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Both the thickness effect and surface effect should be important in nano-indentation behavior of coatings due to the finite
thickness and small indentation size. As a basic solution, the two-dimensional Boussinesq problem of a finite elastic layer
bonded to a rigid substrate is studied in this paper, employing the surface-energy-density-based elastic theory. The Airy stress
function and Fourier integral transform methods are adopted to solve the problem. A nalytical solutions of both the stress and
displacement fields are well achieved for a finite elastic layer under a concentrated force and a uniform pressure. Unlike the
classical solutions, it is discovered that both the thickness effect and surface effect will show significant influences on the
Boussinesq elastic behaviors. The surface effect would harden the finite elastic layer and induce a more uniformly distributing
displacements and stresses. Only when the thickness is sufficiently large, the Boussinesq solution of an elastic half space may
represent that of a finite elastic layer case. A generalized hardness is further defined to include the coupling effects of thickness
and surface for the Boussinesq problem of a finite elastic layer. Such a study would assist in the design and property evaluation
of coatings and micro-devices with layer-substrate structures.
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1. Introduction

Nanoindentation, as an advanced nanotechnology, is widely
used for the mechanical property characterization (elastic
modulus, hardness, and yield stress, etc.) of various mate-
rials, such as crystal, electromechanical smart materials,
biocompatible materials with compound microstructures and
thin films [1-4]. Interestingly, when the indentation size or
material dimension is reduced to the micro/nanoscale, the
indentation hardness shows a significant size dependence
[5,6]. Particularly for indentation depths or indenting width
(radius) smaller than 100 nm, both atomic simulation [7]
and experimental evaluation [8] have demonstrated the
prominent impact of the surface effect on contact problem,
which is ascribed to the increasing of the ratio of surface to

volume [9-11]. However, the classical theory cannot explain
and predict such an effect.
In the 1970s, a rigorous mathematical framework, by in-

troducing surface residual stresses and surface elastic con-
stants, had established to depict the material’s surface effect
by Gurtin and Ian Murdoch [12,13]. As the assumption, the
surface is considered a two-dimensional thin film without
thickness, the deformation is continuous between the surface
and bulk. The linear elastic constitutive relation still applies
to the mechanical behavior of the surface. Subsequently,
several extensive models derived from the Gurtin and
Murdoch (G-M) theory have been put forward. Dingreville
and Qu [14] introduced the surface free energy to describe
the surface effect. Steigmann and Ogden [15] proposed a
constitutive model, which introduces a surface flexural
stiffness, to predict the behavior of bending or wrinkling of
nanowires (NWs) incorporating the surface effect. Huang
and Wang [16] introduced a surface hyperelastic theory that
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accounted for the interfacial energy and internal residual
stress. Wang et al. [17] adopted the surface residual stress to
describe the size-dependent surface in nanomaterials. The
G-M theory and its expansions have been well used to
analyze the surface effect on many nanostructures and na-
nomaterials [18-27].
Recently, many researchers concerned about the nano-

contact problems by the G-M theory [28-32]. The first ca-
tegory relates to the nanocontact issue with a semi-infinite
plane. Gao et al. [30] examined the Boussinesq problem on
semi-infinite plane incorporating surface residual stress, in
which it was found that the deformation of the semi-infinite
plane is smoother resulted from hardening effect induced by
the surface effect. Subsequent studies extended this analysis
to the contact behaviors of two typical nano-indenters of a
semi-infinite plane by Long et al. [33]. The second category
is the nanocontact issue of structures with a finite thickness.
Zhao and Rajapakse [34] studied the nanocontact behavior
on an elastic layer using the G-M theory. Examining the
contact problem by introducing the surface tension on an
elastic dhered layer using G-M theory, Yuan and Wang [29]
discovered that the surface tension significantly increased
the elasticity of the elastic layer, resulting in a more con-
sistent contact pressure. Attia and Mahmoud [35] studied
how the surface elastic constants affect the contact behavior
of a finite-thickness functionally graded substrate. Law-
ongkerd et al. [36] solved an elastic loading problem for a
thin layer perfectly bonding to the rigid substrate.
In accordance with the G-M theory and its expansions, the

