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Abstract

System identification is a quintessential measure for real-time analysis on kinematic characteristics for deep-sea mining
vehicle, and thus to enhance the control performance and testing efficiency. In this study, the system identification

algorithm, recursive least square method with instrumental variables (IV-RLS), is tailored to model ‘Pioneer I’, a
deep-sea mining vehicle which recently completed a 1305-meter-deep sea trial in the Xisha area of the South China
Sea in August, 2021. The algorithm operates on the sensor data collected from the trial to obtain the vehicle’s kinematic
model and accordingly design the parameter self-tuning controller. The performances demonstrate the accuracy of
the model, and prove its generalization capability. With this model, the optimal controller has been designed, the
control parameters have been self-tuned, and the response time and robustness of the system have been optimized,

which validates the high efficiency on digital modelling for precision control of deep-sea mining vehicles.
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1 Introduction

Deep-sea mining technology is widely accepted as an
efficient solution to resource depletion problem, in which
the heavy-duty mining vehicle has become a hot research
topic because of its high security, reliability, and strong
ability to adapt to complex terrain (Zhou et al., 2013). How-
ever, massive size and component complexity of the deep-
sea mining vehicle add up to the difficulty to launch and
recovery in field work. The cost of sea trial is exorbitant,
and the mechanical structure faces regular seawater corro-
sion, which brings many difficulties to research and testing
of deep-sea mining vehicle. Digital modeling, in which sys-
tem identification is considered as one of the most effective
methods, plays a crucial role in operation monitoring and
post-analysis in 3D structure design, multi-body dynamics
analysis, health management and digital twin areas (Bai et
al., 2018).

Digital modeling is usually divided into mechanism-
based modeling and data-based modeling. In terms of mech-
anism-based modeling for tracked miner, Watanabe et al.

(1993) established a kinematics model based on multi-rigid
body dynamics theory, which could fit various terrains,
including soft clay terrain. They also established a tracked-
soil model to accurately reflect the inelastic response of soil
under track pressure. While for the hinge link of the vehicle,
Zhou et al. (2009) used ADAMS software to carry out the
kinematic optimization design and dynamic analysis, and
designed its solid model. For a variety of relative motions
such as steering, pitching and rolling, ANSYS was adapted
to check the strength of each component to verify the ratio-
nality of the design. Huang and Li (2019) focused on its
speed control and trajectory tracking problem based on
fuzzy control algorithm with LabVIEW.

However, it is hard to determine the performance
parameters of heavy-duty vehicles, such as stiffness, damping
and motion inertia. The elastic modulus, viscosity of
hydraulic oil and damping ratio of the system also change
with oil pressure, oil temperature and valve opening (Gao,
2006). Therefore, as for the kinematic characteristics of the
vehicle, it is difficult to establish a suitable mathematical
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simulation model for actual scene without thorough consid-
eration of the difference between the land and sea, mechanical
corrosion, pressure deformation and water disturbance flow.
Therefore, how to build a digital prototype with generalization
ability based on sea trial data has become a research
hotspot.

System identification is a generalized method based on
data modeling, which determines the mathematical model to
describe the system behavior according to the input and out-
put, mainly for grey box problems. Most of the identification
problems in engineering are incomplete identification prob-
lems, so that the crux of identification is order identification
and the parameter estimation problems (Ji et al., 2008).
Aiming at nonlinear servo system, myriad algorithms are
proposed, including impulse response method (Yazid and
Ng, 2021), high order frequency response method (Jia et al.,
2020), correlation analysis method (Zamani and Badri,
2015), least square method (Li et al., 2018), maximum like-
lihood method (Wada et al., 2016) and random approximation
algorithm (Kong et al., 2020). Takagi and Sugeno (Guan
and Chen, 2004) proposed a nonlinear system identification
method named T—S fuzzy model. The experimental results
showed that this method converged quickly, but its fuzzy
structure and rules were difficult to establish. Besides, it
required a lot of manual intervention and was difficult for
adaptive learning. Wang et al. (2020) proposed the algorithm
‘nu’-support vector regression for the robust model estab-
lishment of ship maneuvering motion in nonparametric
identification field. Zhang et al. (2008) proposed a neural
network identification method based on genetic algorithm
optimization, which solved the local minimum and perfect
initial value requirement problems. The algorithm had high
accuracy and fast convergence speed, but did not consider
the influence of colored noise. A Radical Basis Function
(RBF) neural network was adopted to identify the nonlinearity
and time-varying parameters of dynamic pressure cylinder
electrohydraulic servo system, improving the position track-
ing accuracy of the manipulator (Deng et al., 2018).

