前国内各种微生态制剂仍存在两个突出的亟待解决的问题: 一是,在经口服时,其中的活菌活性容易受到强酸度的胃酸、胆汁酸、蛋白酶的影响而失去活性,能到达肠道并发挥相应作用数量极少; 二是,制剂贮存期即货架寿命问题,双歧杆菌是一种很"娇嫩"的物质,对外界环境非常敏感,因此,要想提高产品运输及销售过程

收稿日期: 2011-09-25

作者简介: 杨柳(1981—), 女,讲师,硕士,研究方向为功能性乳制品。E-mail: yangliu_2006@163.com *通信作者:尤丽新(1978—),女,讲师,硕士,研究方向为功能性乳制品。E-mail: youlixin521@163.com

中菌体的存活率,延长产品货架期,就应该从工艺上进行适当的改进^[11]。

为使双歧杆菌和免疫球蛋白(IgG)能顺利通过肠道,避免胃酸、胆汁酸对二者活性的影响,现已采用空气悬浮微胶囊化的方法,并采用了由英国卡乐康(Colorcon)公司在世界上最早推出的薄膜包衣产品——欧巴代(欧巴代薄膜包衣及技术已获中国药典会及美国FDA认可。欧巴代系由高分子聚合物、增塑剂、着色剂等多种成分组成。欧巴代可根据用户的需要,提供科学配方,满足每一个品种的个性要求。欧巴代一般分为胃溶型和肠溶型两种)作为壁材,研制成了免疫与微生态双活性微胶囊制剂,此制剂对人体起到双重保健作用。本研究主要对研制成的微胶囊制剂的一些加工特性进行研究,包括复合微胶囊的溶解性、耐酸性、耐胆汁盐性及热稳定性,为双歧杆菌与免疫初乳复合微胶囊产品的开发和利用提供一种新的方法。

1 材料与方法

1.1 菌种与培养基

1.1.1 微生物菌种

青春双歧杆菌(Bifidobacterium adolescentis)由吉林农业大学食品科学与工程学院乳品研究室提供。

1.1.2 培养基

改良牛乳培养基、TPYG固体培养基 吉林农业大学 食品科学与工程学院乳品研究室。

1.2 试剂与仪器

胃蛋白酶 北京鼎国生物技术有限责任公司; 胰蛋白酶 国药集团化学试剂有限公司; 肠溶型欧巴代上海卡乐康公司。

崩解时限检测仪 天津市拓普仪器有限公司; JJ-1 精密增力电动搅拌器 金坛市江南仪器厂; TU-1810紫外-可见分光光度计 北京普析通用仪器有限责任公司; 洁净工作台 北京东联哈尔仪器制造有限公司; HPX-9162MBE数显电热培养箱 上海博讯实业有限公司。

1.3 溶液的配制

人工胃液与人工肠液:均按中国药典1990年版^[12]配制。 欧巴代肠溶包衣液的配制:按照文献[13]方法配制。 方法:1)在合适的配液容器中加入88%的乙醇溶液,配成的包衣液的液面高度最好与容器的直径基本相同。2) 将螺旋桨式搅拌器深入液面下2/3处。理想的搅拌器的直径约为容器直径的1/3。3)启动搅拌器,使整个液面刚刚 形成漩涡,但不能卷入太多的空气,搅拌速率应足以使容器中的液体完全被搅动。4)使用合适的勺子将欧巴代以平稳的速度不断加入漩涡中,不能使粉末漂浮在液面上,加料过程应在数分钟内完成。随着包衣液的年度不断增大,可能需要提高搅拌速率,以保持原有的漩涡。 5)加料完毕后,将搅拌速率放慢使漩涡刚刚消失,继续搅拌45min,即可完成包衣液的配制。

1.4 免疫初乳与双歧杆菌复合微胶囊的制备[14]

