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ABSTRACT

Making medication prescriptions in response to the patient’s diagnosis is a challenging task. The number 
of pharmaceutical companies, their inventory of medicines, and the recommended dosage confront a 
doctor with the well-known problem of information and cognitive overload. To assist a medical practitioner 
in making informed decisions regarding a medical prescription to a patient, researchers have exploited 
electronic health records (EHRs) in automatically recommending medication. In recent years, medication 
recommendation using EHRs has been a salient research direction, which has attracted researchers to apply 
various deep learning (DL) models to the EHRs of patients in recommending prescriptions. Yet, in the absence 
of a holistic survey article, it needs a lot of effort and time to study these publications in order to understand 
the current state of research and identify the best-performing models along with the trends and challenges. 
To fill this research gap, this survey reports on state-of-the-art DL-based medication recommendation 
methods. It reviews the classification of DL-based medication recommendation (MR) models, compares their 
performance, and the unavoidable issues they face. It reports on the most common datasets and metrics used 
in evaluating MR models. The findings of this study have implications for researchers interested in MR models.

†  Corresponding author: Zafar Ali (E-mail: zafarali@seu.edu.cn; ORCID: 0000-0002-6404-645X).
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1. INTRODUCTION

A recommender system is an information retrieval & filtering mechanism that attempts to mitigate the 
negative impact of the well-known problems of information & cognitive overloads resulting due to the 
ever-growing size of information repositories [1, 2]. While talking about these huge dumps of information, 
medical science cannot be ignored where the abundance of pharmaceutical companies and their growing 
number of medicines lay a huge impact on the prescription of a medication for a doctor against the 
diagnosis and medical history of a patient. To address this inevitable issue, researchers have considered 
electronic health records (EHRs) in automatically recommending medication so that a medical practitioner 
can make an informed decision while selecting and including a drug in the prescription. These EHRs present 
a comprehensive picture of the medical history of patients and may include previous medications, diagnoses, 
laboratory tests, treatment plans, and medical imaging such as x-rays, ultrasounds, and magnetic resonance 
imaging (MRI) scans, etc. [3]. They are the main data carriers for personalized medical research [4]. In 
addition, the recent improvements in the quality of EHRs attracted researchers due to their potential 
applications, viz., medical diagnosis and recommendation. They are semantics-rich and represented as a 
patient’s temporal admission sequence with a series of clinical events, including procedures, diagnoses, 
medications, and so on [4]. These records when combined with the current clinical status (events, diagnoses, 
etc.) of a patient and fed into a medication recommendation system result in personalized medication 
recommendations, which assist medical practitioners in making informed prescriptions against the current 
health condition of the patient [5]. However, the recommendation task is not that simple, rather it is 
challenging and highly non-trivial with a prolonged history of machine-aided medical diagnoses and 
treatment. A medication recommender system can employ either content-based (CB), collaborative (CF), or 
hybrid filtering [6, 7]. However, these traditional filtering approaches produce inadequate results due to 
issues like data sparsity, cold-start, and lack of Personalization [8]. In response to these issues, researchers 
have employed deep learning (DL) in producing quality medication recommendations. Some of the notable 
examples of DL-based medication recommendation (MR) models include [9, 10, 11, 12, 13, 3, 14, 15].

Several surveys and review articles [6, 16, 17, 18, 19, 20, 7] have explored the domain of healthcare 
and medication recommendation. Sezgin and Ozkan [6] discussed traditional MR models using information 
filtering methods. However, they were unable to report on the current state of DL-based MR models and 
the issues they face.

Hors-Fraile et al. [16] presented a general overview of technical aspects of MR models including filtering 
methods and profile adaptation techniques published during 2007–2016. However, they presented negligible 
works on MR models, most studies are related to health and lifestyle with no analysis of the DL-based MR 
models. Their coverage of the latest DL-based MR models was also limited.

Zhang et al. [17] reviewed ML- and DL-based models for personalized medicine with a little touch to 
MR task. They covered challenges in personalized medicine and some future opportunities. However, they 
were unable to cover the technical aspects including filtering methods, and information sources. They 
performed no analysis of the ML- and DL-based MR models and optimization methods.
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Rajkomar et al. [18] presented a general overview of how ML can be used in medicine. They presented 
how ML works and the type of input and output medicinal data that power ML algorithms and explored 
some challenges in applying ML in medicine. However, they were unable to discuss any aspect of ML 
algorithms for MR tasks.

Ngiam and Khor [19] presented some benefits and challenges of ML-based models in healthcare delivery. 
They discussed several ML platforms and tools that may offer recommendations in addition to other services. 
However, they were unable to report on recommendation-specific details including filtering methods, 
information sources, and factors. They covered few works on MR models, where most studies are related 
to health care delivery.

Su et al. [20] reported on the network embedding models widely used in the biomedical domain and 
assessed their performance. They presented software tools used for network embedding in the biomedical 
domain. They also covered challenges faced by network embedding models and presented some future 
directions on how to improve them. However, they were unable to cover recommendation-specific details 
including filtering methods, sources, factors, and optimization methods.

Etemadi, Maryam, et al. [7] presented a systematic review of publications published during 2010–2021 
on the technical aspects of medication recommendation including filtering methods (CB, CF, hybrid, 
knowledge- and context-based). However, they were unable to cover information sources and factors. They 
presented few works on MR models, most studies are related to health and lifestyle. Their analysis of 
DL-based MR models was also limited with no coverage of optimization methods.

Summarizing, most of the studies discussed above are either related to general medicine, health care, 
and lifestyle or cover MR-specific details including information filtering methods, sources, and factors. 
However, these studies are unable to give in-depth and analytical coverage to the various aspects of 
DL-based MR models, including information filtering methods, sources, factors, evaluation, and comparative 
analysis. Even if DL-based MR models are covered, they are few and unable to present the current state of 
the field. In addition, these studies investigated a few issues faced by DL-based MR models. These facts 
demand a detailed retrospective and in-depth analysis of the latest DL-based MR models, which is the main 
aim and theme of this article.

Motivation to conduct this survey. Literature exhibits that seven survey works [6, 7, 16, 17, 18, 19, 20] 
investigated the MR domain. Table 1 compares our current study with these survey papers to help identify 
the contributions of this work. Among these, the study by Sezgin, and Özkan [6] is a relatively old survey 
that is unable to examine state-of-the-art DL-based MR models. It explored only a few DL-based MR models 
as it covers literature up to the year 2014. It couldn’t explore information factors, DL-based filtering methods, 
and recommendations for issues, with no coverage of the datasets and evaluation methods. On the contrary, 
the study by Hors-Fraile et al. [16] examines the domain of healthcare recommendation systems (HRS) by 
examining 19 HRS covering their information filtering and profile representation methods. They mainly 
covered lifestyle recommendations with very little attention to DL-based medication recommendations. 
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They were unable to explore information factors and issues addressed in the field of DL-based MR models. 
Also, the study focused on journal articles, however, it is known that multiple novel MR models [5, 21, 12, 
22] have been proposed in prestigious conferences, which needs to be analyzed. It reported only 19 models 
published during 2007–16. It is an unavoidable fact that new DL-based MR models have been proposed 
in the last five years that need a thorough investigation. Etemadi, Maryam, et al. [7] is the most recent work 
presenting a systematic review of HRS. This work studies systems based on information filtering methods, 
namely CB, CF, knowledge-based, and hybrid. Moreover, the study inspects the utilized datasets and issues. 
Yet, like [16], the study focuses on the healthcare recommendation models and pays little attention to 
DL-based MR. Besides, the survey lacks to examine models based on their information factors, optimization 
methods, and recommendations to address the issues they face.

Table 1. Comparison w ith studies exploring the domain of medication recommendation.

Model 
reference

Duration
Models 
types

Issues 
explored

Trends Strengths and limitations

Sezgin and 
Özkan [6]

1998–
2012

General few issues 
only

Limited *No coverage of the issues faced by MR models
*No classifi cation of MR models based on 
information sources and fi ltering methods
*No analysis of the DL-based MR models
*Relatively old study with no coverage of latest MR 
models

Hors-Fraile 
et al. [16]

2007–
2016

General Few issues 
only

Derived *Presents technical aspects including fi ltering 
methods (CB, CF), profi le representation, and 
adaptation techniques.
*Negligible works on MR models, most studies are 
related to health and lifestyle
*No analysis of the DL-based MR models
*Limited coverage of latest DL-based MR models

Zhang et al. 
[17]

N.G ML- and 
DL-based

Issues Limited *Presents ML and DL models for personalized 
medicine with a little touch to MR task.
*Covers challenges in personalized medicine and 
future opportunities
*No coverage of technical aspects including 
fi ltering methods, information sources
*No analysis of the DL-based MR models and 
optimization methods

Rajkomar et al. 
[18]

N.G General Challenges Limited *Presents a general overview on how ML can be 
used in medicine
*Presents how ML works and the type of input and 
output medicinal data that power ML algorithms
* No discussion on any aspect of ML algorithms for 
MR task
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Model 
reference

Duration
Models 
types

Issues 
explored

Trends Strengths and limitations

Ngiam and 
Khor [19]

N.G ML-based Benefi ts and 
Issues of ML 
algorithms

Limited *Presents some benefi ts and challenges of ML-
based models in health-care delivery.
*Covers certain ML platforms and tools that may 
offer recommendations in addition to other 
services
*No coverage of recommendation-specifi c details 
including fi ltering methods.
*No coverage of information sources and factors
*Few works on MR models, most studies are 
related to health care delivery
*No analysis of the DL-based MR models.
*No coverage of optimization methods

Su et al. [20] N.G DL-based Challenges 
and 
opportunities

Limited *Presents network embedding models widely used 
in the biomedical domain and assesses their 
performance.
*Presents software tools used for network 
embedding in the biomedical domain.
*Covers challenges faced by network embedding 
models and future directions on how to improve 
them
*No coverage of recommendation-specifi c details 
including fi ltering methods, sources, factors, and 
optimization methods.

Etemadi, 
Maryam, et al. 
[7]

2010–
2021

General Issues only Derived *Presents technical aspects including fi ltering 
methods (CB, CF, hybrid, knowledge- and context-
based).
*No coverage of information sources and factors
*Few works on MR models, most studies are 
related to health and lifestyle
*Limited analysis of the DL-based MR models.
*No coverage of optimization methods

This review 2010–
2022

DL-based Issues with 
recommenda-
tions

Derived *Classifi cation based on a new taxonomy.
*Covers classifi cation of DL-based MR models 
employing information factors and fi ltering 
methods
*Coverage of recent DL-based MR models
*Coverage of different optimization methods
*Coverage of trends in datasets, metrics, and 
experimental procedures
*No coverage of studies in languages other than 
English

Table 1. Continued
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Considering the above discussion and the recent emergence of novel DL-based MR models, an inclusive 
and comprehensive analysis is required to analyze the area, find interesting trends, and highlight the main 
issues. With this study, we explore the domain of MR models that employ DL methods.

Coverage and contributions. This study presents a comprehensive review of the literature on DL-based 
MR systems by reporting on 37 MR models that employed deep neural networks and were published during 
2013–2022. It classifies these DL models with regard to their platform, problems addressed, DL-based 
information filtering, information factors exploited, optimization methods adopted, and the type of 
recommendation, viz., personalized vs. non-personalized. This review has implications for researchers 
working in the DL-based MR domain by reporting on the strengths, limitations, and trends in DL-based MR 
models. It also reports on open research issues, challenges, and research opportunities in DL-based MR 
models.

Structure of this article. The remaining paper has four sections. Section 2 presents a taxonomy of 
MR models by covering platform, information factors, information filtering methods, optimization, and 
recommendation types. Section 3 covers datasets and metrics used in evaluating these models. Section 4 
presents a comparison of the experimental results of the explored models using different datasets and 
evaluation metrics. Section 5 discusses issues and challenges faced by the reported DL-based MR models 
and the opportunities to address them. Section 5 concludes the article with the main findings and future 
directions derived from this study.