Least square method is one of the most widely used
methods for system identification. For systems with white
noise and high signal-to-noise ratio, this method can realize
the uniform unbiased estimation. In order to apply the least
square identification to the occasions where the actual noise
characteristics are complex, many scholars have conducted
indepth researches and proposed the augmented least square
identification method (Guo et al., 2017), the deviation com-
pensation least square identification method (Li and Shu,
2009), the generalized least square identification method
(Deng and Ding, 2014) and the instrumental variable identi-
fication method (Chen et al., 2013). Among them, the recur-
sive least square method is an iterative calculation method
proposed for high dimensional matrices with long identifi-
cation cycle, which intensely fits the multi-sensors system.
It decomposes the parameterized model to identify the mul-

tivariable system and the complex coupling system on hier-
archical principle and interactive estimation theory (Chen,
2009). As for data preprocess, the instrumental variable
method can eliminate the estimation deviation caused by
colored noise. The instrumental variables that are strongly
correlated with the input and output data but not correlated
with the system noise are selected so as to conduct unbiased
estimation of the model parameters.

In this paper, a system identification method is proposed
to model the deep-sea mining vehicle ‘Pioneer I’. The con-
tributions of this work are presented as follows:

(1) Providing a data-analysis method to obtain the kine-
matics characteristics, the transfer function and the controller
design of deep-sea mining vehicle based on trial data.

(2) Proposing an IV-RLS algorithm (recursive least
square method with instrumental variables) to solve the sin-
gular matrix problem and to eliminate the colored noise.

(3) Deducing a cyclic solution method to construct
instrumental variables.

(4) Designing a parameter self-tuning controller with
satisfactory control performance.

This paper is organized into five parts. The first part is a
basic introduction to deep-sea mining vehicles and the
research status, especially in the modeling and identification
field. The second part is the unbiased estimation identification
system primarily based on least square regression approach
with instrumental variables, while a circular solution to
instrumental variables selection is proposed. The third part
is the brief case of ‘Pioneer I, inclusive of electronic control
system, hydraulic transmission device and analysis on the
sea trial data in August 2021. The fourth part is the model
simulation with statistic validation analysis, parameter self-
tuning controller design and results comparison. The results
exhibit that the model has high accuracy and generalization
ability, and can be used for parameter self-tuning controller
design, and can robotically optimize the response speed and
robustness of the control system. The main conclusions are
drawn in Section 5.

2 IV-RLS algorithm

This part is the analysis on the record data to be pro-
cessed, the mathematic deduction of the algorithm and sta-
tistical characteristics. A circular solution method for instru-
mental variables selection is also proposed. Recursive least
square algorithm minimizes the generalized error to identify
the model. The instrumental variable method can eliminate
the estimation deviation attributable to colored noise, as
instrumental variables are strongly correlated with the input
and output data but not correlated with the system noise. By
IV-RLS algorithm, unbiased estimation of the model param-
eters is conducted.

2.1 Recursive least square estimation
In general, a control system can be expressed as:



WENG Qi-wang et al. China Ocean Eng., 2023, Vol. 37, No. 1, P. 53-61

(k) = —ary(k—1)—asy(k—2) = -+ — amy(k —m)+
biutk—1)+bou(tk=2)+---+byutk—n)+dk). (1)
Among them, y(k) is the system output while u(k) is sys-
tem input and d(k) is the interference noise. ay,as,---a,, and
bi,by,---b, are the coefficients of the difference equation
while n and m are respectively the numbers of zeros and
poles of the system.
Further arranged into matrix form, the equations can be

obtained:
y(k) = x" (k)0 +d(k); 2)
YN =[ y1) »2) yN) 17
DIN)=[ d(1) d() d(N) 1"
*() —5(0) (-m) w0
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Note: X(N) is only obtained at least after recording m
groups of data. For concise representation, N=1 stands for
the first time to calculate, namely ¢ = (1 —m) is the initial
time of the record.