contact models above modified the stress boundary condi-
tions through adding the residual stress or elastic constants
of surface. However, both kinds of parameters are difficult
to obtain experimentally or yield precisely by the molecular
dynamics simulations [37]. To prevent introduction of the
two kinds of parameters above, Chen and Yao [38] in-
troduced an alternative surface elastic theory based on the
surface energy density of nanomaterials, where the surface
relaxation parameter and the bulk-surface-energy-density
were involved to represent surface effect. Such a theory [38]
offers the advantage of easily acquiring the two key para-
meters either from material manuals or by simple experi-
ment observations. Consequently, the expression for the
surface-induced traction is based on the surface energy
density instead of the surface stress associated with the
surface elastic constants. Mechanical characteristics of dif-
ferent nanostructures have been successfully assessed using
surface-energy-density-rooted elastic theory [39-42].
The contact problems of a half space under different

loading conditions were also examined by surface-energy-
density-rooted elastic theory. Jia et al. [43] and Wang et al.
[44] analyzed the Hertz contact of a semi-infinite space, in
which a notable surface effect was found while the contact

width or radius was on a par with the material’s intrinsic
length. Wang [45] analyzed the Boussinesq problem of a
semi-infinite plane and found a smoother transition of
stresses at the loading edge. The contact problem subjected
by normal triangular loading was also studied by Wang et al.
[46], in which the hardening effect was obviously found on
account of the surface effect.
However, the results with the semi-infinite assumption are

definitely not applicable to structures with finite thickness
[2,47-49]. According to surface-energy-density-rooted
elastic theory, semi-analytical analysis for the frictionless
contact of a graded film punched by a cylindrical indenter
was carried out by Zhang et al. [50], and the contact pres-
sures were predicted with the influence of surface effect,
elastic modulus, film thickness. Until now, there is still little
theoretical analysis on the mechanical behaviors of finite
layers considering both the surface and thickness effects,
though it is an important basic issue for film-substrate sys-
tems and related micro-devices.
In order to give the basic solutions to the above problem,

this paper investigates a two-dimensional Boussinesq model
of a finite bonded elastic layer, using the surface-energy-
density-rooted elastic theory [38]. Below is the outline of
the paper. The surface elastic theory is briefly introduced in
Sect. 2. The mathematical formula and general solutions
considering the surface effect are given in Sect. 3. Then,
analytical solutions for the Boussinesq problem of a finite
boned elastic layer under a concentrated force or uniform
pressure are achieved in Sect. 4. Section 5 gives the analysis
of results and discussion. Conclusions are drawn finally,
which would assist in the design of film-substrate systems
and related micro-devices.

2. Brief introduction of the surface elastic
theory

The surface theory established by Chen and Yao [38] rooted
in surface energy density of nanostructures and nanoma-
terials is adopted in this work, which is briefly introduced in
this section. Assuming a nano-material in a reference con-
figuration with an idealized crystal structure, consider em-
bedding a Lagrangian coordinate system on the solid
surface, where its principal axes 1 and 2 align parallel to the
basic vectors of the unit cell. In the reference configuration,
the Lagrangian surface energy density 0 comprises two

components: stru
0 associated with the surface strain energy

and another chem
0 resulting from the surface chemical bond,

i.e.,

= + , (1)0
stru
0

chem
0
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where b0 represents the bulk surface energy density. w1

describes the scale-dependent behavior of chem
0 empirically,

and D depicts the characteristic length of solid, which could
be the thickness or diameter, and so on. D0 is a length
parameter (D d= 20 0 for nanofilms, D d= 30 0 for nanowires
and nanoparticles, where d0 is the atomic diameter). In the
structural part stru

0 , Eb represents the bulk Young’s modulus.
The angle between the basic vectors is generally defined as

= /2. a a= /i ri i0 describes surface relaxation with the
initial lattice length a i0 and surface relaxation lattice length
ari in the crystal surface. a a a= ( )/si i ri i0 represents the
surface strain result from the external loading. The para-
meter m can depict the correlation between bond length and
binding energy.
As for the deformation of nano-solid in the present con-

figuration, the potential energy function is written as
follows:

U W

V S V S

u

f u p u

( ) = +

= ( )d + ( )d d d ,

(3)
V S S s V S S- - p

where the bulk elastic strain energy U , the surface free
energy and the external work W are concluded. re-
presents the elastic strain energy density, denotes the Eu-
lerian surface energy density, u is the displacement, f is the
body force, and p denotes the external surface traction. and

s are the strains in the bulk and the surface strains, re-
spectively. Sp represents the boundary at which the external
traction is acted.
The variational analysis [16,38] of Eq. (3) results in the

equilibrium equations and the stress boundary conditions as
follows:

V S
S
S

f 0
n n p n
I n n n I n n p

+ = , (in - ),
= , (on ),

( ) = ( ) , (on ),
(4)n

t

where n is the unit normal vector, I is a unit tensor, and is
the bulk Cauchy stress tensor. Defining the additional trac-
tion induced by surface, i.e., the normal components n and
tangential components t, which can be obtained by the
virtual work method [38] as follows:

( )

( )
J

J
J

R Rn n n n

= = , 

= 1 + 1 = , (5)

t s
s

s

s s

s

n s

0 0
2

1 2

where s acts as a surface gradient operator. Adopting
J= / s0 , where Js denotes the Jacobean determinant related

to the elements change from the configuration of Lagrangian
to Eulerian. R1 and R2 denote the curvature radii for curved
surface.
The handling of boundary conditions distinguishes the

above surface elastic theory from the earlier frameworks
[12,15,23,51]. In such a theory by Chen and Yao [38], the
boundary conditions introduce the surface relaxation para-
meters and bulk surface energy density.

3. Boussinesq problem of a finite elastic layer
considering surface effect

A two-dimensional finite elastic layer acted by the uniform
pressure p x( ) on the surface is shown in Fig. 1. Assume a
perfect bond between the elastic layer and a rigid substrate,
and the pressure p x( ) is symmetrical about z-axis in the
Cartesian coordinate system (xOz). The pressurized half-
width is a and the thickness of layer is h. The plane strain
condition yields = = = 0yx yy yz .

3.1 Governing equations and boundary conditions

Without considering the body force, the equilibrium equa-
tions are written as follows:

x z x z+ = 0,   + = 0, (6)x xz xz z

where x and z denote the normal stresses, and xz is the
shear stress.
The geometric equation of the plane strain problem is

u
x

u
z

u
z

u
x= ,   = ,   = 1

2 + , (7)x
x

z
z

xz
x z

where x and z denote the normal strains, and xz is the

Figure 1 A finite elastic layer subjected to a uniform pressure.
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shear strain, ux and uz are the displacement components in
the direction x and z, respectively.
The constitutive relations can be readily expressed as

[ ]

[ ]
µ v

µ v

µ

= 1
2 ( + ) ,

= 1
2 ( + ) ,

= 2 ,

(8)

x x x z

z z x z

xz
xz

where µ is the bulk shear modulus and v is the Poisson’s
ratio.
Since assume a prefect bonding between an elastic layer

and rigid substrate, the displacement boundary conditions
are written as
u x h u x h( , ) = 0,   ( , ) = 0, (9)x z

In accordance with Eq. (5), the boundary conditions of stress
on surface of elastic layer are achieved:

x p x J u x

x J J u x

( , 0) + ( ) = ( , 0),

( , 0) = 1 ( , 0).
(10)

z s z xx

xz s x
s

x xx

0
,

0,
0
2 ,

Since the length parameter D0 is much smaller than the
finite layer’s thickness, we have b0

chem
0 . Generally, the

Lagrangian surface energy density 0 is related to structure
of crystal. In this paper, adopting a typical FCC metallic
structure and taking the pressurized surface as a (100) one
considering the same atom spacing in bond direction. Thus
m = 1. The initial lattice lengths are a a a= = s01 02 0 and the
relaxation parameters are = =1 2 . The surface strains
are = = /2 =s s x1 2 for a (100) surface [38]. Using the
Taylor’s expansion and ignoring the high-order strain terms,
the Lagrangian surface-energy density 0 in Eq. (1) can be
reduced as

E a+ 2
8 | . (11)b

b
x z0 0

0 2
=0

From Eq. (11), one can see that the layer’s surface energy
density is associated with the surface strain x result from
the external load. That is to say, under the external load, the
layer’s surface energy density 0 would vary from the
contact region to the noncontact region due to the different
surface deformation. However, x is much smaller than 1 in
the infinitesimal deformation condition. The influence of x

2

on the surface energy density 0 can be reasonably neglected
and the surface energy density 0 can be regarded as a
constant, i.e., the bulk surface energy density b0 , in the
following analysis. Then, considering Eqs. (10), (11) and

( )J = 1+ /2s x
2 2 yields the simplified stress boundary con-

ditions:

x p x u x
x u x

( , 0) + ( ) = ( , 0),
( , 0) = ( , 0).