2. TAXONOMY OF M ODELS

This section presents a taxonomy of DL-based MR models developed by reviewing selected 37 studies 
on medication recommendation as illustrated in Figure 1. The classification is based on the platform used 
(offline vs. offline), data features considered, deep neural networks used, issues and challenges they faced, 
optimization methods adopted, and recommendation types such as personalized vs. non-personalized. The 
following subsections present this taxonomy.

2.1 Platform

The term platform means whether the MR model has been deployed in a real online recommendation 
system or not. This gives the clue that how many MR research works are actually part of practical applications. 
If we look at Table 2, it is clear that only one model [23] is part of an online system, and other models 
work offline, indicating that most of the proposed models are not used in practical applications.
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Figure 1. Tax onomy of MR models.

2.2 Information Factors

This section reports on the information sources and features used by reviewed DL-based MR models.

Medication history. An accurate medication history offers the foundation to assess the suitability of 
medication in the current therapy of a patient and directs future treatment choices. It helps in preventing 
errors in the prescription of medicines and avoids other pharmaceutical issues including poor or non-
adherence to the recommended doses. This is the most important factor adopted in the explored MRs as 
adopted in all 37 models.

 https://www.rpharms.com/resources/quick-reference-guides/medication-history
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T able 2. Classifi cation of DL-based MR models.
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1 ARMR [9] -      - - - -  - -  - - - - -  - - - 
2 GAMENet [21] -       - -  -  - - - - - - -  - - - 
3 RETAIN [10] -     - - - - -  - - - -  - -  - - - - 
4 MedGCN [23]  -     - - -  - - - - - - - - - -   - 
5 MeSIN [11] -      - - - -  - - - -  - - - -   - 
6 PREMIER [24] -      - - - -  - -  - - - - - - -  - 
7 G-BERT [25] -      - - -  - - - -   - - - - -  - 
8 SARMR [12] -      - - - -  - -  - - - - -  - - - 
9 TAHDNet [13] -      - - - - -  - -  - - - - - - - - 
10 COGNet [5] -      - - -  - - - -   - - - - -  - 
11 MRSC [26] -      - - - -  - - - -  - - - - -  - 
12 MERITS [27] -     -  - -  - - - - - - - - - - -  - 
13 DMNC [14] -      - - - -  - - - - - - - - - -  - 
14 4SDrug [28] -      - - -  - - - - - - - - - -  - - 
15 DPR [15] -     -  - -   - - - - - - - - -  - - 
16 SMR [29] -       - -  - - - - - -   -   - - 
17 LEAP [3] -      - - - -  -  - - - - - - -  - - 
18 SRL-RNN [30] -       - - -  -  - - - - - - - -  - 
19 CompNet [31] -      - - -  - -  - - - - - - -  - - 
20 MICRON [32] -      - - -  - - - - - - - - - - -  - 
21 SafeDrug [33] -      - - -   - - - - - - - -  - - - 
22 AMANet [34] -      - - - -  - - - -  - - - - -  - 
23 RA-WCR [35] -      - - -  - - - - - - - - - - - - - 
24 MedRec [36] -    - - -    - - - - - -  - - - - -  -
25 SMGCN [37] -    - - -  -  -  - - - -  - - - - -  -
26 LSTM-DO-TR [38] -    - - -  - -  - - - - - - - -  - -  -
27 LSTM-DE [39] -       - -   - - - - - - - - - -  - 
28 CGL [40] -    - - - - -  - - - - - - - - - - - - - 
29 ConCare [22] -     -  - -  - - - - -  - - - - - - - 
30 DRLST [41] -     -   - - - -  - - - - - - - - - - 
31 SDCNN [42] -     - - - - - -  - - -  - - - - - - - 
32 MetaCare++ [43] -    - - - - -  - - - - - - -  - - - - - 
33 MedPath [44] -     - - - -  - - - - - - - - - - - - - 
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34 PMDC-RNN [45] -    - - - - - -  - - - - - - - - - - - - 
35 TAMSGC [46] -     - - - - -   - - -  - - -  - - - 
36 GATE [47] -      - - - - -  - - -  - - -  - - - 
37 Dipole [48] -      - - - - -  - - -  - - -  - - - 

Time/Temporal dynamics. Time is among the crucial dimensions in generating recommendations [49]. 
A patient upon feeling sick visits the hospital where the doctors prescribe drugs after examining the lab 
tests. This clinical practice leads to the irregular production of medical records. It is generally and widely 
assumed that the recent medical records of the patient are more important than the previous ones in 
predicting their current health status [22]. However, even these irregular historical records have valuable 
clinical data that may not exist in the latest record (e.g., the extremely abnormal glucose level in the blood). 
Therefore, it is essential to build a time-aware and more adaptive mechanism for learning flexibly the impact 
of the time interval for each clinical feature. In addition, it required that the temporal aspect of the conditions 
of the patients and their visits to the hospital are considered in recommending medications. In line with 
this need, the reported literature (Table 2) reveals that many models, 29 out of 37, used the time factor in 
recommending medications [9, 21, 10, 23, 11, 24, 25, 12, 13, 5, 26, 27, 14, 28, 15, 29, 3, 30, 31, 50, 
32, 34, 35, 39, 22, 41, 44, 42, 47, 48].

Diagnoses. The process of medical diagnosis allows for determining the relationship of a disease with 
the signs and symptoms of a patient. The diagnosis collects the physical examination and medical history 
of the patient by employing one or more diagnostic procedures including lab tests. An accurate and timely 
diagnosis has a high probability of a positive health outcome for the patient as the correct understanding 
of the health problem tailors an effective decision-making [51]. This factor has been used by several studies 
as shown in Table 2.

Symptoms and signs. Symptoms describe a disease from the perspective of the patient, offer subjective 
evidence, and describe the complaints of the patient that leads her to the health care unit, while signs are 
the manifestation of the disease a doctor perceives. Few models [37, 38, 41, 36] have used this feature as 
shown in Table 2 as symptoms may not support the evidence against a certain disease.

Table 2. Continued
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Procedure. A medical procedure is a general medical intervention that is less invasive and requires no 
incision. Examples are body fluid tests including urine and blood tests as well as non-invasive scans such 
as magnetic resonance imaging (MRI), x-rays examinations, computed tomography (CT), and ultrasound. A 
medical recommender system uses the procedure data to produce improved predictions [5]. The literature 
summarized in Table 2 shows that 23 out of 37 models used this data in recommending medications [9, 
21, 10, 11, 24, 23, 25, 12, 13, 26, 5, 27, 14, 28, 15, 3, 29, 30, 31, 47, 48].

Lab tests and physical examination. The role and value of lab tests is widely acknowledged by medical 
practitioners in making clinical decisions and the associated clinical outcomes [52]. These tests have 
significance regarding the prevention, diagnosis, and treatment of disease and facilitate in avoiding treatment 
delays, recovery, minimizing disability, and reducing disease progression [52]. In a physical examination, 
the physician examines essential signs, including body temperature, heart rate, and blood pressure, and 
evaluates the patient’s body employing observation, palpitation, percussion, and auscultation. If we analyze 
the literature, only one model [36] considered physical examination to predict medications.

Demographic information. The demographics include the patient’s gender, age, ethnicity, address, 
education, and other relevant details. They have a significant role in clinical decision-making, e.g., the 
design of therapeutic regimen and the selection of dosage. However, this information remains static during 
hospitalization. Figure 2 shows how LSTM-DE [39] exploits demographics with diagnostics, physical 
examination, and prescriptions to recommend medications. Table 2 shows that only few models [21, 22, 
41, 27, 15, 29, 39] used demographics in recommending medications.

2.3 Methodologies and Models

This section reports on the various DL-based information filtering methods used by MR systems.

Embedding methods. The embedding methods [53] discover continuous representations by encoding 
discrete values into lower magnitudes. These methods serve different purposes, including (1) as input to 
another DL network, (2) generating recommendations based on nearest neighbors by exploiting user 
interests, and (3) helping visualize concepts and relationships among them. The embedding models are 
divided into three categories namely word/document [54], graph/network [55, 2], and knowledge graph 
(KG) [56] embedding.

Word embedding is widely used by natural language processing (NLP) in learning the latent representations 
of words and phrases. So far several word embedding models have been proposed to capture vigorous 
syntactical and semantic information about words and phrases. However, the most accepted and widely 
used among these include word2vec [54], doc2vec [57], and BERT [58]. They have been exploited in 
embedding items, users, documents, and locations [59] into a latent space. In network/graph embedding 
[55, 1], the networks/graphs and their nodes are converted into low dimensional representations by 
considering the structure of the networks, their topological configurations, their relationships with the 
nodes, and other auxiliary details including content and attributes. Using graph embedding methods, 
meaningful relationships between nodes (medications, patients, procedures, diagnosis, etc.) are captured, 
which depend on the node-to-node differences in the embedding space [60].
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Fi gure 2. Information factors used in the LSTM-DE Model.

A knowledge graph (KG) is a heterogeneous graph that represents entities by nodes and the relationships 
among these entities are denoted with edges among nodes [61]. The KG-embedding models, such as TransD 
[62], GCN [63], GNN [64], and GAN [65] allow enriching the representation of users and medications. 
Mostly, such models have two modules, first, the graph embedding that learns the representations of its 
entities and relationships; second, the recommendation module that estimates the preferences of the patient 
for a certain medication, so that the medical practitioner can prescribe it if appealing. To this end, an 
example KG-embedding in MRs using an EHR graph is the GAMENet [21] that embeds the KG of drug-drug 
interactions (DDI) via a memory module, which is employed as a GCN  [63] defined in Equation 1.

 ( )− −
= +� � �

1 1
2 2

* *A D A I D  (1)

where, D and I denote diagonal and identity matrices. The model then applies a two-layer GCN on each 
graph in learning extended embeddings on drug combinations and DDIs, respectively. Through this model, 
the longitudinal patient records are jointly learned as an EHR graph whereas the drug knowledge base as 
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the DDI KG to recommend safe and effective medications. The longitudinal methods such as RETAIN [10] 
and DMNC [14] outperform traditional DL baselines, which confirms the importance of temporal data in 
medication recommendations. However, they recommend a large bunch of medication combinations. To 
address this issue, GAMENet uses KG to improve performance and DDI rate. Yet, the use of the DDI graph 
alone may restrict some medication rules considering the external knowledge [27]. The patient representation 
and the memory output are exploited in predicting the multi-label medication ŷt and are defined by 
Equation 2.

 ( )⎡ ⎤= ⎣ ⎦ˆ , ,t t t
t b dy sigmoid q o o  (2)

Where qt is the query at tth visit, ∈R ,t d
bo which is the memory output given current memory state Mb and 

is directly retrieved using content attention ( )= softmaxt
c b ta M q  based on the similarity between patient 

representation (query) and facts in Mb. Then, =t T t
b b co M a  is obtained using retrieved information from Mb 

via t
ca  from temporal aspect. Similarly, ∈R ,t d

do  which is the memory output given current memory state 

Md, considers patient representation from patient history records ,
t
d kM  with temporal attention 

( )= ,Softmax .t t t
s d ka M q  Finally, ( )= ,

t T t t
d b d v mo M M a  is obtained using retrieved information from Mb and t

ma  
from temporal aspect. In the same direction, G-BERT utilizes GCN [63] to learn the initial embedding of 
medical codes using medical ontology. The EHR data is exploited by employing an adaptive BERT [58] 
embedding model using the discarded single-visit data and learns the patient’s visit embedding v as follows.

 ( )* * ** |{[ ] 0]}} { [t tt
cCLS o cv Transformer ∪ ∈= C  (3)

where [CLS] denotes sepcial token utilized in BERT. c* represents medical code, and 
*co  denote ontology 

embedding vector for leap node c*. Finally, G-BERT applies a prediction layer to generate medication 
recommendations. Results of the G-BERT model reveal that it gains improved Jaccard and F-scores compared 
to GAMENet and attention-based RETAIN [10] model, which exhibits that incorporating hierarchical 
ontology information with pre-training procedure results in improved predictions.