2.2 Instrumental variables and cycle solution
For the parameter matrix to be estimated, the estimated
objective function is:

N
10)=) [y -x"we| =
k=1

[Y(N)-X(N)O 1" [Y(N) - X(N)O ]. (6)
If the minimum value of J(@ ) is taken, it should satisfy:
oJ(0)

— =0. 7
50 (7
Derivative equations can be obtained:
0= [XT(N)X(N)]_IXT(N)Y(N). (8)

The conventional least square method takes all the data
into the matrix to calculate the parameters directly. How-
ever, when the matrix dimension is large, it may be singular.
The matrix inversion requires non-empty matrix. Thus, the
recursive approach is used to solve it.

Here 0 (k) stands for the parameter matric identified by
the first k group data. With the estimate parameter (k) and
observation data y(k + 1) and u(k + 1), the estimate parameter
O(k+1) can be obtained. The recursive principle is as fol-
lows:

Taking P(t) = [X"()X(0)] ', it can be:

-1 T -1
P+ 1) =[P~ () +x(k+ Dx"(k+ 1] . )

Matrix  inversion formula (A+BCD)™'=A"1-
A"'B(C™'+DA'B)"' DA is also introduced:
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0 =[a; - ay b - b,,]T

3)
where @ is the parameter matrix to be identified.

There is m+n unknown variables in Eq. (3) and m > n,
so at least 2m equations are needed to solute the coeffi-
cients.

Taking k=1,2,---,N, a linear equation group can be
obtained, which is expressed as matrix form:

Y(N) = X(N)8 + D(N); 4
u(l—n)
5
u(k—n)
u(N —n)
B P(k)x(k+ DxT(k+1)
Pl+1)=\I- 1+ xT(k+ D)P()x(k+ 1) P(®. (10)

At this time, the parameter estimation Ok +1) is:

Ok +1) = (k) + Pk + Dx(k+ 1) [y(k + 1) = x" (k+ DK |

QY
Taking K(k+ 1) = P(k+ Dx(k+ 1), Eq. (11) is simplified
as:

Ok+1) = B(k) + K(k+ 1) [yt + 1) - xT(k+ DBK)|.  (12)

In summary, the recursive process is:

(1) Taking the observation data of the former k£ group,
the initial estimation value (k) and update matrix P(k) are
calculated.

(2) According to Eq. (10), the updated matrixs P(k+ 1)
and K(k+ 1) are calculated, and the next estimation matrix
O(k +1) is finally obtained.

(3) The error at this time is calculated according to the
objective function Eq. (6) at each recursion. If it is smaller
than the expected threshold, it is terminated and @ is identi-
fied.

2.3 Statistical characteristics analysis
Regression statistical characteristics analysis and unbi-
ased estimation can be written as:

0 =[X"(MXN)]"' XT(N)[X(N)0 + D(N)] =

0 +[XT (XN ' XT(N)D(N). (13)
The Mathematical expectation can be calculated:
E@) =0 +[X(N)'X(N)]"'E[X(N)T D(N)). (14)

It is easy to find that when the input signal is correlated
with noise, it is a biased estimation.

Considering the complexity of dynamic noise, it is chal-
lenging to model it. In this paper, the method of constructing



56 WENG Qi-wang et al. China Ocean Eng., 2023, Vol. 37, No. 1, P. 53-61

instrumental variables is adopted, and the cyclic solution
method is proposed.
The instrumental variable H is constructed:

H'Y(N)=H'X(N)0 + H' D(N) (15)

and the estimation is:
o=[x"WHH"XN)| [H'XV)| H' [XN)0 + DIV =

0 +[X"HHH'XN)| X" W) HH D). (16)

The Mathematical expectation can be obtained:
E@) =0 +|X"WHHE"X(N)| 'E [(HTX(N))T (HTD(N))] .
a7

If the samples are infinite, the unbiased estimation can
be obtained under the condition that the instrumental variable
H is found by Eq. (18):

{ HTX(N) nonsingular
H'™D(N)=0

As each matrix is not necessarily a square matrix, there
will be irreversible problem. It is better to understand it in
perspective of vector. Its mathematical essence is the con-
struction of H to fulfill HTY(N) = HYX(N)@ such that the
vector HT is strongly correlated with the vector X(N).

Therefore, this paper proposes a cyclic method to con-
struct instrumental variables, the steps are as follows:

(1) =X XW)| " XN TY (V)

2) ¥(N) = X(N)#;

(3) By linear estimation X(N) in Y(N) - X(N)8 =0, the
intersection of the two solution spaces is obtained and then
instrumental variables are found.

Obviously, the instrumental variables at this time meet
the above conditions.