(12)z b z xx

xz b x xx

0 ,

0 ,

3.2 General solutions

Generally, such an elastic problem is solved using Fourier
transformation methods with Airy stress function . The
Fourier transformation is as follows:

s z x z x

x z s z s

( , ) = ( , )e d ,

( , ) = 1
2 ( , )e d ,

(13)
xs

xs

i

i

and s z( , ) can be written as

s z A Bz C Dz( , ) = ( + )e + ( + )e , (14)s z s z| | | |

where A, B, C and D are coefficient functions of s and h, which
are defined by the stress boundary conditions in Eq. (12).
Thus, the integral form of the stresses and displacements

are
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where X1 and X2 are the integral constants.
Substituting Eqs. (15) and (16) into Eqs. (9) and (12) leads

to four linear equations. Solving the linear equations yields

A p s
F A B p s

F B C p s
F C D p s

F D= ,   = ,   = ,   = , (17)p p p p
( ) ( ) ( ) ( )

where
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The detailed expressions of Ai, Bi, Ci, Di (i = 1, 2, 3, 4) and
nj (j = 1, 2, 3) are presented in Appendix A. p s( ) is the
Fourier transformation form:

p s p x x( ) = 1
2 ( )e d . (19)xsi

The integral constants X1 and X2 in Eq. (16) can be defined
by the displacement boundary conditions. In Fig. 1, as p x( )

is symmetric to the z-axis, we can define u z(0, ) = 0x . Fur-
thermore, by the Saint-Venant’s principle, we define
u r a( , 0) = 0z 0 , where r0 is a finite value (r 50 ) [31]. In this
paper, we take r = 50 . Based on Eqs. (15) and (16), the so-
lutions on the loading surface (z = 0) can be obtained with
the determined A, B, C, and D in Eq. (17).
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where l denotes an intrinsic length scale characterized the
surface effect, which is the bulk surface energy density-to-
shear modulus ratio, i.e., l µ= /b0 . In the classical solutions,
the surface effect is not considered, i.e., without surface
energy density, we have l = 0.

4. Analytical solutions of the finite elastic layer

Two typical Boussinesq problems related to the model that a
finite elastic layer is perfectly bonded to the rigid substrate
are solved respectively, i.e., the model with a uniform

pressure and a concentrated force.

4.1 Analytical solutions of the model under a con-
centrated force

Exerting a point force P at x = 0, i.e., p a P2 0 as a 0.
The first expression in Eq. (19) can be rewritten as

p s P( ) = 2 . (22)

Thus, substituting Eq. (22) into Eqs. (20) and (21) leads to
the following stress and displacement components,
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Let s t f x x f z z f= / ,  = ,  = , l l f= , h h f= , f P µ= /( ).
For loading surface, i.e., z = 0, the stresses and displace-

ments are rewritten as
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4.2 Analytical solutions of the model under a uniform
pressure

As Fig. 1, a uniform pressure is exerted to the layer. Let
p x p( ) = 0 and h h a = / , s t a= / , l l a= / , z z a = / , x x a= / .
p x( ) can be transformed to the Fourier expression:

p s p a t
t( ) = 2 sin . (27)0

Hence, the stress and displacement components on the
loading surface (z = 0) can be reduced by substituting Eq.
(27) into Eqs. (20) and (21),
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Consider the characteristics of the hyperbolic functions in
Eqs. (28) and (29). When the elastic layer thickness ap-
proaches infinity, i.e., h , we have h tcosh(2 ) ,

h tsinh(2 ) , h tcoth(2 ) 0, h ttanh(2 ) 1. The results
can be well reduced to the ones of an elastic semi-infinite
plane considering the surface effect [45]. Furthermore, while
the value of contact width a greatly exceeds the intrinsic
length l, i.e., the dimensionless quantity l 0, the results
can well degenerate to the classical ones [52].