In the same direction, MedGCN [23] makes medication predictions for patients employing incomplete 
lab tests. This is explained by the authors with the help of an example scenario illustrated in Figure 3. Here, 
the need is to predict the missing values of lab test results, e.g., for encounters 2, 3, and 4 and to recommend 
full or partial medications list for encounters 3 and 4. MedGCN exploits the relations among entities 
(encounters, patients, medications, and lab tests) using a heterogeneous graph (called MedGraph) of their 
inherent features. For each entity in this graph, it learns a vector representation based on GCN [63]. To 
deal with different entities, the model decomposes the heterogeneous graph into multiple subgraphs, each 
holding one type of edge (relation) and a single adjacency matrix is used to represent it. In each GCN layer, 
the model aggregates the representations of each node in all the subgraphs to learn its final embedding. 
These representations are then fed to two fully-connected neural networks hM

f  and hL
f  followed by the 

sigmoid activation, i.e., ( )( )= hM eP sigmoid f H  and ( )( )= hL eV sigmoid f H  for recommending medications 

and imputing lab tests, respectively. Where He denotes the final encounter embeddings. Moreover, the 
model uses binary cross entropy and mean square error loss functions for medication recommendation and 
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lab test imputation, respectively. Moreover, the model employs a cross-regularization strategy to alleviate 
the overfitting problem for multi-task training, i.e., recommending medications and imputing lab tests.

Figure 3. MedGraph, the observed and unknown relationships between any two  objects are represented with 
solid and dashed lines, respectively.

SMGCN [37] proposed a multi-layer neural network to simulate the interactions between herbs and 
symptoms for recommending herbs. Given the set of symptoms { }= …1 2, , , kS s s s  and herbs { }= …1 2, , , NH h h h  
as input, it first employs multi-graph embedding layer to generate meaningful representations for all 
symptoms from S and for all herbs from H. The model distinguishes symptoms from herbs by processing 
the bipartite symptom-herb graph using a bipartite GCN (Bipar-GCN) [66], which propagates symptom-
oriented embedding for the target symptom node and herb-oriented embedding for the target herb node, 
respectively. This way, symptom representations bs and herb representations bh are learned. Second, it 
employs synergy graph encoding (SGE) to capture the synergy information of symptom and herb pairs. The 
symptom embedding rs is learned by executing GCN on the symptom-symptom graph for symptom pairs, 
constructed based on the concurrent frequency of symptom pairs. In a similar manner, SMGCN gains 
knowledge of herb embedding rh from a graph of herbs. Third, it creates the integrated embeddings for each 
symptom (herb) by fusing two types of word embedding b and r from the Bipar-GCN and SGE. Finally, it 
applies the syndrome-aware prediction layer to feed symptoms in the symptom set Sc into an MLP to 
produce overall syndrome embeddings esyndrome(sc). Moreover, all herb representations are stacked into eH, 
i.e., an N × d matrix, where d denotes the dimension of each herb representation. The syndrome embedding 
esyndrome(sc) interacts with eH to generate ŷsc, representing the probability score vector for all herbs from H.
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Summarizing, it is concluded that embedding models exploit rich semantics using the content and graph 
structure information to generate semantic-preserving representations of medications, patients, and relevant 
nodes/entities, which helps generate precise recommendations. This study shows that 18 out of 37 models 
utilized embedding techniques [35, 29, 39, 37, 21, 23, 25, 5, 40, 22, 28, 43, 31, 32, 44, 27, 36, 15].

Deep reinforcement learning techniques. Deep reinforcement learning (DRL) mimics the learning 
capabilities of humans for machines and software agents so that they can also learn from their actions. The 
models employing DRL either penalize or reward an agent for their actions taken in an environment [67]. 
The actions that help agents to achieve their goals are rewarded, i.e., reinforced. If an agent performs an 
action at time t, the environment assigns a quantitative incentive to the agent in time t, and it alters itself 
at the position of the action. The agent repetitively takes these actions until the arrival of some terminal 
position [68]. These models are most suitable for dynamic and changing environments like medication 
recommendations. These models have been used by several researchers for recommending medications. 
Zhang et al. [3] proposed the LEAP (LEArn to Prescribe) model to learn the connections between the 
categories of medications and multiple diseases and capture the dependencies among medication categories 
in recommending medications. They used a recurrent decoder (GRU) for modeling label dependencies and 
content-based attention [69] so that label instance mapping can be captured. The prediction at step t is 
given using Equation 4.

 
∈

= max ( )t ty Y
y arg softmax s  (4)

Where medication and total medication are represented with y and Y, respectively. st represents the variable 

summarizing the state at step t, which is computed as ( )− −= 1 1, , ( ) .t t ts g s y XY  Here, Y(.) denotes attention 

mechanism employed, yt denotes medication at step t. Note that 
=

= ∑| |

1
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X

ti ii
X M xY  where M denotes a 

mapping matrix, in which each element Mti indicates the contribution of the tth diagnosis code xi to generating 
the tth medication yt. To do so, the model optimizes the cross-entropy loss function.

The basic LEAP model has several issues. For example, it faces adverse drug interactions due to the non-
availability of negative training samples and thus leads to incomplete medication sequences. To address 
this issue, it is fine-tuned via model-free policy-based reinforcement learning [70], which increases the 
expected reward of the treatment set Y suggested by the policy as given in Equation 5.

 
∼

=h hE ˆ( | ) ( | ; )[ ( , , )]
pYJ X Y X R X Y Y  (5)

Where ˆ( , , )R X Y Y  represents a scalar value reward function that assesses the quality of Y, Ŷ is the treatment 
set for X that the doctors have prescribed considering the EHR data.

The post-processing and fine-tuning, e.g., using DDI knowledge to remove adverse medication 
combinations from the prediction results, which is adopted in existing models like LEAP, affects the optimal 
parameters that are learned in the prediction process. This is illustrated in Figure 4, which demonstrates 
adverse DDI between “insulin” and “sulfonamides.” By removing “insulin,” the “diabetes” is not treated, 
and if “sulfonamides” is removed, the “respiratory tract bacterial infection” receives no treatment.
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Figure 4. Complex medical relationships among medicines.

These issues were addressed in CompNet (Combined Orderfree Medicine Prediction Network), which is 
a graph convolutional reinforcement learning model that alleviates unreasonable assumptions on the 
sequence of medicines to leverage the correlations among them. It applies Dual-CNN on EHRs to produce 
patient representations, as given in  Equation 6.

 = aˆt tz Z  (6)

Where, = ⊕ pdZ z z  that results from concatenating the representation of diagnoses zd and procedures zp 
along the first axis. These representations are balanced using attention weights at to make the attention 
mechanism more effective. That is, employing DNN, CompNet approximates the Q-function Q(st, at, h), 
which produces a Q-value for each state-action pair (st, at) at timestamp t. The st is a result of combining 
the patient’s representation ẑt and the KGrepresentation tt of the medicine related to the current predicted 
medicines. The model parameters are represented with h. The model applies a greedy approach at each 
timestamp t to select a medicine at considering the Q-value.

The doctors reward rt for the selected medicine at. The model updates its policy considering this award. 
Here, st is computed as st = s(Wsht), where s is the sigmoid activation function; Ws is the learnable parameter 
matrix; and ht is the hidden state, computed using Equation 7.

 ( )−= +s 1,t h t h th W x U h  (7)

Where, Wh and Uh are parameter matrices, and ht – 1 is the hidden state representation at previous step 
t – 1; h0 is a zero vector; and xt is the interaction representation between KGs of patient and medicine 
at timestamp t, computed as = � .ˆt t tx g z  Here, gt and ẑt denote the medicine KG-based embedding and 
patient representation at time step t, respectively. CompNet produces a medicine KG to hold dynamic 
medical knowledge using the adverse and correlative relations among medicines, which can adjust the 
medical knowledge adaptively considering the current predicted medicines.
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Wang et al. [30] proposed SRL-RNN (Supervised Reinforcement Learning with RNN) to produce 
recommendations for a general dynamic treatment regime (DTR—a sequence of tailored treatments in 
response to the dynamic patient states) that involves multiple medications and diseases. It combines 
evaluation and indicator signals in learning an integrated policy. The SRL-RNN offers an off-policy actor-
critic framework for learning complex relations among individuals, their diseases, and medications. The 
actor-network recommends time-varying medications in response to the changing states of patients, where 
the supervision of the decisions made by the doctors helps in ensuring safe actions so that the learning 
process accelerates by considering the doctors’ knowledge. The critic network encourages or discourages 
the recommended treatments by estimating the action value corresponding to the actor-network. The SRL-
RNN model is extended with LSTM to handle the issue of fully observed states in real-world applications, 
where the entire historical observations are summarized for capturing the dependence of the temporal and 
longitudinal records of the patients. This is achieved by optimizing the loss function given in Equation 8.

 ( )= − + −h e h e h( ) (1 ) ( ) ( )RL SLJ J J  (8)

Where JRL(h) is the objective function of the reinforcement learning task that attempts to maximize the 
expected return and JSL(h) is the objective function of the supervised learning task. However, the limited 
experience of doctors and the knowledge gap make unclear the ground truth of “good” treatment strategy 
in supervised learning, which may result in imprecise predictions. Compared to the PMDC-RNN and LEAP 
models, SRL-RNN gives better predictions due to its use of reinforcement learning that infers optimal 
policies very well on non-optimal prescriptions. According to this study, only four models adopted DRL 
[30, 31, 41, 3].

Recurrent neural net works. Unlike feed-forward neural networks, RNNs employ g ates such as input, 
output, forget, etc., to hold useful data and long-term dependencies [53]. They are close to CNNs, yet they 
preserve the previously learned data by employing the concept of memory to use it in the upcoming 
operations. This aspect make these networks suitable for sequential data [71]. They keep previous data using 
a directional loop and feed it to the output. Considering the nature of the problem, they have many variants 
but gated recurrent units (GRU) [72, 73] and long short-term memory (LSTM) [53] are widely used.

To deal with vanishing gradient problem [72], encountered by traditional RNNs, an extension of RNNs, 
viz., GRUs and LSTMs introduced gates. Among these, LTSM uses input, output, and forget gats to either 
keep or discard the information. On the other hand, GRUs use hidden states to pass information and employ 
reset and update gates, which are similar in functionality to the update and forget gate of LSTM, whereas 
the reset gate forwards important information to the next level. The RNN model and its variants capture 
long-range dependencies and temporal dynamics [72, 74] and thus are more suitable for medication 
recommendations, and thus used in various models. For example, PMDC-RNN [45] predicts multiple 
medications by applying a three-layered GRU model [73] on the patients’ diagnosis records, i.e., diagnostic 
billing codes. However, it may predict imprecise medications due to discontinued medications or missing 
billing codes. LSTM-DE [39] is the next-period prescription prediction model that uses a heterogeneous 
LSTM with several hidden temporal sequences to capture the dynamics of medical sequences. The model 
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constructs one hidden temporal sequence to model the prediction sequence and the other hidden temporal 
sequences to model physical examination results. Correspondingly, one hidden sequence each reflects the 
treatment course and recovery progress. Then, three heterogeneous LSTM models exploit the interactions 
of various medical sequences, where a fully connected heterogeneous LSTM keep the interactions of hidden 
states bidirectional and parallel. A partially-connected heterogeneous LSTM keeps the interactions from 
hidden physical states to treatment hidden states. The physical examination results are directly imposed on 
treatment hidden states in decomposed LSTM models. Finally, the model incorporates demographics and 
diagnostics in the hidden states to predict the next-time prescriptions. Since the model utilizes auxiliary 
information sources, therefore it produces improved area under the receiver operating characteristic curve 
(AUROC) and the area under the precision-recall curve (AUPR) scores compared to vanilla LSTM and other 
baselines.