1.4.1 免疫初乳的准备

自吉林农业大学奶牛场随机选择10头健康距离预产期6~8周的奶牛,随机分两组,每组5头。第一组以福氏志贺氏菌做免疫原。第二组为对照组。免疫组分娩前6~8周肌注射水苗,两周后皮下注射佐剂苗,以后每隔一周交替注射水剂苗和佐剂苗,直至奶牛分娩。收集免疫乳牛分娩后7d内的乳即免疫初乳^[15]。

1.4.2 双歧杆菌发酵免疫初乳冻干粉的制备

将双歧杆菌冻干粉接入灭菌的11g/100mL脱脂乳中, 37℃恒温培养,待脱脂乳凝固后,连续传代2~3次,使其充分活化。待菌种充分活化后,按照革兰氏染色法染色后镜检,确定是否是纯菌种。免疫初乳以5%的量接种双歧杆菌,4h凝乳,加入保护剂后进行冻干制粉。

1.4.3 免疫初乳与双歧杆菌复合微胶囊的制备

1.4.3.1 工艺流程

保护剂、冻干粉 糖浆 ↓ ↓

造母芯→1次干燥→空气悬浮造粒→2次干燥→喷涂糖衣→ 3次干燥→喷涂肠衣→成品

↑ 欧巴代溶液

1.4.3.2 操作要点

1)母芯的制作:采用空气悬浮法将蔗糖粉和可溶性淀粉制成母芯(蔗糖粉、可溶性淀粉质量比7:3)。母芯造粒机参数为:主机调速:80r/min,喷浆调速:110r/min,鼓风温度:27.1℃。

2)空气悬浮造粒:采用空气悬浮法将双歧杆菌发酵免疫初乳复合冻干粉黏附在母芯上,同时通入菌体保护剂。保护剂的最佳配方为:海藻糖添加量6%,水解酪蛋白添加量6%,乳化剂Span-80添加量3%。空气悬浮造粒机控制参数为:进风量200m³/h、进气温度45℃、排气温度36℃、物料温度37℃、喷浆速率6r/min。

3)干燥: 采用流化床进行连续干燥,干燥条件: 母粒堆积厚度3~4粒,干燥室湿度20%~40%,37~40℃干燥1~2h。

4)包糖衣:糖衣液为50g/100mL蔗糖溶液。

5)包肠溶衣: 肠溶衣为88g/100mL醇溶性欧巴代溶液,包衣液15g/100mL,片心增质量15%。

1.4.4 免疫初乳与双歧杆菌复合微胶囊的加工特性

1.4.4.1 复合微胶囊溶出度的测定

1)在人工胃液中的溶出速率: 将200粒(相当0.1g冻干粉) 微胶囊置于盛有100mL人工肠液的三角瓶中,于37℃恒温水浴搅拌,分别于20、30、40、45、60min后取出进行活菌计

数,通过活菌数计算微胶囊在人工胃液中的溶出速率。

2)在人工肠液中的溶出速率:将200粒(相当0.1g冻干粉)微胶囊置于盛有100mL人工胃液的三角瓶中,于37℃恒温水浴搅拌,分别于10、20、30、40、50、60、80min后取出进行活菌计数,通过活菌数计算微胶囊在人工肠液中的溶出速率。

1.4.4.2 微胶囊崩解实验研究

取200粒微胶囊,根据中华人民共和国药典2005年版第二部中的方法,利用崩解仪进行微胶囊崩解实验。

1.4.4.3 复合微胶囊的耐酸性实验

将复合微胶囊放入人工胃液中1、2、3h后,用无菌蒸馏水冲洗1~2次进行崩解,再测定其中的双歧杆菌活菌数、免疫球蛋白活性及其含量的变化,并以冻干粉及未包肠衣微胶囊作对照。

1.4.4.4 复合微胶囊耐胆汁盐实验[16-17]

已知人体小肠中的胆汁盐含量为0.3~3g/kg^[17]。用猪胆盐模拟人体小肠胆汁盐环境。将胆汁分别配制成1、2、3g/L,将微胶囊分别放入不同质量浓度的胆汁盐溶液中分别放置1、2、3h后测定微胶囊中双歧杆菌活菌数及免疫球蛋白活性的变化,并以冻干粉及未包肠衣的微胶囊作对照。