5. Results and discussion

The stress and displacement solutions to the Boussinesq
problem of a two-dimensionally finite elastic layer with
surface effect are given as above. Here, analysis of the re-
sults under a uniform pressure is carried out since the case of

a concentrated force is a special one. In the analysis below,
we take v = 0.37.
The distributions of both the normal displacement uz and

the horizontal displacement ux on a finite elastic layer sur-
face are shown in Fig. 2 for cases with different l a/ , in
which the layer thickness is large enough (h a/ = 1000) and
the solutions for a half plane with surface effect [45] are also
given for comparison. Different values of l a/ denotes the
degree of surface effect and l a/ = 0 corresponds to the
classical solution. From Fig. 2, it is discovered that the
surface effect reduces both the horizontal displacement ux
and the normal displacement uz, and the results of the finite
elastic layer and those of the half plane [45] exhibit no
obvious deviation. It means that the surface effect can
harden the elastic layer, and the solutions about a semi-
infinite plane can represent those of a finite elastic layer
when the thickness value of layer is sufficiently large. The
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stronger the surface effect, the harder the material becomes,
and the smaller the displacements in the loading zone are.
Furthermore, unlike the classical solution, there is a con-
tinuous slope for the horizontal displacement ux, which is
resulted from the continuous condition of surface effect.
The corresponding stresses on the surface of the elastic

layer are illustrated in Fig. 3, where Fig. 3(a)-(c) exhibits the
normal stresses z, x and the shear stress xz, respectively.
Additionally, the stress solutions to a half plane with the
surface effect [45] are provided for comparison. l a/ = 0
corresponds to the classic solution without the surface ef-
fect. It is found that, in the classical predictions, both z and

x are uniform and compressive in the loading region and
vanish outside the loading region. Both z and x are dis-
continuous at x a/ = 1 due to the discontinuous boundary
conditions at this point. When the surface effect is con-
sidered, both z and x decrease, in contrast to the classical
ones in the loading region of x a/ 1; while both z and x
are compressive outside the loading region, and become
continuous and smooth at x a/ = 1. All these are attributable
to the surface effect, which introduces additionally surface-

induced normal and tangential tractions shown in Eq. (4).
With regard to the shear stress illustrated in Fig. 3(c), it
vanishes in the classical solution, while a non-vanishing
shear stress exists when the surface effect is considered. The
non-vanishing shear stress should be resulted from in-
troduced surface-induced tangential traction, i.e., the third
equation in Eq. (4). Furthermore, as l a/ increases, a more
notable deviation is observed between the present results

Figure 2 Dimensionless displacements on the surface of a finite elastic
layer under a uniform pressure varying with the dimensionless parameter
l a/ . (a) The normal displacement uz; (b) the horizontal displacement ux.

Figure 3 Dimensionless stresses on the surface of a finite elastic layer
under a uniform pressure varying with the dimensionless parameter l a/ . (a)
The normal stress z; (b) the normal stress x; (c) the shear stress xz.
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and the classical ones, suggesting that a stronger surface
effect results in greater hardness of the elastic layer. Ob-
viously, the solutions of an elastic half plane [45] can well
represent those of a finite elastic layer when the layer is
adequately thick.
The thickness effect of an elastic layer on the Boussinesq

solutions is further investigated. Both the normal displace-
ment uz and the horizontal displacement ux on a finite
elastic layer are given in Fig. 4(a) and (b), respectively, for
varying layer thicknesses, with or without the surface effect.
Figure 4(a) illustrates a decrease in normal displacement uz
with the decreasing layer thickness, either with or without
the surface effect, both of which are due to the rigid sub-
strate effect, significantly resisting the elastic layer de-
formation. In comparison to the absence of the surface
effect, the surface effect would lead to a decreased normal
displacement in the loading region, an increased one how-
ever outside the loading region, resulting in a more uniform
distribution of the normal displacement uz. Specifically, In
the event of a very thin elastic layer where the surface effect
is not taken into account, for example h a/ = 2, one can see
that the pile-up phenomenon emerges outside the loading
region, while the surface effect would decrease the pile-up
deformation, which further proves the hardening behavior
induced by the surface effect.
Similar hardening behavior can be found in the horizontal