The RETAIN model [10] addressed the interpretability issue by employing a two-level neural attention 
for sequential data offering a detailed interpretation of prediction findings while preserving RNN-like 
prediction accuracy. For generating more stable attention, it represents physician behavior during an 
encounter by looking at the past visits of the patient in reverse temporal sequence. This way, it identifies 
important visits and quantifies visit-specific properties that contribute to prediction. Because of exploiting 
temporal data, it outperforms MLP-based MRS and vanilla GRU, which use no such data [5]. However, 
considering only the patient’s history, the recommendations produced are of low quality [5]. An unfolded 
view of its architecture is shown in Figure 5. In the first step, embeddings are generated. In the second and 
third steps, a and b values are produced using RNNa and RNNb, respectively. In the fourth step, the 
generated attentions of the third step are exploited to produce the context vector cj for a patient up to the 
jth visit, given by Equation 9.

Figure 5. An unfolded view of the RETAIN framework.
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Where, vi, vi – 1, …, v1 represents visit embeddings in a reverse order and � represents element-wise 
multiplication. In the fifth step, the context vector cj ∈Rn predicts the true label yj ∈{0, 1}, given by 
Equation 10.

 ( )= +� Softmaxj jy Wc b  (10)

Le, Tran, and Svetha [14] proposed DMNC that uses a memory-augmented neural network (MANN) to 
address the problem of long-term dependencies and asynchronous interactions. Here, three neural 
controllers and two external memories are employed that resulting in a dual-memory neural computer. To 
model the intra-view interactions, each view has its own controller and memory. The controller is responsible 
for reading input events, updating the memory, reading vectors from memory at each timestamp, and 
generating output considering its current hidden state. The intra-view interactions are of two types namely 
early-fusion and late-fusion memories. During the encoding process, no information is exchanged between 
these two memories as the late-fusion mode keeps memory space for each view independent and separated. 
In the decoding process, the read values of the memories are used to generate inter-view knowledge. Here, 
unlike the late-fusion, the views share the addressing space of the memory to ensure information sharing. 
This asynchronous sharing is offered by temporary holding the write values of each time step in a cache 
so that information from different time steps can be written to the memories simultaneously. The decoding 
process employs a write-protected mechanism on the memory to improve inference efficiency. Each encoder 
employs LSTM to convert embedding vectors to h-dimensional vectors. Although DMNC uses attention-
based DNC blocks, which enables it to recognize the interactions between sequences, it ignores considering 
medications during history visits [11]. In a similar way, the previously prescribed medications are ignored 
by AMANet [34]. However, it captures the intra- and inter-correlations of heterogeneous sequences using 
multiple attention networks, which helps in achieving a relatively better performance.

Some models treat drugs as mutually independent by  ignoring their latent DDI. For example, DPR [15] 
considers the interaction effects within drugs that can be affected by the conditions of the patient in 
recommending drug packages. More specifically, a pre-training method is applied that uses collaborative 
filtering to get the initial embeddings of drugs and patients. A DDI graph is then produced considering 
domain knowledge and medical records. A drug package recommendation (DPR) framework is employed 
in two variants using a weighted graph (DPR-WG) and attributed graph (DPR-AG), where each interaction 
is described respectively by assigned weights or attribute vectors. 

In embedding the package, a mask layer captures the impact of the patient’s condition, and graph neural 
networks (GNNs) perform the final graph induction. During pre-training, MLP and char-LSTM [75] learn 
the disease document and admission note, respectively. DPR [15] outperforms AMANet [34] as the latter 
is unable to capture evolution information, including disease progression via temporal sequence learning 
networks, which is still a significant information source for decision-making. Similarly, MeSIN [11] addressed 
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the complexity of EHR data, having a large number of patient records, visits, and sequential laboratory 
results, by introducing an interactive and multi-level selective network to recommend medications. The 
interactive LSTM is employed to reinforce the interactions among multi-level medical sequences in EHR 
data by employing an enhanced input gate and a calibrated memory-augment cell. An attentional selective 
module assigns flexible attention scores to various medical code representations on the basis of their 
relatedness to the suggested medications in each admission. Finally, a global selective fusion module 
incorporates the embeddings of information from multiple sources into the representations of patients for 
recommending medication.

A patient’s health representation is a compact and indicative vector that represents the patient’s status, 
defined by diagnosis and procedure information, to enable doctors to recommend medications [50]. In this 
regard, MICRON [50] learns the sequential data locally considering two consecutive visits, i.e., (t – 1)th and 
the tth, and propagates them visit-by-visit to keep the longitudinal information of the patient. Given the 
health representations, i.e., h(t – 1) and h(t), the model learns a prescription network �R R| |

 :
s M

medNET  from 
the hidden embedding space for two visits, separately to recommend medications. Formally,

 ( ) ( )( )− −=1 1ˆ t t
medm NET h  (11)

 ( ) ( )( )=ˆ t t
medm NET h  (12)

Where ( )−1ˆ tm  and ∈R( ) | |ˆ t Mm  represent the representations of medications, each entry quantifies a real value 
for the corresponding medication. Here, a fully connected neural network implements NETmed. Formally, 
h(t – 1) – h(t) = r(t), is called residual health representation that encodes the alterations in clinical health 
measurements, indicates an update in the health condition of the patient. This health update r(t) causes an 
update in the resulting medication representation u(t). Therefore, the authors were motivated that if NETmed 
can map a complete h(t)) into a complete m(t)), then r(t) should also be mapped into an update in the same 
representation space through NETmed. In other words, r(t) and u(t) shall also follow the same NETmed. In other 
words,

 ( )=( ) ( )t t
medu NET r  (13)

According to the authors, Equation 11 and 13 could be learned using the medication combinations in 
the dataset as supervision, however, formulating direct supervision of Equation 13 is challenging. Therefore, 
they proposed modeling the addition and the removal of medication sets separately. Therefore, they 
considered reconstructing u(t) from ( )−1ˆ tm  and ( )ˆ tm  by both unsupervised and supervised regularization. 
MICRON is different from existing MR models, including, viz., Gamenet [21] and Retain [10] in the sense 
that it learns sequential information locally, whereas the later ones use global sequential patterns using 
RNNs.
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The ConCare [22] captures the interdependencies among features using a self-attention mechanism[76], 
where fixed positional encoding is used to offer relative position information for timestamps [77]. It 
separately embeds time series of features by employing multi-channel GRU, using Equation 14.

 ( ),1, , , ,1 , ,,n n T n n n Th h GRU r r… …=  (14)

Where, the time series of feature n is represented as ,: ,1 ,, .T
n n n Tr r r R= … ∈  The hidden representation is 

summarized for the whole time span. Time-aware attention is employed for capturing the impact of time 
intervals in each sequence. An attention function maps the query and the set of key-value pairs to an output 
[76]. The hidden representation produces the query vector and key vectors, where the former is produced 
at the last time step T. Formally, these are described using Equation 15 and Equation 16:

 , , ,qemb
n T n n Tq W h= ⋅  (15)

 , , ,emb k
n t n n tk W h= ⋅  (16)

Where ,
emb
n Tq  and ,
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n tk  are the query and key vectors, respectively, and q

nW  and k
nW  are the corresponding 

projection matrices for obtaining them. Equation 17 defines the time-aware attention weights.
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This alignment model qualifies the contribution of each hidden representation to the densely summarized 
representation for each feature. Here, Δt is the time interval to the latest record, s represents the sigmoid 
function, and bn is a feature-specific learnable parameter for controlling the impact of time interval on the 
corresponding feature. The attention weight an,T decays significantly, if:

•  The Δt is long, meaning that the value was recorded a long time ago. A feature’s most recent value, 
i.e., Δt = 0 decays slightly, i.e., log(e) = 1.

•  The time-decay ratio bn is high, meaning that only recently recorded value for a particular feature 
matters. If the influence of a clinical feature persists, i.e., bn, it will be decayed slightly.

•  The historical record has no active response to the current health condition, i.e., , ,1 .emb emb
n T nq k⋅

The learned weights are exploited in deriving time-aware contextual feature representation as 

, ,11
.

T

n n t ni
f a h

=
= ⋅∑  In addition, the demographic base line data is embedded into the same hidden space of 

 emb
n base basef f W⋅ =  base, where emb

baseW  is an embedding matrix. Thus, the patent data is represented by a F as 
a sequence of vectors, where each represents one feature of the patient over time: ( )1 ., , .n baseF f f f= …  The 
inter-dependencies among dynamic features are captured using visits and the static baseline data, whereas 
self-attention enables further re-encoding of the feature embedding under personal context. During feature 
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processing by ConCare, a better encoding is attempted by looking at other features for clues. In addition, 
it employs a multi-head mechanism to improve the attention layer with multiple representation subspaces. 
The heads for self-attention are expected to capture dependencies from different aspects. However, in 
practice, they may tend to learn similar dependencies [76], therefore, non-redundant or diverse 
representations [78, 79] are employed by minimizing the cross-covariance of hidden activations across 
different heads. A cross-head decorrelation module is employed to enable models to focus on different 
features by following [78].

The RETAIN model [10] uses two RNNs to learn time and feature attention and combines the weighted 
visit embedding for prediction. However, it lacks advanced feature extraction with limited prediction 
accuracy [80, 81]. In this direction, Lee et al. [82] proposed a medical contextual attention-based RNN 
that uses the individual information derived from conditional variational auto-encoders. However, these 
studies could not explore the inter-dependencies among dynamic records and static baseline data from a 
global view. On the other hand, ConCare adaptively captures the relations among clinical features to 
produce personalized recommendations for patients in diverse health contexts. It performs better than 
positional encoding-based methods such as SAnD [77], Transformer-Encoder, attention-based RETAIN [10], 
and time-aware approaches such as T-LSTM [74], showing that considering each feature’s time-decay 
impact separately in a global view is far better than decaying the hidden memory of all visits directly. The 
study shows that a huge number of authors use RNNs and their variants [11, 45, 24, 10, 34, 39, 14, 38, 
30, 9, 12, 26, 33, 3, 15, 47, 48]. 

Convolutional neural network. A convolutional neural network (CNN) [83] is a DL-based model that 
produces efficient results with little pre-processing and lesser memory for training than RNNs. A CNN 
structure has several layers including input, convolutional, sub-sampling, fully connected, and output layers 
with functionalities such as receiving input data, performing convolution, pooling, learning non-linear 
combinations among features, and producing final predictions, respectively. A CNN model  creates a feature 
map, which is implemented as a non-linear function, and computed using Equation 19.

 : 1( * )i i i lC f h x b+ −= +  (19)

Where, * represents the convolution operator. Let a sentence of size n has a raw key x1:n, and a filter h 
applies to the word embedding matrix x1:n, where l(l ≤ n) is the window’s length of the filter and b ∈ R as 
a bias. This way, the execution cost reduces with the reduction in the size of the layer. These similar 
operations are carried out repeatedly on various layers to enable them to find useful features, which enable 
CNN to work as a classifier. The second last year computes the probability for every class of any item being 
classified. The last layer produces the final classification results [53] using the softmax function. Different 
objective functions, including Cross Entropy, are employed.

The SD_CNN [42] uses the CNN [83] framework to learn patients’ similarity [84]. The framework maps 
patient A’s one-hot feature matrix via the embedding layer to a low-dimensional sparse matrix. The maximum 
pooling and convolution are applied to each of these matrices and their eigenvectors are aggregated to 
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make a composite vector. the same embedding and CNN parameters are obtained for Patient B. By matching 
matrix and conversion layers, The composite vector of these patients obtains a similarity feature vector, 
which is used to obtain their similarity probability via the softmax layer. On the other hand, GAMENet [21] 

combines DDI KG with a memory module implemented as a GCN, using longitudinal records of the patient 
as the query in recommending medications.

The framework of TAHDNet [13] holds three blocks namely 1D-CNN, transformer, and time-aware block. 
The model uses 1D-CNN for local dependency, a transformer for global dependency, and a time-aware 
block for dynamic time-aware attention to learn hierarchical dependencies on longitudinal EHR data (where 
each record is represented as a multivariate sequence). A new representation for each patient is produced 
by concatenating the outputs of these blocks, which is then fed to the prediction layer for recommending 
medication. The mode uses DDI loss for co-determining the final recommendation. It adapts transformer 
structure and uses a pre-trained transformer-based module by following G-BERT[25] to model the global 
dependency considering the whole patient records. Each patient’s input data is represented by E = (e1, 
e2,……er). A pre-trained transformer is then used in learning the interactions among medical ontologies as 
hT = Trans former (e1, e2,……er) where h

Th = �R  is the latent space representation with global dependencies. 
The 1D-CNN block takes a visit’s multivariate sequence [ ] *||

1 2, T C
TX X X ×… ∈R  as the input to learn the 

dependencies between neighbor visits to model the local dependency information. Equation 20 computes 
the procedure embedding.