(18)

3 Structure and control system of ‘Pioneer I’
Case selection and data acquisition are a crucial step to
implement the algorithm. The deep-sea mining vehicle ‘Pio-

Administration

center Signal Signal
transmission — transmission
Photoelectric

neer I’ (see Fig. 1), independently developed by Shanghai
Jiaotong University, is taken as the research object in this
paper.

From July 25th to August 3rd, 2021, the mining vehicle
‘Pioneer I’ successfully finished the 1305 m deep-sea trial
in the South China Sea. It is 5.6 m long, 2.5 m wide, 2.0 m
high and 9.0 t of air weight. It has the capability of seabed
environment perception, intelligent control and efficient
hydraulic mining.

The trials were carried out on seabed at 108 m, 246 m,
968 m and 1305 m below the sea level, respectively, con-
sisting of launch and recovery, seabed path planning and
autonomous walking and mining, providing sufficient infor-
mation for system identification research.

Fig. 1. Launch Process of ‘Pioneer I’

The overall equipment is made up of the power supply
system, the administration center, the photoelectric trans-
mission module, the motion management center, the
hydraulic transmission system, the thrusters and the
equipped sensors, as shown in Fig. 2, in which the adminis-
tration center is accountable for path planning, mining
instruction decision and status monitoring while the motion
management center adopts PLC as the core to issue control
instructions to the hydraulic system.

‘Pioneer I’ is a dual-track vehicle, and is driven by control

transmission

module
Power Power
Deck power | |transmission transmission

supply system

Control
an -
feedback Hydraulic
transmission
system
Control TP
and OWET' power
feedback > Motor {supply
Data Power
Motion transmission | Sensing | supply
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Fig. 2. Overall structure of ‘Pioneer I'.
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system. The hydraulic system is composed of controller,
electro-hydraulic proportional valve, variable hydraulic
pump, hydraulic motor and integrated navigation, which is
shown in Fig. 3. The electro-hydraulic proportional valve
changes the hydraulic oil flow and direction, so as to adjust
the speed and steering of the motor, thus realizing forward,
backward and turning actions. The integrated navigation
module obtains the speed information as the feedback. From
this perspective, it makes sense to identify the system as a
transfer function to reflect its kinematic characteristics.

During the mining operation, however, the influence of
environment is not static, accordingly the kinematic perfor-
mance is time-varying: Due to the water hydraulic, the
mechanical structure, especially the rack, would deform.
The soil and obstacles would additionally affect the motion
of the crawler, and the friction is time-varying. The motion
command is also varying in different situations. The tension
of the umbilical rope connecting the vehicle are not steady
due to the uneven flow. The system time interval is not
fixed. The refresh frequency is high, and the dimension of
data matrix is high. The signal-to-noise ratio is high via
fiber-optic umbilical cable communication, but the colored
noise is not excluded. Therefore, the static mechanism mod-
eling cannot reflect the real time state, and the modeling
combined with experimental data can more truly reflect the
actual state.

How to design an appropriate trial scheme for modeling
has become the first point to be considered. Taking safety as
core concern in practical operation, the power constraints,
turning constraints, connection security of photoelectric
composite cable must be taken into account, and thus, the
ideal identification input conditions such as sweep frequency
technique are not feasible. The real curvature motion data
(position, velocity, angle, and the opening of the hydraulic
valves on both sides of the tracks) are used as the identification
statistic source to identify the model in recursive least
square method and instrumental variable method.

4 System identification and parameter self-tuning con-
troller
In this paper, the IV-RLS algorithm is used to model
‘Pioneer I’. Firstly, the sea trial records are sorted and pre-
processed, then data in different depth are used to establish
the identification model and to exam the accuracy and gen-
eralization ability. Finally, based on the system identification

Control Residual

model, the parameter self-tuning controller is designed and
the control performance is analyzed, which displays the
optimization impact of the simulation model.

4.1 Data preprocessing

In this sea trial, the intelligent walking test of ‘Pioneer I’
in different depth seabed was carried out, and the ‘SJ’ path
was walked out (see Fig. 4). Since the main concern is to
validate the maneuvering performance, the predetermined
path is variable, including forward, backward and tuning
motion in unknown environment, which requires precise
control on the vehicles. The walking path measured by
super-short baseline is as follows.

It takes up more than 10 minutes to finish this sea trial,
recording 1597 sets of real-time monitoring data. Owing to
long-distance signal transmission and communication char-
acteristics of components, the refresh time interval varies
from 0.1to 1s.