1.4.4.5 复合微胶囊的稳定性实验

将复合微胶囊在室温(25℃)下分别放置10个月,每隔一个月取样测定微胶囊中双歧杆菌活菌数及免疫球蛋白活性的变化,并以冻干粉做对照。

1.4.4.6 理化指标测定

双歧杆菌活菌数:参照文献[18]的方法测定;免疫球蛋白活性:采用试管凝集法^[19]测定;IgG含量:采用紫外吸收差法^[18]测定。

2 结果与分析

2.1 复合微胶囊的溶解度的测试

2.1.1 在人工胃液中的溶出速率

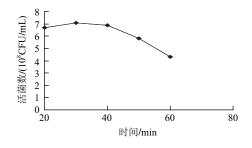
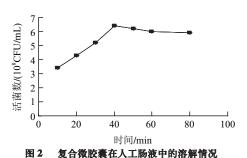



图 1 复合微胶囊在人工胃液中的溶解情况

Fig.1 Solubility of microcapsules in simulated gastric fluid

由图1可知,复合微胶囊在人工胃液中放置1h基本不发生崩解,而放置20min后测得溶液中含有一定的活菌数,随后活菌数又不断减少,可能是由于部分微胶囊没有被肠溶衣包裹完全而导致菌粉外漏,因此溶液中含有一定的双歧杆菌,但由于胃酸的作用,随着时间的延长活菌数不断减少。

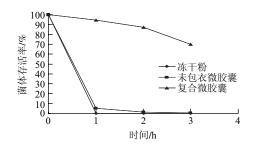
2.1.2 在人工肠液中的溶出速率

国2 发口恢放表征人工的依下的价件间处

 ${\bf Fig. 2} \qquad {\bf Solubility\ of\ microcapsules\ in\ simulated\ intestinal\ fluid}$

由图2可知,复合微胶囊在人工肠液中放置10min后 开始有微量崩解,40min内崩解完全,将双歧杆菌及IgG释 放出来,活菌数达6.3×10⁸CFU/mL,免疫球蛋白含量达 64mg/g。以后随着时间的延长活菌数不再增加。所以采用 欧巴代作为壁材研制成的微胶囊具有良好的肠溶性能。

2.2 复合微胶囊崩解实验情况


将复合微胶囊放于盐酸溶液(9mL 1mol/L的盐酸,定容至1000mL)中,2h后观察,每粒均没有裂缝、崩解或软化现象。将吊篮取出,用少量水洗涤后,每管加入挡板一块,再在磷酸盐缓冲液中(pH6.8)中进行实验,复合微胶囊在40min内崩解完全。可见,所得复合微胶囊在人工胃液中2h内基本上不发生崩解,而在人工肠液中40min内崩解完全。

2.3 复合微胶囊的耐酸性

2.3.1 复合微胶囊中双歧杆菌在人工胃液中的存活情况

双歧杆菌食入人体后,首先要抵御胃酸环境。由于食物成分、进食量及个体间的差异,人体胃液的pH值通常在1.8~5.0之间波动,本实验采用pH1.2人工胃液的模拟胃酸环境。取适量复合微胶囊分别置于盛有50mL、pH1.2人工胃液的三角瓶中,于摇床培养箱中以温度(37±1)℃,转速180r/min的条件下进行崩解,并以冻干粉及未包肠衣微胶囊作为对照,分别于1、2、3h后测定微胶囊中双歧杆菌的活菌数,结果见图3。冻干粉在人工胃液中放置1h,活菌存活率仅为0.03%,3h后存活率仅为千万分之一左右,存活率很低;未包肠衣微胶囊在人工胃液中放置2h后存活率为5.15%,3h后存活率仅为0.4%,这表明直接服用菌粉和未包肠衣微胶囊很难保证有足够量的双歧杆菌活菌进入肠道,发挥调整肠道菌群失调的功效。制成复合微胶囊后,其耐酸性大大提高,在人工