 ( )1 1 2,c d Th CNN X X X= …′  (20)

Where, 
*h C

ch
×∈′
�
R  is the output of 1D-CNN’s the hidden layer and h�  represents its hidden size.

TAHDNet avoids internal covariate shift by introducing layer normalization into ID-CNN: hc = LayerNorm 

( )
2c

x
h

−= +′
+
m

a b
s e

�  where m is a layer’s mean value, s2 is its variance, a and b are the parameter vectors 

for scaling and translation, respectively. In the time-aware block, TAHDNet introduces a fused decay 
function to consider periodic and monotonic decay, and then using the transformer’s self-attention 
mechanism [76], it computes the attention weights and produces the latent space representation of 

time intervals: ( , , )
T

t
k

QK
Attention Q K V V

d
= =w , where Q, K, and V are matrices comprising of [q1, q2…qT], 

[k1, k2…kT], and [v1, v2…vT], respectively. These are concatenated based on the latent space representation 
to produce patient representation as h′ = Concat(hr, hc, h1) where 5 hh ×∈′ �R . Finally, TAHDNET uses an MLP 
base prediction layer to predict MR codes. Our observations from Table 2 report that CNNs have been 
adopted by three models [42, 13, 84] only.
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Figure 6. Workfl ow of the ARMR model.

Generative adversarial networks. The generative adversarial networks (GANs) adopt an unsupervised 
learning approach that automatically discovers and learns the patterns or regularities in the data to enable the 
model to output or generate new examples that could have been possibly drawn from the original data [85]. 
These models adopt an intelligent approach to train a generative model by employing two sub-models 
including a generator and discriminator. The former generates new samples and the latter classifies them 
as either real (i.e., from the domain) or fake (i.e., generated). They are trained in an adversarial manner until 
the latter is fooled for about half the time, which means that the former is producing plausible samples [53].

To this end, ARMR [9] model uses two GRU networks [71] to build an encoder that exploits patient 
diagnoses and procedures to generate robust patient representations. Then, it uses a key-value memory 
network [86] to keep historical representations and associated medications as pairs and performs multi-hop 
reading on the memory network for obtaining case-based similar information from historical EHRs, used 
in updating patient’s embedding. It combines encoder and memory network [86] to build Medication 
Recommendation (MedRec) module. The model makes a GAN model by fusing the encoder as a generator 
with a discriminator and treats as real data the representations of the patients having DDI rates smaller than 
a preset threshold to enable the GAN model to shape the distribution of patient representations generated 
by the encoder to reduce DDI. MedRec and GAN are trained jointly within each mini-batch with two 
objectives: a traditional error criterion corresponding to recommending medication and an adversarial 
training criterion to regularize distribution. This way, ARMR learns meaningful patient representations and 
regulates data distribution for maintaining low DDI, simultaneously.
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For a patient’s tth visit, the model generates embeddings t
de  and t

pe  correspond to procedures t
pc  using 

embedding matrices Wd and Wp, which are given as input to two RNNs. The model then integrates t
dh  and 

t
ph  using a linear embedding layer to learn representation rt that is processed employing a separate GRU 

unit that produces the final embedding qt. Next, the model builds a key-value memory network KV using 
all ( [1, 1]),tq t T∈ −  the keys of the KV are the historical representations qt and values are represented using 
relevant medications * .I

m
c  Meantime, ARMR uses qT to fit Gaussian distribution, which provides the real 

data for GAN, while the encoder is responsible for generating the fake data. During regularization, first, 
the GAN model updates the discriminator to distinguish real data p(z) from fake data T

fq , then it is confused 
by updating the generator, where the cost function for regularizing GAN is defined using Equation 21 [85].

 ( ) ( )( )~ ~ ( )minmax [ (1 ]
zz p X P Xlog Z log X+ −⎡ ⎤⎣ ⎦E E

G D
D D G  (21)

Where, D and G denote discriminator and generator networks, respectively. Experiments exhibit that ARMR 
gains improved results in terms of DDI rate and medication prediction compared to other competitive 
baselines namely LAEP, DMNC, RETAIN, GAMENet, and MedRec because the proposed model regulates 
the distribution of the patient representations that result in improved performance.

To deal with DDI’s fatal side effects, SARMR [12] processes raw EHRs to get the probability distributions 
of patient representations related to safe combinations of medication in the feature space. It then adversarially 
regularizes these distributions to get reduced DDI rates by applying knowledge as true data. The model 
treats and regularizes patients with different DDI rates as different cohorts, this way, the model avoids the 
adverse impacts on generalization caused by treating them as a single cohort. In contrast to SARMR, the 
RNN-based baselines including LEAP, RE-TAIN, and DMNC are limited in capturing important factors that 
affect the patient’s health state to the highest degree. GAMENet uses additional DDI knowledge as a 
memory component to alleviate DDI, however, its reasoning capability over interactions between patients 
and doctors is limited and results in lower figures using Jaccard and F-score. Finally, If we look at the 
statistics of the examined works, we notice that this area still needs further research as very few models 
[24, 9, 12] used GANs in MRMs.

Attention networks and transformer-based models. Attention networks are much popular among 
researchers [87, 88] as they produce robust recommendations by paying more attention to the salient 
information [89, 90]. They have been successful in producing interpretable and explainable medication 
recommendations [91]. To this end, RE-TAIN [10] employs the attention mechanism and GRU [71] to 
leverage sequence information and improve prediction interpretability. In particular, it relies on an attention 
mechanism modeled to illustrate the behavior of physicians during an encounter. To encode physician 
behaviors, RETAIN analyzes a patient’s past visits in reverse time order, enabling a more stable attention 
generation. Consequently, RETAIN determines the most significant visits and quantifies visit-specific features 
that contribute to medication predictions. Most of the existing models namely PREMIER [24], GAMENet [21] 
and SRL-RNN [30] propose the longitudinal EHRs from few patients having multiple visits but ignore many 
patients with a single visit, which leads to selection bias. In addition, hierarchical knowledge such as the 
hierarchy of diagnosis, which is important from the recommendation perspective, is not considered in 
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representation learning. G-BERT [25] addresses these issues by employing graph attention network [65] for 
representing hierarchical structures of medical codes using ontology embedding. It uses BERT [76] in pre-
training each visit from EHR in order to consider the EHR data that has even a single hospital visit. It fine-
tunes the pre-trained visit and representation for downstream predictions on longitudinal EHRs (number of 
visits) from patients having multiple visits. A visit is the combination of medical diagnoses codes t

dC  and 
medication codes t

mC  denoted as t t
t d m= ∪X C C . The model concatenates the average of previous diagnoses 

visit embedding, last diagnoses visit embedding, and medication visit embedding and inputs it to MLP to 
recommend the medication codes by optimizing the categorical cross-entropy loss function. The experimental 
results demonstrate that G-BERT outperforms competitive baselines, including RETAIN, LEAP, and GAMENet 
in terms of precision, recall, AUC (PR-AUC), F1, and Jaccard scores.

In this direction, COGNet [5] recommends a combination of medications considering the current health 
conditions of the patient via an encoder-decoder generation network. The encoder contains two transformer-
based networks [76], which use a multi-head self-attention mechanism, to encode the diagnosis and 
procedure information, and two graph convolutional encoders [63] to model the relations between 
medications. The copy module evaluates the current health conditions against previous visits to copy 
reusable medications in prescribing drugs for the current visit considering changes in the health condition. 
A hierarchical selection mechanism combines the visit- and medication-level scores to compute the copy 
probability for each medication. The copy module outperforms other counterparts including LEAP, RETAIN, 
DMNC, GAMENet, MICRON, and SafeDrug because, in clinical practice, the recommendations for the 
same patients are closely related. In contrast to COGNet, these baseline models ignore the historical visit 
information of the patient. Moreover, they consider no relationship between the medication recommendations 
of the same patient and are unable to capture long-range visit dependency. Finally, we can notice a positive 
trend towards using BERT-based and attention networks as adopted by ten models [11, 42, 10, 34, 22, 25, 
26, 5, 47, 48] in recent years.

Hybrid and other networks. A hybrid network integrates two or more DL methods to capture their 
inherent benefits and alleviate their potential limitations in producing robust medication recommendations. 
For example, an unavoidable challenge is handling the difficulty in learning the inter-view interactions due 
to the unaligned nature of multiple sequences. This is addressed by a hybrid model, AMANet [34] that 
integrates memory network [92] and attention by employing three main components. These include a neural 
controller that uses self-attention to capture the intra-view interactions by encoding the input sequence. 
The inter-view interaction is learned by employing an inter-attention mechanism, which learns the inter-
view interaction. To connect the positions of a single sequence, either a self-attention or intra-attention 
mechanism is used. Here, the intra-attention obtains the relationship between different elements in the 
same sequence. In addition, the inter-attention connects positions in two sequences. Specifically, in the 
inter-attention, one input embedding projects the query, and another projects key and value. The sequence’s 
encoding vector is then produced by concatenating the inter-attention and self-attention vectors. The history 
attention memory keeps the previous encoding vectors of the same object. The dynamic external memory 
stores the common knowledge about data and is shared by all training objects. The predictions are generated 
by concatenating the encoding vector, read vector, and historical attention vector. However, the AMANet 
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model is unable to fully exploit the captured evolution information including disease progression through 
temporal sequence learning networks, which if exploited, could lead to more robust recommendations [11].

The ARMR [9] model proposes an encoder with two GRU networks [73] to exploit diagnoses and 
procedures to produce patient representations. The model updates patient representations by storing 
historical representations and association medication in a key-value memory network [93] and reads it via 
multi-hop reading for extracting case-based similar data from historical EHRs to update patient 
representations. This results in a medication recommendation (MedRec) module that comprises of encoder 
and memory network. The model integrates the encoder as a generator with a discriminator to produce 
GAN model [85]. The GAN model reduces DDI by exploiting patient representations having DDI rates 
smaller than a preset threshold as real data to shape the distribution of patient representations produced 
by the encoder. Together, MedRec and GAN are jointly trained within each mini-batch to get a traditional 
error criterion for recommending medications and an adversarial training criterion for regulating distribution. 
This strategy allows the model to learn meaningful patient representation and maintain low DDI at the same 
time, which leads to quality medication recommendations.

Avoiding fatal DDI is among the prominent challenges in recommending medications. This issue is 
addressed by the SARMR model [12] that processes raw EHRs to get the probability distributions of patient 
representations for safe medication combinations. It reduces DDI by adversarially regularizing the 
distributions of patient representations using the knowledge as real data. It uses and regularizes patients 
having varying DDI rates as distinct cohorts to avoid the negative effects on the generalization, which may 
occur if they are treated as a single cohort. Firstly, it models the interactions between patients and physicians 
by encoding EHRs with GRUs [73] and then constructs a key-value memory neural network [93] with keys 
denoting admission and values showing the corresponding medications. Secondly, it uses the representation 
of the most recent admission as a query to carry out multi-reading on the MemNN [93] with GCN [63] 
embedding module of the read results. The medications are recommended considering the updated query. 
Next, it uses records of all patients, with no regard to their DDI rates, to recommend medications and 
regularize adversarial distribution with GAN [85] on the basis of representations obtained from the first 
step to  achieve both reduction in DDI and effective medication combinations. The final results are predicted 
as Equation 22.

 ( )( )ˆ , ,T My S g q v i⎡ ⎤= ⎣ ⎦  (22)

Where qT is the patient representation, vM is multi-hop reading result, i is the medication with weighted 
embeddings, g(.) is fully-connected layer, and S(.) is the sigmoid function.