Firstly, the data is processed into equal time interval

data, and the minimum time interval is used as the sampling
time in system identification. Since the refresh frequency of
various sensors is much higher than communication fre-
quency, it applies to Shannon sampling theorem. For exam-
ple, the refresh frequency of inertial navigation system is 50
Hz, so there is a phenomenon of repeated sampling, and the
linear interpolation will not affect the accuracy of the model.
Eq. (19) is used for interpolation:
]i;_l:l u0+:1_];?0u1, (19)
where, u is the function of k, and the values at two points &,
and k&, are independent variables of u, and u,
respectively; u(k) is corresponding to k between the two
points.

u(k) =

4.2 Model establishment and verification

As for the identification, the input and output data in
pairs are processed to get the kinematic characteristics, and
then it follows the fitting accuracy analysis by comparing
the output distinction between simulation and the real data
under the same input.

The IV-RLS estimation algorithm introduced in the third
section is adopted, and the relevant calculation is done on
the MATLAB platform. Then the fitting accuracy is calcu-
lated in X-Y-6 (turning angle) three channels and the ‘SJ’
trajectory is compared. Meanwhile, assessment indicators

singal 4+

Flectro-hydraulic | 1OW Hydraulic

Controller

proportional valve

Motor-speed

motor

Integrated
navigation

Fig. 3. Control system of ‘Pioneer I’.
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Fig. 4.
depth.

Walking path ‘SJ” measured by super-short baseline at 1305 m

MMRE, VAF and R? are calculated for quantitative analysis.
Then another identification algorithm based on neural net-
work is adopted for algorithm comparison. Finally, another
sea trial data is substituted into the model to confirm its gen-
eralization ability.

4.2.1 Three-channel model and qualitative analysis

It should be noted that the parameter identification of
transfer function requires the information about the number
of zeros and poles in advance. Here is a comprehensive con-
sideration on system analysis to find the highest fitting
accuracy of the zero-pole model.

The three-channel transfer function based on IV-RLS is

X-Y trajectory in sea trial

20 1
15t
E 10 |
N st
ot |
— Output
5t J — Input | |
=5 5 15 25 35 45

X (m)

as follows:

Xo(s)  6313x10%s% +8.04x 10*s? +20295+136.5
Xi(s)  s*+3.156x 1003 +8.529 x 10*s? + 52745+ 141.1°

Yo(s) 0.0741s% +0.01666s +0.004398 )
Yi(s)  s3+0.362552 +0.048255 +0.004482°

Oo(s) 10485 +6.7555+37.86
0i(s) 3 +1060s2 +6.204s +38.09’
where X,, Y, and 6, are the output data and the others are
the input data in three channels respectively.
Then real data and simulation response curve are plotted
in Fig. 5 and Fig. 6 to verify the accuracy of the model.

(20)

4.2.2 Evaluation indicators and quantitative analysis

The average amplitude of relative error (MMRE), the
ratio of variance (VAF) and coefficient of determination (R2)
have been used to affirm the fitting accuracy. Among them,
MMRE represents the average value of regression error. The
closer the value is to zero, the higher the fitting accuracy is.
VAF is to measure the closeness between the actual data and
the regression data in the form of percentage. A closer value
to one indicates a higher fitting accuracy of the model. R?
depicts the correlation between independent variables and
dependent variables, which describes the change caused by
independent variables accounts for the percentage of the
total change. The value is between 0 and 1, and the closer it

X-Y simulation trajectory

20 — :

10}
G

>~ 5t

0. 4

I

5l — Input ||

55 15 25 35 45
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Fig. 5. Real trajectory and simulation trajectory.
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Fig. 6. X-Y-0 comparison between real and simulation trajectory at 246 m depth.
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is to 1, the higher the correlation will be.
N

Z P(i)—r()
: r(i)
MMRE(r) = ’ZIT; @D
VAF(r,7) = {1 - %} X 100%; (22)
N
DI -7
R—S quared(r) = 1-— = (23)

= .
DI -F)
i=1

It can be viewed from both diagrams above and numerical
results in Table 1 that the accuracy of system identification
model is satisfactory.

Table 1 Accuracy indicators in X, Y and 6 channel

MMRE VAF (%) R?
X channel 0.1831 99.42 0.9929
¥ channel 0.1850 95.61 0.9543
0 channel 0.5109 90.93 0.9092

For the fitting error, on the one hand, there are acquisition
noise, observation error and model error. On the other hand,
the characteristics of the control system should also be con-
sidered. The system response is divided into transient
response and steady-state response. For the steady-state
response, the steady-state error needs to be concerned.
However, for the transient error, more attention is paid to
the overshoot and response time. In other words, there are
slight differences in the instantaneous transient error, such
as different peak time and rise time.