displacement as shown in Fig. 4(b), which further leads to
the more uniform distribution of the horizontal displace-
ment, in comparison with the result without the surface ef-
fect. Either with or without the surface effect, it is
discovered that the horizontal displacement ux typically
decreases as the elastic layer thickness decreases and the
curve of the horizontal displacement changes from concave
in the loading region to convex outside the loading region.
Specially, in the case with a much small thickness, for ex-
ample h a/ = 2, one can see that the horizontal displacement
changes its direction. Such a phenomenon in the case of a
finite elastic layer is a result of the constraint effect of the
rigid substrate. Squeezing in the thickness direction leads to
the outward deformation in both the normal and horizontal
directions outside the loading region.
The distributions of stresses on the finite elastic layer

surface are illustrated in Fig. 5, where both the solutions
with and without the surface effect are included for com-
parison. From Fig. 5(a), one can see that the dimensionless
classical solution of the normal stress z is not influenced by
the layer thickness. z is uniformly distributed inside the
loading region and vanishes outside the loading region,
which coincides with the classical boundary condition. In
comparison to the classical solutions, the surface effect re-
duces the value of z inside the loading region result from
the opposite direction of the surface-induced traction to that

of the external loading. Outside the loading region, z exists
as a result of the surface effect. The direction of normal
traction induced by surface inside the loading region should
be opposite to that outside the loading region, which is due
to the opposite deformation curvatures in the two regions
shown in Fig. 4(a). Furthermore, the decreasing layer
thickness yields an increasing value of z inside the loading
region, which is owing to the resistance of the rigid sub-
strate, like the nano-indentation problem of the film/sub-
strate system [53]. Outside the loading region, the normal
stress z hardly changes with the thickness due to a similar
deformation curvature in this region.
The dimensionless normal stress x on the finite elastic

layer surface is given in Fig. 5(b). In the model without
considering the surface effect, the normal stress x de-
creases with the decreasing layer thickness and changes
from a nearly uniform distribution to a non-uniform one in
the loading region. Outside the loading region, x changes
from positive to zero, even negative in the thinner layer
case. All these should be attributed to the rigid substrate
effect, which can be understood from the horizontal dis-

Figure 4 Dimensionless surface displacements of a finite elastic layer
under a uniform pressure varying with the layer thickness, in which
l a/ = 0.1 is adopted for the surface effect and SE denotes “surface effect”.
(a) The normal displacement uz; (b) the horizontal displacement ux.
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placement shown in Fig. 4(b). When factoring in the surface
effect, both the substrate effect and the surface effect will
contribute to the results. Due to the surface effect-induced
hardening behavior, the normal stress x will become
smaller and distribute more uniformly in Fig. 5(b).
The dimensionless shear stress near the elastic layer sur-

face is shown in Fig. 5(c). The shear stress xz is zero when
the surface effect is omitted from consideration, which ac-
tually corresponds to the boundary conditions. However,

considering the surface effect, the shear stress xz exists and
changes directions along the horizontal direction. It is re-
sponsible for the surface-induced tangential traction, and the
direction of the traction depends on that of the deformation
curvature.
Though it is a Boussinesq problem of a finite elastic layer

analyzed in the present paper, so as to illustrate the coupling
surface and thickness effects, similar to Ref. [45], a gen-
eralized hardness of the finite elastic layer is defined as

( ) ( )
H p a
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t
t h t l h l

h t l t h t x t r t

t
h t l t l t

h t
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The normalized generalized hardness H H/ 0 as a function
of the ratio of a l/ is shown in Fig. 6, where the half plane
case and the finite layer case of different thicknesses are
included. H0 represents the generalized hardness of an
elastic half plane predicted by the classical theory [54]. As
Fig. 6 indicates, it is evident that the generalized hardness of
an elastic half plane increases from 1 with the decreasing
a l/ , which is only due to the surface effect [45]. For a finite
elastic layer, the normalized generalized hardness is larger
than 1, which increases with the decreasing a l/ as well as the
decreasing thickness. Such a result exactly proves the co-
existence of the thickness effect and the surface effect.
The results in Fig. 6 are qualitatively consistent with the

experimental ones carried out by Ma et al. [55], in which a
set of nanoindentation tests were done for the Ni/Fe sub-
strate system with a Berkovich indenter. It is found that, for
a small indentation depth, decreasing the indentation depth
leads to an increase in the defined composite hardness, in-
dicating an increasing hardness with the decrease of the
contact radius.
Additionally, according to the G-M theory [12,13], Yuan

and Wang [29] explored the nanocontact behavior of a finite
elastic layer, taking into account the impact of surface ten-
sion, whose findings align qualitatively with the results of
this research. Both findings suggest that the surface effect
results in smoother normal stress distributions and a hard-
ening layer. However, differences between them are in-
evitable due to the different surface constitutive equations
and distinct material parameters that characterize the surface
effect. In Ref. [29], the surface constitutive equations are
given as a function of the surface stress and the surface
effect is characterized only by the surface tension, whereas
the surface elastic constant is neglected for simplicity.