To consider the consecutive correlation in dynamic prescription history and understand irregular time-
series dependencies, MERITS [27] employs neural ordinary differential equations (Neural-ODE) so that the 
continuous inner process can be better modeled. It employs an encoder-decoder architecture in predicting 
next medication sequence and combines static and dynamic using self-attention. In the meantime, it 
embeds and uses the knowledge about drugs and the experience of the doctors by exploiting three graphs, 
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namely sequential, DDI, and co-occurrence graphs to represent drug sequential relationships, conflicts, 
and co-occurrences. The encoder has three modules, namely, a medical embedding module that employs 
a self-attention module [76] and RNN for capturing sequential information; a dynamic encoding module 
that models irregular time series data at a specific timestamp using Neural ODE; and a patient aggregation 
module that uses the simple linear map to model the patient’s state by aggregating the sequential medications, 
and static as well as dynamic features The encoder produces a representation of the patient at the current 
timestamp by extracting medication strategies and patient status from irregularly sampled time series data. 
The decoder employs a medication generator and graph attention module. It recommends medications at 
timestamp t + 1 using the patient representation and graphs that establish the relationships between drugs 
in the medication history.

The TAHDNet model [13] captures the dependence information between medications and patients at 
local and global levels by adopting hierarchical learning. Figure 7 presents its architecture consisting of a 
transformer, time-aware, and 1D-CNN blocks. It employs 1D-CNN [83] in learning the patient’s local 
representation and uses adapted transformer-based learning [25] in learning her global representation via 
a self-supervised pre-training process. It models the disease progression by employing a fused temporal 
decay function with monotonic and periodic decay for dynamic time-aware attention, which leads to a 
more realistic evaluation of disease progression. The model outperforms several baseline models including 
LEAP [3], RETAIN [10], G-BERT [25] and GAMENet [21]. Here, LEAP, which is instance-based, performed 
lower than the RETAIN temporal method. This advocate for the importance of temporal data in EHRs. 
However, G-BERT performed comparatively well and outperformed GAMENet due to learning additional 
information about DDI and procedure codes. This discussion demonstrates that transformer-based models 
are more effective for recommending medications. Yet, G-BERT considers no temporal information and thus 
is unable to learn the disease progression information, which is one of the main causes of its sub-optimal 
performance. TAHDNet gives better results due to its capability of extracting as many details as possible 
from EHRs while reducing noise.

Recommending medications is a time-consuming process for experienced medical practitioners and 
error-prone for inexperienced ones, especially in complicated cases. The COGNet model [5] addresses this 
issue by employing a generation network based on an encoder-decoder to recommend suitable medications 
in a sequential manner. It represents the patient’s historical health conditions by encoding all her medical 
codes from previous visits in the encoder network. It represents the patient’s current health condition by 
encoding the diagnosis and procedure codes from the tth visit. It employs a decoder to generate the 
medication procedure codes of the tth visit one by one to represent the patient’s current drug combination 
suggestions. The decoder collects information  by procedures, diagnoses, and medications to suggest the 
next medication during each decoding step. If the current visit’s diseases are consistent with previous visits, 
the copy module copies the associated medications immediately from the historical medicines combinations. 
In other words, the copy module extends the basic model by comparing the health conditions of historical 
and current visits and then copying the reusable medications to write prescriptions for the current visit 
based on condition changes. Diagnosis and procedure encoders are transformer-based networks [76] with 
different parameters.
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Figure 7. The archit ecture of TAHDNet model.

The set of patient’s symptoms and medications define the input to the medication recommender, however, 
this input still lacks sufficient details that can relate these two entities. MedRec [36] addresses this issue by 
including knowledge about medicines and their attribute graphs in its model to connect medications with 
symptoms. A medical KG of symptoms and medications is created which results in their richer representation. 
This KG holds four key nodes including physical examination, symptom, disease, and medicine. An edge 
connects two related nodes. For example, a disease has certain symptoms and requires specific medications, 
all three are connected with different edges. The attribute graph models the interrelationships among 
medicines. If two medicines belong to the same category or have the same sub-molecular structure, then 
they are related. In recommending medications, MedRec first applies multi-relational GCN [63] to learn 
the embeddings of entities and relations and uses the objective function of the link-prediction task to 
optimize the model. Similarly, the embeddings of medicines and symptoms are produced. It fuses the 
attention mechanism with the embedding of each symptom to produce a syndrome representation. MedRec 
employs GCN [63] to get the embedding of an attribute graph, which is used in combination with medical 
KG to produce the overall representation of a medicine. Finally, it produces the prediction scores by 
learning the interaction of medicine and syndrome. Figure 8 illustrates the architecture of MedRec, showing 
that it recommends medicines with an embedding matrix using attributes and medical KGs against the 
symptom set of the patient. Mathematically, for the symptom set representation esc and embeddin g matrix 
eM of the medicines M, Equation 23 describes the medication recommendation.
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sc Mscore sc M sigmoid e e= ⋅  (23)

Figure 8. The architecture  of the MedRec model.

The score(sc, M) characterizes the ranking score in recommending medicines. Given symptom set sc, 
the ground truth set is represented as a multi-hot vector mc in dimension |M| and score(sc, M), which is 
the output probability vector for all medicines, the mean square loss between score (sc, M) and mc is 
computed using Equation 24.
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Generally, the drugs are considered as individual items by the medicine recommenders and thus neglect 
the unique requirements of recommending drugs as a set of items while keeping DDIs as much as possible. 
This issue is addressed by 4SDrug [28] which recommends medications by performing set-to-set comparison 
for designing set-oriented representation and similarity measurement for both medicines and symptoms. It 
takes the set of medicines Di and symptoms Si as inputs and employs three modules in recommending 
medicines against a symptom. The set-to-set comparison module employs i

Sh  for the symptom set ith and 
i
Dh  for medicine set ith to represent Si and Di via the set-oriented representation and measure the relationship 

Si and Di through the set-oriented similarity measurement g{.,.}. The symptom set module reformulates i
Sh  

using importance-based set aggregation.
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The drug set module recommends sets of medicine using the intersection-based set augmentation and a 
hybrid DDI penalty mechanism for ensuring the principle of a small and safe drug set. Figure 9 illustrates 
an example of this recommendation, showing that two patients Jack and Lisa share similar symptoms, such 
as fever, cough, chills, and headache, and thus the same disease, i.e., viral influenza has the maximum 
chances. Therefore, they will be recommended the same medication, such as Ibuprofen, Ambroxol, and 
Oseltamivir. Thus, the physical status of the patient can be judged from their symptoms without disclosing 
any personal data [94, 95]. Therefore, symptom-based medication recommenders can be widely adopted 
in drug prescriptions to avoid privacy issues. Using the set of symptoms S( j) and medicines D( j) can be 
represented respectively via ( )j

Sh  and ( )j
Dh  to compute the similarity between them using Equation 25, where 

di represents a drug in the training phase.
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The model uses Equation 26 to optimize the objective function.
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Where, D( j)) are the medicines used in the treatment of symptoms S( j).

Figure 9. A toy instance of the symptom-based set-to-set medicine recommendatio n.

The experimental results indicate that 4SDrug outperforms other competitors including GAMENet and 
LEAP. That is, it outperforms GAMENet because the latter lacks considering the number of recommended 
drugs and outputs an undesirable DDI rate, consistent with the results in the current work [33]. In addition, 
4SDrug gives better computational space and complexity due to requiring comparatively lesser complex 
neural architecture and is compatible with efficient mini-batch training. GAMENet [21] requires more space 
due to a large memory bank, whereas LEAP [3] is computationally complex due to sequential modeling 
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and recommending medications one by one. Considering all these factors, 4SDrug is more suitable for 
real-world industrial applications as it is more efficient and adaptable.

2.4 Optimization Methods

A DL model employs its algorithm to generalize the data so that it can make predictions against unseen 
data. Therefore, it is always required to find an algorithm that not only makes such predictions but also 
optimizes the results. By optimization, we mean finding a way that discovers those values of the parameters 
or weights that reduces the chances of errors and enhances model accuracy while mapping inputs to 
outputs. Such an optimization accelerates training and helps improve performance while learning from 
data. However, finding the optimal weights for a DL model is challenging due to the millions of parameters 
within it. Therefore, the need to choose an appropriate optimization algorithm is the key to success [96]. 
This section discusses the most widely used optimization algorithms used in employing DL algorithms for 
recommending medications.

Gradient descent. The gradient descent is an iterative first-order algorithm that attempts to find a local 
minimum/maximum for a given function [97].

Stochastic gradient descent. The stochastic gradient descent extends gradient descent by reducing its 
computational intensiveness as the latter computes the derivative of one point at a time [96].

Momentum. A gradient descent algorithm finds it challenging to navigate ravines, i.e., the areas having 
surface curves steeper among different dimensions, most common around local optima. To address this, 
stochastic gradient descent oscillates across the ravine’s slopes while making tentative progress toward the 
local optimum. The momentum extends gradient descent to speed up stochastic gradient descent in an 
appropriate direction and keep the oscillations of noisy gradients to the minimum [97, 96].

RMSProp. Root Mean Squared Prop is another adaptive learning rate method that tries to improve 
AdaGrad [98] that takes the cumulative sum of squared gradients. RMSProp takes the exponential moving 
average. Both have an identical first step, however, RMSProp divides the learning rate by an exponentially 
decaying average [99].

Adam. Adam [99, 97] combines the advantages of Momentum and RMSProp to compute the adaptive 
learning rate for each parameter. It stores the previous decaying average of the squared gradients and holds 
the average of past gradients similar to that of Momentum. Table 3 shows that the majority of the models, 
i.e., 24 out of 37 models used Adam and its variants. The possible reason behind the usage of Adam could 
be its capability to converge faster. Gradient descent and its variants stand in the second position, which 
is employed by 8 models. Only one model used AdaGrad while others share no details regarding their 
optimization method.
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Table 3. Optimization methods used by the explored models.

Optimization method Models references

Gradient Descent & extensions [31, 3, 38, 42, 29, 30, 45, 48]
Adam & extensions [28, 22, 34, 40, 5, 14, 41, 21, 77, 31, 15, 25, 39, 23, 44, 27, 11, 24, 33, 12, 

13, 46, 74, 32, 47]
Adagrad & extensions [48]

2.5 Recommendation Types

A drug recommendation can be personalized or non-personalized. In the first case, recommendations 
are made on the basis of the user profile and personal interests. For instance, patients’ medical history, 
diagnosis, procedures, symptoms, and temporal dynamics related to their visits for understanding their 
medical status and generating individualized predictions. A non-personalized medication recommender 
system considers generic features and exploits no additional rich semantics corresponding to the patients. 
Table 2 reports that most of the models adopted a personalized approach.

3. E  VALUATION METHODS

This section gives a brief account of the evaluation methodology (datasets and evaluation metrics) 
adopted by the MR models in evaluating their experimental results.

3.1 Evaluation Metrics

W e provide details of the evaluation metrics that are commonly used in the literature of medication 
recommendation.

Recall. assesses an MR model’s significance on the basis of the percentage of relevant recommendations 
appearing in its top-k results. Most of the models select values for k in k = {20, 40, 60, 80, 100}. Equation 27 
describes recall mathematically.
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Where, Q and Rp denote all target medicines and the list of top-k recommendations delivered for the seed 
medications p, respectively.

Mean average precision. assesses an MR model’s significance by checking if the relevant medicines 
appear in the list of top-k recommendations. Additionally, the errors appearing in the top@k are penalized.
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Where TPseen represents total true positives till k. Generally, AP@10 is set as the cut-off value for the 
average precision (AP).
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Normalized discounted cumulative gain. nDCG [100] assesses position/rank of true relevant 
medications in the list of top-N recommendations.  It adopts graded relevance to assess the effectiveness of 
an MR model using Equation 29.

 g
g

g

DCG
nDCG

IDCG
=  (29)

Where, nDCGg represents the accumulated normalized gain for a rank g. G is the list of relevant medications 
in the collection up to position g. To ensure that the top relevant medications appear at the top of the 
recommendations list, a weighted sum of the relevance degrees of suggested medications is defined and 
referred to as discounted cumulative gain (DCG). This leads to IDCGg, which represents the DCG of ideal 
ordering, used in normalizing the DCG scores. Mean reciprocal rank. analyzes an MR model’s capability 
to suggest relevant medications in the list of top k results, and computed using Equation 30.
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Where, QT is the testing set and rankq is the rank of its first ground truth medicines.