4.2.3 Algorithm comparison

BP neural network (Error Back Propagation Neural Net-
work) is adopted to process the data and here is the distinct
performance. For the network setting, a two-layer feedfor-
ward network with sigmoid hidden neurons and linear output
neurons is adopted to fit the three-dimension mapping. The
network is trained with Levenberg-Marquardt backpropaga-
tion algorithm, and the number of hidden neurons is set to
three as the optimum result. The order of the system is the
same as that in Section 4.2.1.

Then real data and simulation response curve are plotted
in Fig. 7 to show the performance of the algorithm.

It exhibits passable accuracy on the trajectory in X-Y
dimension but series of peaks stand for imprecise high fre-
quency characteristics, which manifests excessive sensitivity
of noise.

For quantitative analysis, taking X channel as compari-
son, MMRE is 0.204, and VAF is 0.9954, R? is 0.995. Com-
bined with trajectory, it shows an overfitting model. How-
ever, the parameters really affect the model accuracy of BP

Simulation comparison

Y (m)

=l —NN output

10 . . . |~Realoutput

TS50 5 10 15 20 25 30 35 40 45
X (m)

Fig. 7. X-axis comparison between real and simulation trajectory at 1305
m depth.

neuron network, which ought to be a future work to explore.

4.2.4 Generalization ability analysis
Finally, another sea trial data is substituted into the
model to verify its generalization, as shown in Fig. 8.

45 . X'axisl molvem‘ent '
351 —Simulation|
30t
25t

Data
(3]
(=}

800 1200 1600 2000
Time (s)

0 400

Fig. 8. X-axis comparison between real and simulation trajectory at
1305 m depth.

Similarly, the X-axis data is analyzed, MMRE = 0.3186,
VAF =95.32%, R*> = 0.9519.

The model can also reflect the kinematic characteristics
even at different depths. From the statistical characteristics,
the results show accuracy and stronger generalization.

4.3 Parameter self-tuning controller

The next point is to improve the kinematic performance
based on the model. The kinematic performance is closely
related to servo control parameters. It generally takes an
amount of time to design and test the structure and parameters
of controller to obtain stable, accurate and fast response.
Combined with the simulation model of the system identifi-
cation, the frequency domain analysis method can complete
the parameter design, for which the toolbox MATLAB PID
Tuner provides a concise platform.

The input and output record data on X channel are ana-
lyzed in Fig. 9 (the other two channels are similar). It can be
seen that at about 320 s, there is a long response time and
overshoot in the original system, but steady-state error in
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X axis movement (depth:246 m)

0 100 200 300 400 500 600 700
Time (s)

Fig. 9. Input and output record data on X channel.

each step is close to 0. The simulation system in Fig. 10
shows the same performance. The optimal performance is
shown in Fig. 11.

Intuitively, it is obvious that the control performance in
Fig. 11 is greatly improved by parameter self-tuning con-
troller. The maximum response time of each step command
is less than 2 s, and the overshoot is almost zero. The oscil-
lation disappears, and the steady-state error is close to 0.

X axis movement (simulation)

— Input

70 100 200 300 400 500 600 700
Time (s)

Fig. 10. Input and output simulation data on X channel.

X axis movement (simulation after PID)

45

— Input
40— Output
35
30
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Fig. 11. Input and output data on X channel after self-tuning controller.

5 Conclusions

In this paper, a digital prototype with generalization
ability and practical applicability for deep-sea mining vehicles
has been built. Combined with the system design of ‘Pioneer
I’ and real sea trial data, a system identification algorithm

IV-RLS has been conceived to obtain the kinematic model
which fitting accurately into MMRE, VAF and R? respec-
tively. Data experiments under multiple conditions show
that the model has good generalization ability, which is suit-
able for mining vehicle operation in various water depths
and sea conditions.

Combined with time-frequency domain analysis, the
parameter self-tuning controller has been designed for the
model. Numerical experiments show that the control perfor-
mance has been essentially improved: shorter response time
and diminished tracking error, reflecting the great signifi-
cance of system identification for the design and test.

In future work, system identification can contribute to
the life cycle health management, realizing the full monitoring
of the system, shedding light to deep-sea operation.
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