Consequently, only the normal surface-induced traction re-
lated to surface tension is considered in the stress boundary
condition, leading to a vanishing shear stress on the loaded
surface. Conversely, in the present work, the surface con-
stitutive equations are expressed as a function of the surface
energy density and the surface effect of the layer is deli-
neated by the bulk surface energy density. Both additionally
normal and tangential surface-induced tractions are in-
troduced to the stress boundary condition as depicted in Eq.
(12), which leads to a non-vanishing shear stress on the
loaded surface.
Such a study provides a basic solution of the Boussinesq

problem with the surface effect, which can be further ex-
tended to predict the nanoindentation hardness of layer/
coating systems applied in various industries, for example,
automobile body surface, turbine blade of aircraft, en-
capsulation layer of microelectronic devices, etc.

6. Conclusions

A two-dimensional Boussinesq problem of a finite elastic
layer is explored in present paper, employing the surface
elastic theory rooted in the surface energy density. Both the
displacement and stress fields on the surface are achieved
analytically by the Airy function and Fourier integral
transformation methods in the circumstances of a con-
centrated force and a uniform pressure. It is observed that
both the displacement and the stress on the surface are
significantly influenced by not only the thickness effect but
also the surface effect. An intrinsic length that characters the
surface effect is defined by the bulk surface energy density
and the bulk shear modulus. Surface effect would result in
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the layer hardening. The larger the intrinsic length, the
stronger the surface effect on the displacements and stresses
is. Owing to the restriction of the rigid substrate, the
thickness of the finite elastic layer influences the displace-
ments and stresses also. The thinner the layer, the stronger
the thickness effect is. When the layer thickness becomes
thinner, the pile-up deformation due to the thickness effect
in the classical solution could be decreased result from the

surface effect. Both the surface effect and thickness effect
can be included in a defined generalized hardness. The re-
sults may enrich the Boussinesq problem of a finite elastic
layers, which should be useful for the design of advanced
coatings and film-substrate systems.

Appendix A: Detailed expressions of the coeffi-
cients in Eq. (17)
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Figure 6 Variation of the normalized generalized hardness with respect to
the dimensionless pressurized half-width for finite layers of different
thicknesses.

Figure 5 Dimensionless stresses on the surface of a finite elastic layer
under a uniform pressure varying with the thickness, in which l a/ = 0.1 is
taken for the surface effect and SE denotes “surface effect”. (a) The normal
stress z; (b) the normal stress x; (c) the shear stress xz.
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where l µ= ,b0 v v v= 1 + ,  = 3 + 4 , = 5 + 121 2 3

v8 ,2 v= 1 + 24 .
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考虑表面效应的有限厚弹性层的Boussinesq问题

吴慧, 肖沙, 彭志龙, 贾宁, 陈少华

摘要 由于有限的厚度和较小的压痕尺寸,厚度效应和表面效应对涂层的纳米压痕行为都有很重要的影响. 本文首先采用基于表面能

密度的弹性理论研究了刚性基底上有限厚弹性层的二维Boussinesq问题. 利用艾里应力函数和傅里叶积分变换方法得到了该问题的基

本解. 接着, 在集中力和均匀压力分别作用下, 得到了有限厚弹性层的应力场和位移场的解析解. 与经典解不同, 结果表明厚度效应和

表面效应都会对Boussinesq弹性行为产生显著影响; 表面效应会使有限弹性层硬化, 并引起更均匀分布的位移场和应力场; 当厚度足够

大时, 该问题退化为弹性半空间的Boussinesq解; 进一步定义了有限弹性层Boussinesq问题的广义硬度, 包含厚度效应和表面效应的耦

合影响. 本研究将有助于涂层和具有层-基底结构的微器件的设计和性能评估.
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