Accuracy. computes the superiority of medication predictions, i.e., an incorrect/correct guess of the 
next medicine recommended [101]. Equation 31 computes it.
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Where |Dtest| is the test set and n represents the number of top suggestions against the query medicine.

F-measure. combines precision and recall through a harmonic mean [102]. Comparatively, it gives a 
better assessment of the suggested medications than accuracy and can be calculated using Equation 32.
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Area under curve. is considered for MR models that formulate recommendation as a classification task. 
Equation 33 computes it.
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where pj denotes the predicted score of j-th positive sample, while nk is the predicted score computed for 
the k-th negative sample. Np and Nn represent the total number of positive and negative samples, respectively.

Jaccard similarity. is a common proximity measurement that computes the similarity between two 
nodes/vectors. It is defined using Equation 34 as the ratio of intersection of ground truth Yt and predicted 
result ˆ tY  to the union of Yt and ˆ tY , where N is the total number of patients.
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DDI rate. measures the medication safety of a model, which defines as the percentage of medication 
recommendation that contains DDIs.
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 (35)

Where, the set will count each medication pair (ci, cj) in the recommendation set Ŷ  if the pair belongs to 
the edge set ed of the DDI graph. Here N is the size of test dataset and Tk is the number of visits of the 
kth patient.

Table 4 reports that the most widely used metrics are F-Score (24 out of 37) and AUC (23 out of 37), 
indicating a greater interest of researchers in generating accurate medication predictions. These are followed 
by Jaccard (20 out of 37) showing that a considerable number of MR models treat recommendation as a 
classification problem. This is followed by the DDI rate (13 out of 37) and recall (11 out of 37). In addition, 
the majority of the models adopted a combination of metrics together.

The classification or ranking accuracy measures are employed to optimize recommendations with the 
aim of finding the most relevant medications for a patient. Most of the reported MR models use accuracy 
measures of different types, including coverage and precision (recall, precision), rank-based measures 
(nDCG or MRR), and prediction measures (RMSE). Finally, we noticed that the majority of models (21 out 
of 37) used three or more evaluation metrics, which shows that an evaluation based on many metrics makes 
the experiments of MR models more robust.

3.2 Datasets

Table 5 reports on the most widely used medication recommendation datasets. This section gives a brief 
overview of these datasets to enable researchers to choose the right dataset for their experiments.

MIMIC-III. medical information mart for intensive care (MIMIC-III) is the most rich dataset, developed 
by the computational physiology lab of Massachusetts Institute of Technology (MIT), provides access to 
information sources including patients, diagnosis records, clinical events, procedures, medicines, and 
symptoms. Therefore, the majority of the models, i.e. 24 out of 37 used this dataset [9, 21, 23, 11, 24, 25, 
45, 13, 5, 14, 28, 29, 103, 41, 46].

NELL. NELL [104] is the most recently released dataset, which has been used in only one model. This 
dataset provides access to information sources such as 2, 78, 388 clinical events, and 230 medicines.

ICD-9. The International Classification of Diseases version 9 (ICD-9) is the official standard codes of 
diagnosis and procedures. It contains 13000 disease codes in tabular form. The codes specify that each 
disease has a unique code and is used in EHR for the billing mechanism. Several models utilized ICD-9 
based datasets [29, 42, 44].

 https://mimic.physionet.org
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Table 4. The metrics utilized conducting the experiments of the explored recommendation models.

Models
Preci-
sion

Recall Jaccard
DDI 
rate

F-Score MAP AUC nDCG MRR
Moral-

ity
Hit 

ratio
Others

1 ARMR [9] - -    -  - - - - -
2 GAMENet [21] - -    -  - - - - -
3 RETAIN [10] -  - - - -  - - - - -
4 MedGCN [23] - - - - -  - - - -  -
5 MeSIN [11] -   -  -  - - - - -
6 PREMIER [24]      -  - - - - -
7 G-BERT [25] - -  -  -  - - - - -
8 SARMR [12] - -    -  - - - - -
9 TAHDNet [13] - -  -  -  - - - - -
10 COGNet [5] - -    -  - - - - -
11 MRSC [26] - -  -  -  - - - - -
12 MERITS [27]      -  - - - - -
13 DMNC [14]  - - -  -  - - - - -
14 4SDrug [28] - -    - - - - - - -
15 DPR [15]   - -  - - - - - - -
16 SMR [29]  - -  - - - - - - - -
17 LEAP [3] - -   - - - - - - - -
18 SRL-RNN [30] - -  - - - - - -  - -
19 CompNet [31]      - - - - - - -
20 MICRON [32] - -    - - - - - - -
21 SafeDrug [33] - -    -  - - - - -
22 AMANet [34] - -  -  -  - - - - -
23 RA-WCR [35] - -  -  -  - - - - -
24 MedRec [36]   - - - - -   -  -
25 SMGCN [37]   - - - - -  - - - -
26 LSTM-DO-TR [38]  - - -  -  - - - - -
27 LSTM-DE [39] - - - - - -  - - - - -
28 CGL [40] -  - -  -  - - - - -
29 ConCare [22]  - - - - -  - - - - -
30 DRLST [41] - - - - - - - - - - - 
31 SDCNN [42] - - - -  - - - - - - -
32 MetaCare++ [43] -  - - - - - -  - - -
33 MedPath [44] - - - -  -  - - - - -
34 PMDC-RNN [45] - - - - - -  - - - - -
35 TAMSGC [46] -     - - - - - - -
36 GATE [47] - -  -  -  - - - - -
37 Dipole [48] - - - - - - - - - - - 
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Table  5. Datasets employed in conducting the experiments of the explored recommendation models.

Models
Non-
public

MIM-
IC-III

NME-
DW

Sutter NELL TCM Others
Drug-
Bank

ICD-9 eICU IQVIA
PRI-
VATE

1 ARMR [9] -  - - - - - - - - - -
2 GAMENet [21] -  - - - - - - - - - -
3 RETAIN [10]  - - - - - - - - - - -
4 MedGCN [23] -   - - - - - - - - -
5 MeSIN [11] -  - - - - - - - - - 
6 PREMIER [24] -  - - - - - - - - - 
7 G-BERT [25] -  - - - - - - - - - -
8 SARMR [12] -  - - - - - - - - - -
9 TAHDNet [13] -  - - - - - - - - - -
10 COGNet [5] -  - - - - - - - - - -
11 MRSC [26] -  - - - - - - - - - -
12 MERITS [27]  - - - - - - - - - - -
13 DMNC [14] -  - - - - - - - - - -
14 4SDrug [28] -  - -  - - - - - - -
15 DPR [15]  - - - - - - - - - - -
16 SMR [29] -  - - - - -   - - -
17 LEAP [3] -  -  - - - - - - - -
18 SRL-RNN [30] -  - - - - - - - - - -
19 CompNet [31] -  - - - - - - - - - -
20 MICRON [32] -  - - - - - - - -  -
21 SafeDrug [33] -  - - - - - - - - - -
22 AMANet [34] -  - - - - - - - - - -
23 RA-WCR [35] -  - - - - - - - - - -
24 MedRec [36]  - - - -  - - - - - -
25 SMGCN [37] - - - - -  - - - - - -
26 LSTM-DO-TR [38]  - - - - - - - - - - -
27 LSTM-DE [39]   - - - - - - - - - -
28 CGL [40] -  - - - - - - - - - -
29 ConCare [22]   - - - - - - - - - -
30 DRLST [41] -  - - - - - - - - - -
31 SDCNN [42] - - - - - - - -  - - -
32 MetaCare++ [43] -  - - - - - - -  - -
33 MetaPath [44] - - - - - - - -  - - -
34 PMDC-RNN [45] - - - - - - - -  - - -
35 TAMSGC [46] -  - - - - - - - - - -
36 GATE [47] -  - - - - - - - - - -
37 Dipole [48] - - - - - -  - - - - -

eICU. eICU [43] is a Collaborative Research Database in which deidentified health records of critical 
patients are stored who are admitted to Intensive Care Unit (ICU). In this dataset, different information 
factors are included such as diagnosis, vital signs, care plan, the severity of illness, and treatment information. 
The eICU dataset contains over 200,000 patients’ data across the United States. The dataset is freely 
available and widely used by a number of research communities in different application domains.
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Proprietary and non-public datasets. Several studies developed proprietary and non-public datasets 
to evaluate their MR models. Table 5 reports that six models have used such datasets, making it challenging 
for researchers to compare the results of these models with other models [10, 27, 15, 36, 38, 39, 22]. Some 
other datasets adopted by explored models include Sutter [3], TCM [36, 37], DrugBank [29], IQVIA [90] 
and PRIVATE [11, 24]. Since these datasets give access to limited information sources, therefore employed 
by a few studies.

Table 6. The details of the datasets used in evaluating MR models by the reported studies.

Datasets #patients
#clinical 
events

#diagnoses #procedures #medicines
#related 

DDI pairs
#symptoms

Release 
year

MIMIC-III3 5,847 13,727 1,954 1,352 138 460 1,113 2015
Sutter4 258K 2,415,414 - - 7,516 - - 2017
NMEDW5 865 1,260 - - 57 - - 2015
PRIVATE6 13,640 - 11 - 134 - - 2021
NELL7 - 278,388 - - 230 - 17,898 2022
DrugBank8 - - - - 14,752 1,180 - 2014
TCM9 - - - - 811 - 390 2018

4. COMPARATIVE ANALYSIS OF THE EXPERIMENTAL RESULTS OF THE MODELS

This section is dedicated to the comparison of experimental results generated by the examined models 
using different evaluation metrics and datasets. If we look at the results of models using the MIMIC-III 
dataset in Table 7, The best performance on MIMIC-III is gained by the DMNC [14]. The DMNC attained 
the best performance due to the introduction of a new memory-augmented neural network model that aims 
to model these complex interactions between two asynchronous sequential views. DMNC uses two 
encoders for reading from and writing to two external memories for encoding input views. The intra-view 
interactions and the long-term dependencies are captured by the use of memories during this encoding 
process. There are two modes of memory accessing in DMNC [14] system: late-fusion and early-fusion, 
corresponding to late and early inter-view interactions. In the late-fusion mode, the two memories are 
separated, containing only view-specific contents. In the early-fusion mode, the two memories share the 
same addressing space, allowing cross-memory accessing. In both cases, the knowledge from the memories 
will be combined by a decoder to make predictions over the output space.

The second best performance is attained by the COGNet model [5] because it utilizes a generation 
network based on an encoder-decoder to recommend suitable medications in a sequential manner. It 
represents the patient’s historical health conditions by encoding all her medical codes from previous visits 
in the encoder network. It represents the patient’s current health condition by encoding the diagnosis and 
procedure codes from the patient’s visit. It employs a decoder to generate the medication procedure codes 
of the visit one by one to represent the patient’s current drug combination suggestions. The decoder collects 
information by procedures, diagnoses, and medications to suggest the next medication during each decoding 
step. If the current visit’s diseases are consistent with previous visits, the copy module copies the associated 
medications immediately from the historical medicines combinations. 
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Diagnosis and procedure encoders are transformer-based network [76] with different parameters. On this 
dataset, the third best performer is the PREMIER [24] model. PREMIER [24] is a two-stage recommender 
system comprising attention-based RNNs to model patient visits and graph networks to model drug 
co-occurrences in the EHR and known drug interactions. PREMIER adapts GAT to incorporate the varying 
importance of drug interactions to learn effective drug embeddings for the task of medication recommendation. 
PREMIER [24] justifies the key reasons for recommending a particular medication by providing the 
percentage of contributions among the diagnosis, procedures, and previously prescribed medications.