胃液处理2h后,存活率达87%,即使放置3h后活菌存活率仍可达70%左右,远远高于冻干粉和未包肠衣微胶囊。

图 3 双歧杆菌在人工胃液中存活率的变化

Fig.3 Change in bifidobacteria survival rate during exposure to simulated gastric fluid

2.3.2 复合微胶囊中IgG活性在人工胃液中的变化

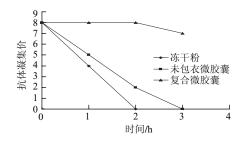


图 4 陈干粉、未包衣微胶囊、复合微胶囊中IgG活性在人工胃液中的变化 Fig.4 Change in IgG activity of freeze-dry power, bare microcapsules and enteric-coated microcapsules during exposure to simulated gastric fluid

由图4可知,冻干粉在人工胃液中放置1h后IgG活性降低了4个滴度,2h后已经检测不到IgG的活性;未包肠衣的微胶囊在人工胃液中放置2h后IgG下降了6个滴度,3h后已经检测不到IgG的活性;而复合微胶囊在人工胃液中放置2h后活性没有发生变化,即使存放3h后活性仅下降1个滴度。胃酸是使IgG在胃肠道内变性的重要原因,制成复合微胶囊后其耐酸性能大大提高,IgG可以免受胃酸破坏,顺利通过肠道被人体消化吸收,从而增强人体的免疫力。

2.3.3 复合微胶囊中IgG含量在人工胃液中的的变化

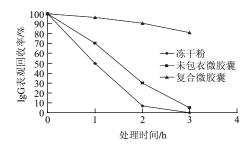


图 5 人工胃液中IgG表观回收率的变化

Fig.5 Change in apparent recovery rate of IgG during exposure to simulated gastric fluid

表观回收率是免疫球蛋白未被分解或空间结构未发生变化的含量与原免疫球蛋白的含量的比值。由图5可知,冻干粉在人工胃液中处理2h后表观回收率仅为6.92%,3h后已经不存在完整的IgG分子;未包肠衣微胶囊在人工胃液中处理2h后表观回收率为30%,3h后仅为5%;而复合微胶囊在人工胃液中处理2h后表观回收率可达90.5%。即使是在人工胃液中存放3h微胶囊中IgG的表观回收率仍在80%以上。

2.4 复合微胶囊耐胆盐实验结果

2.4.1 复合微胶囊中双歧杆菌在胆汁溶液中的存活特性

胆汁盐是胆汁的重要成分之一,主要是由结合的胆酸形成的钠盐,对于脂肪的消化吸收具有重要意义。胆汁盐能对肠道内微生物的生长起抑制作用,双歧杆菌要发挥其生理功能,需要通过高胆汁盐的十二指肠下部,因此,双歧杆菌微胶囊应该具有耐胆汁盐的特性,从而为双歧杆菌微胶囊在肠道中发挥健康作用打下基础。用猪胆盐模拟人体小肠胆汁盐环境,测得双歧杆菌在胆汁盐溶液中活菌数变化情况,并以冻干粉作对照。结果见表3。

表 3 复合微胶囊及冻干粉中双歧杆菌活菌数在胆汁溶液中3h的存活情况 Table 3 Change in bifidobacteria survival rate of freeze-dry power and enteric-coated microcapsules during exposure to bile salt solution

108CFU/mL

•	胆汁盐质量	复合微胶囊				冻干粉			
	浓度/(g/L)	0h	1h	2h	3h	0h	1h	2h	3h
	1	6.2	6.0	5.8	5.5	33	8.7	9.2×10^{-2}	3.4×10 ⁻⁵
	2	6.2	5.7	5.4	5.0	33	5.8	8.2×10^{-3}	2.7×10^{-6}
	3	6.2	5.4	4.8	4.2	33	2.1	2.2×10^{-3}	1.5×10^{-6}