On the contrary, the MERITS [27] model produces superior results for the Non-public dataset compared 
to other models based on precision, recall, F-score, and AUC metrics. It is credited for its use of neural 
ordinary differential equations (Neural ODE) to represent the irregular time-series dependencies, which can 
better learn the continuous inner process. Moreover, it incorporates static and dynamic features through 
self-attention and uses the encoder-decoder architecture to forecast the next sequence of medications. In 
the same direction, SMGCN [37] generates better results than its counterpart MedRec [36] based on the 
TCM dataset employing precision and recall metrics. The possible reason behind the improved results of 
SMGCN could be the combination of MLP and GCN to fuse symptom representations into the overall 
implicit syndrome embedding and learn symptom and herb representations, respectively. On the other 
hand, MedRec employs a knowledge graph to link symptoms, diseases, medicines, and examinations. Using 
similar characteristics and molecular structures, an attribute graph is used to link many medications. The 
combined learning representations of symptoms and medicines is then employed in medication 
recommendations. 

Finally, if we see the results reported on other datasets, viz., Private, eICU, NMEDW, Sutter, and NELL, 
we cannot make meaningful implications since these datasets have been utilized by one model each to 
report their performance.

5. OPEN ISSUES AND OPPORTUNITIES

This section reports on the problems faced by the chosen MR approaches and presents research 
opportunities in addressing them by examining the research examined in this article.

5.1 Cold-start Problem

One of the well-known issues that MR methods encounter is the “cold-start” issue [53], which is further 
classified as cold-start patients and medications. In these situations, the approach cannot provide trustworthy 
medication recommendations due to insufficient knowledge about patients and medications. For example, 
when a new patient appears, the system has insufficient patient information, and therefore, it is unable to 
create reasonable recommendations. To address the cold-start issue, most of the models employed medication 
history, time, diagnoses, and procedures. For instance, SMR [29] first connects medical knowledge and 
EMRs graphs in order to construct a superior heterogeneous graph. The approach then encodes patients, 
diseases, medications, and their related relationships in a common lower-dimensional space. Finally, in 
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order to build the medication recommendation into a link prediction task, SMR also considers the patient’s 
diagnoses of adverse drug reactions. Likewise, MetaCare++ [43] introduced a meta-learning technique to 
address the cold-start diagnosis task that dynamically forecasts future diagnoses and timestamps for 
infrequent patients and explicitly encodes the impact of disease progression over time as a generalization 
prior.

5.2 Sparsity

This issue is most common in CF techniques [8], faced by several MR models when the dataset or patient 
information is sparse. It is difficult for the method to produce pertinent recommendations due to the lack 
of information. If the number of medications in the database is relatively less than that of patients then the 
MR model faces network sparsity or data sparsity problems. The examined studies exhibit that sparsity 
problems have been resolved by employing secondary information. In the case of network sparsity problems, 
side information enhances MR models’ knowledge about patients by extending the network of connections 
with new objects and relations. The new node, for example, indicates the association between medication, 
patients, diseases, symptoms, and lab tests. Most of the approaches investigated in this study employ hybrid 
strategies that combine CF and CB to address data sparsity. The DL technique used to generate personalized 
medication recommendations is the main distinction between them. For the task of recommending herbs, 
SMGCN [37] utilizes a multi-layer neural network model that simulates the interactions between syndromes 
and herbs. The representations of the symptoms in an intended symptom set are then combined using an 
MLP to produce the overall implied syndrome representation. The model combines syndrome representation 
with herb embeddings to produce final predictions.

In the same direction, MedRec [36] uses a knowledge graph to link medications, diseases, examinations, 
and symptoms. Additionally, it relates medications through common molecular structures and attributes 
using an attribute graph. As a result, the two graphs improve the relationship between symptoms and 
treatments, which solves the problem of data scarcity.

5.3 Drug-Drug Adverse Interactions

The recommendation model should take seriously into consideration the interaction between drugs. If a 
model recommends drugs that have adverse interactions, then it can cause serious damage to a patient’s 
health. Different models in the literature proposed solutions to tackle this problem. For instance, GAMENet 
[21] combines the DDI KG using a memory module implemented as a GCN, which models patients’ 
longitudinal records to produce safe and personalized drug recommendations. Similarly, 4SDrug [28] 
introduces a drug set module by devising intersection-based set augmentation, knowledge-based, and data-
driven penalties to ensure small and safe drug sets recommendations. COGNet [5] uses a basic module to 
recommend the medication combination based on the patient’s health condition in the current visit using 
an encoder-decoder architecture. Moreover, to consider the patient’s historical visit information, the model 
introduces a copy module that evaluates the current health conditions against previous visits to copy 
reusable medications in prescribing drugs for the current visit considering changes in the health condition. 
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A hierarchical selection mechanism combines the visit- and medication-level scores to compute the copy 
probability for each medication. Comparably, ARMR [9] initially utilizes RNNs to generate patient 
representations and employs a key-value memory system to contain historical representations and associated 
medications. As a result, a case-based approach with related results can be employed for medication 
recommendation. To accomplish DDI reduction, ARMR incorporates a GAN model that aligns the distribution 
of patient representations to a previous Gaussian distribution. The MedRec component and GAN model 
are conversely trained with double objectives in a mini-batch. The majority of available techniques impede 
models by adding more DDI knowledge in an effort to address the DDI problem. To overcome this issue, 
SARMR [12] extracts from raw patient records the target distribution linked with safer drug combinations 
for adversarial regularization. The technique can modify patient representation distributions in this way to 
lessen DDI. With a great deal of flexibility, SafeDrug [33] adaptively merges supervised loss and unsupervised 
DDI constraints. Specifically, if the DDI rate of individual samples is higher than a specific threshold /target 
during training, the negative DDI signal will be highlighted and back-propagated.

5.4 Capturing Temporal Dynamics

The patient’s recent health conditions and tests play a vital role in recommending precise medications. 
Moreover, there are certain diseases such as flu that depend on the recent patient’s clinical records. On the 
other hand, certain diseases like cardiovascular diseases need patient’s previous records to contain valuable 
information and help predict precise recommendations. To this end, RETAIN [10] predicts future diagnosis 
by calculating a visit’s attention weights at time t, considering the medical information in the current visit 
and the hidden state of the recurrent neural network at time t, to predict the visit at time t + 1. However, 
the relationships among all visits from time 1 to t are ignored. Dipole [48] handles this issue by embedding 
high-dimensional medical codes into a low code-level space. These code representations are then fed to 
an attention-based bidirectional GRU [71] to produce the hidden state representation by employing a 
softmax layer that predicts the medical codes in future visits. On the other hand, Concare [22] proposes a 
multichannel medical feature embedding architecture to learn the representation of various feature 
sequences through separate GRUs and uses time-aware attention to capture the effect of time intervals 
between records adaptively. Similarly, MeSIN [11] employs an interactive temporal sequence learning 
network to incorporate the intra-correlations of several visits within a single medical sequence and the 
inter-correlations of various sequences of EHR data. In particular, the improved laboratory findings 
embeddings are fed into the temporal sequence learning network i.e long-short temporal neural network 
(LSTM) for combining with the historical laboratory results. To provide a more accurate representation for 
the prediction task, TAHDNet [13] incorporated a Time-aware block to reflect the irregular time intervals. 
Specifically, an interval gate is utilized to fuse the two decay functions in order to take into account both 
periodic decay and monotonic decay.

5.5 Personalized Patient’s Modeling

The patient’s medical needs evolve during time periods. In particular, a patient may visit a hospital to 
get treatment for the flu, but next time her/his visit might be to treat stomach issues. Therefore, it is pertinent 
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to exploit such evolving factors to capture the patient’s recent medical requirements. To this end, ConCare 
[22] uses multi-head self-attention to extract the dependencies among clinical features explicitly to learn 
the personal health context and regenerate the feature embedding under the context. The diversity among 
heads is encouraged using cross-head decorrelation. A multichannel medical feature embedding architecture 
is employed to learn the representation of various feature sequences via separate GRUs and the effect of 
time intervals between the records of each feature is adaptively captured using time-aware attention.

Similarly, G-BERT [25] employs GCN [63] and BERT [58] to learn medical code representation and 
medication recommendation, respectively. In particular, the approach integrates the GNN representation 
into a transformer-based visit encoder and pre-trains it on EHR data from patients with a single visit. In 
order to address the issue of asynchronous multi-view learning, AMANet [34] combines attention mechanism 
and memory. Self-attention and inter-attention mechanisms are utilized to learn intra-view interaction and 
inter-view interaction, respectively. Information about a specific object is maintained by historical attention 
memory and is employed as a local knowledge storage system. On contrary, dynamic external memory is 
utilized to keep the global knowledge for each view. MERITS [27] uses neural ordinary differential 
equations(Neural ODE) to capture irregular time-series dependencies. In the meantime, the model employs 
a DDI knowledge graph and two learned medication relation graphs to investigate the medications’ 
co-occurrence and sequential correlations. It also applies an attention-based encoder-decoder framework 
for combining patient and medication history from the EMR.

Finally, ARMR [9] model utilizes two GRU networks [71] to build an encoder that exploits patient 
diagnoses information and procedures to generate robust patient representations, which are employed in 
generating final predictions.

6. CONCLUSION AND IMPLICATIONS

This paper explored DL-based MR models with respect to the platform, information filtering, information 
features and factors, recommendation type, evaluation methodology including datasets and metrics, the 
issues they face, and opportunities in addressing them. The following points summarize some of the main 
findings of this study.

•  The majority of the examined models utilized medication history, diagnoses, time, and procedures 
as data factors, which are important aspects when making a personalized medication prediction for 
a patient. Besides, models that employ auxiliary information, such as medication history, diagnoses, 
time, procedures, symptoms, and physical examinations, can provide precise recommendations and 
alleviate the sparsity problem because such techniques exploit rich information and enrich knowledge 
about the patient’s disease.

•  The embedding-based methods are most common in DL-based MR approaches due to their ability 
to exploit multiple information sources and capture the users’ preference dynamics. These are followed 
by RNNs due to their good performance in NLP tasks and capturing long-range dependencies. They 
are also useful in the MR domain that considers the updates in patient’s health over time. These are 



Data Intelligence 345

Deep Learning for Medication Recommendation: A Systematic Survey

followed by the CNN variants, as they can exploit contextual details and capture local relevant 
features.

•  Recently, transformer-based models with attention networks are getting popular because they capture 
salient information factors and features regarding patients and medication and consider complex 
relations among them. We have found 10 out of 37 MR models that employed transformers to 
recommend medications.

•  According to the survey, the majority of models viz. 24 out of 37 used the Adam optimization 
technique, while eight used gradient descent. One model employs Adagrad. Similarly, one of the 37 
models used RMSprop. The possible reason behind the usage of Adam and SGD could be their 
capability to converge and generalize better compared to others.

•  The main issues experienced by researched models are personalization, exploiting temporal dynamics, 
and DDI. As a consequence of a lack of sufficient information about the patient’s disease, some of 
the models struggled with the sparsity and cold-start problems. The interpretability is the least explored 
by the selected models. According to the study results, embedding methods and RNNs have better-
addressed personalization, robustness, and DDI problems. The main reason is that embedding 
methods exploit robust semantic relations in EHR networks. Moreover, RNNs can better capture 
long-range dependencies and perform better on NLP tasks. On the contrary, the survey demonstrates 
that graph/network embedding methods have better addressed the sparsity and cold start issues. The 
primary reason for this is that GCN embeds diseases, symptoms, medicines, patients, and their 
corresponding relationships into a shared lower-dimensional space.

•  MIMIC-III dataset contains rich information sources, namely patient information, diagnosis records, 
clinical events, procedures, medicines, and symptoms. As a result, the survey found that the MIMIC-
III dataset is the most commonly used in the domain of medication recommendations. Generally, 
other datasets are employed by a few models. For instance, NELL is the most newly published dataset 
and has only been used in one approach.

We hope the research avenues identified in this survey will assist researchers to explore interesting trends 
and devise robust medication recommender systems.
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