由表3可知,胆汁盐质量浓度越高,对双歧杆菌菌体 杀伤作用越大,处理时间越长,活菌数降低越多。比较 复合微胶囊和冻干粉可知,在胆汁盐溶液中,随着处理时间延长以及胆汁盐溶液质量浓度的增加,复合微胶囊中的菌体存活数虽然逐渐降低,但仍能保持在10⁸CFU/mL以上,而冻干粉中的活菌数随着处理时间的延长以及胆汁盐溶液质量浓度的增加急剧降低,处理3h后活菌数为 10²~10³CFU/mL,小于10⁶CFU/mL(在肠道中定殖的最低菌浓)。由此可知,虽然胆汁酸对菌体有破坏作用,但是微胶囊化后能够在一定程度上保护双歧杆菌免受胆汁酸的破坏。

2.4.2 复合微胶囊中IgG活性在胆汁溶液中的变化

由表4可知,胆汁盐质量浓度越高,对IgG杀伤作用越大,处理时间越长,IgG活性降低越多。比较复合微胶囊和冻干粉可知,在胆汁盐溶液中,复合微胶囊中IgG的活性只有在3g/L的胆汁盐溶液中放置3h降低了1个滴度,其余质量浓度条件下放置3h后均不影响IgG的活性;而冻干粉中的IgG活性在1g/L的胆汁盐溶液中放置3h后活性下降了2个滴度,在3g/L的胆汁盐溶液中放置3h后活性下降

到了 2^2 。由此可知,虽然胆汁酸对IgG活性有破坏作用,但是采用微胶囊化后能够在一定程度上保护IgG免受胆汁酸的破坏。

表 4 复合微胶囊及冻干粉中IgG活性在胆汁溶液中的变化

Table 4 Change in IgG activity of freeze-dry power and enteric-coated microcapsules during exposure to bile salt solution

胆汁盐质量	复合微胶囊				冻干粉			
浓度/(g/L)	0h	1h	2h	3h	0h	1h	2h	3h
1	28	28	28	2 ⁸	2 ⁸	2 ⁸	27	2 ⁶
2	2^8	2^8	2^8	2^8	2^8	2^7	2^{6}	2^4
3	2^8	2^8	2^8	27	2^8	2^6	2^4	2^2

2.5 复合微胶囊的稳定性实验结果

2.5.1 复合微胶囊中双歧杆菌活菌数在贮藏过程中的变化

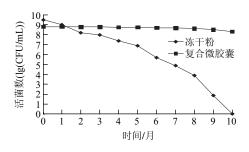


图 6 室温下冻干粉及复合微胶囊中双歧杆菌的活菌数的变化 Fig.6 Stability of freeze-dry power and enteric-coated microcapsules in small intestine during storage during exposure to bile salt solution

由图6可知,复合微胶囊中双歧杆菌的活菌数数在前9个月变化不明显,9个月时活菌存活率仍可达52.4%,而从第10个月活菌数明显下降,但存活率仍可达31.7%,活菌数仍在10⁸CFU/mL以上;而冻干粉在室温下放置半年活菌数下降了4个数量级,放置10个月后已经检测不到双歧杆菌。因此,采用微胶囊化技术将双歧杆菌进行包埋,能使这种厌氧细菌的稳定性增强,存活率提高。

2.5.2 复合微胶囊中IgG活性在贮藏过程中的变化

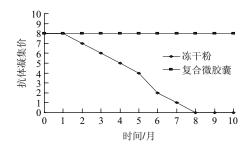


图 7 复合微胶囊及冻干粉中IgG活性在室温贮藏中的变化 Fig.7 Stability of IgG activity of freeze-dry power and enteric-coated microcapsules during storage at room temperature

由图7可知,冻干粉中的IgG在室温下放置6个月后活性下降了6个滴度,放置10个月后已经检测不到IgG的活

性;而复合微胶囊在室温下放置10个月后活性没有发生任何变化,仍可达2⁸。所以采用微胶囊化技术将IgG进行包埋,能使这种生物活性物质的稳定性增强,存活率提高。

3 结论

- 3.1 通过空气悬浮法制得的免疫初乳与双歧杆菌复合 微胶囊能抵抗胃酸、胆汁酸的酸性环境,同时具有良好的肠溶性。在人工胃液中2h不崩解,而在人工肠液中40min内崩解完全;在人工胃液处理2h后,活菌存活率达87%,IgG的活性仍可达到2⁸,表观回收率达90.5%;在高胆汁盐溶液中处理3h后,活菌数仍可以达到67.7%,IgG活性为2⁷,仅下降了1个滴度。
- 3.2 稳定性实验结果表明:复合微胶囊在室温下贮存10个月,双歧杆菌的存活率仍可达31.7%,活菌数量级仍在10⁸CFU/mL以上;IgG活性没有发生变化,仍为2⁸。

参考文献:

- [1] 张和平, 殷文政, 王和平, 等. 免疫乳及其制品研究[J]. 中国乳品工业, 1997, 25(6): 15-25.
- [2] 曹劲松. 初乳功能性食品[M]. 北京: 中国轻工业出版社, 2000.
- [3] RENNER E, SCHAAFSMA G, SCOTT K J. Micronutrients in milk[M]// RENNER E. Micronutrients in milk based products. New York: Elsevier Science Publishing Co. Inc., 1989.
- [4] 郭军,张和平,杨月欣. 免疫乳的研究与开发利用[J]. 食品科学, 2003, 24(9): 152-159.
- [5] 郭本恒. 功能性乳制品[M]. 北京: 中国轻工业出版社, 2001.
- [6] 李国强. 抗哮喘病免疫乳的研究[D]. 天津: 天津商业大学, 2003.
- [7] 王重庆. 分子免疫学基础[M]. 北京: 北京大学出版社, 1997.
- [8] 郭本恒. 酸奶[M]. 北京: 化学工业出版社, 2003: 193-195.
- [9] 杨汝德,李武明,许燕滨. 动物和人类肠道菌群的形成及意义[J]. 微生物学杂志, 1998, 18(1): 52-55.
- [10] MODLER H W, MCKELLAR R C, YAGUCHI M. Bifidobacteria and bifidogenic factors[J]. Canadian Institute of Food Science and Technology Journal, 1990, 23(1): 29-30
- [11] 许燕滨,杨如德,陈惠音.双歧杆菌微胶囊特性研究[J].四川食品与 发酵,1998,22(4): 24-26.
- [12] 中华人民共和国卫生部药典委员会. 中华人民共和国药典: 一部 [M]. 附录16. 北京: 中国医药科技出版社, 1990.
- [13] 杨柳, 尤丽新, 张英楠, 等. 免疫初乳与双歧杆菌复合微胶囊保护剂的筛选[J]. 食品科学, 2011, 32(13): 179-183.
- [14] 杨柳, 尤丽新, 张英楠, 等. 免疫牛初乳与双歧杆菌复合微胶囊的研制[J]. 食品科学, 2009, 30(20): 194-197.
- [15] 尤丽新. 抗福氏志贺氏菌免疫牛初乳Ig的提取及其免疫活性研究 [D]. 长春: 吉林农业大学, 2006.
- [16] 阳晖. 肠溶性嗜酸乳杆菌微胶囊制备方法及特性研究[D]. 杨凌: 西北农林科技大学, 2006.
- [17] 何昭阳. 病原细菌检验技术[M]. 长春: 吉林科学技术出版社, 1986: 89-90
- [18] 唐宝英, 朱晓慧, 刘佳. 双歧杆菌高燥型微囊技术的研究[J]. 食品与发酵工业, 2003(4): 93-95.
- [19] 王春凤. 抗人轮状病毒和大肠杆菌免疫奶的研制[D]. 长春: 吉林农业大学, 1997.