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Abstract A new identity is proved that represents the k th order Bsplines as linear combinations of the ( k  + 
1 ) th order B-splines. A new method for degree-raising of Bspline curves is presented based on the identity. The new 
method can be used for all kinds of Bspline curves, that is, both uniform and arbitrarily nonuniform B-spline curves. 
When used for degree-raising of a segment of a uniform B-spline curve of degree k - 1, it can help obtain a segment of 
curve of degree k that is still a uniform Bspline curve without raising the multiplicity of any knot. The method for de- 
gree-raising of Bezier curves can be regarded as the special case of the new method presented. Moreover, the conven- 

tional theory for degree-raising, whose shortcoming has been found, is discussed. 
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Nonuniform B-splines as well as uniform B-splines are widely used in computer-aided design 

(CAD), geometric modeling and numerical analysis and so on. Degree-raising of B-splines plays a 

very important role in CAD and geometric modeling. It is frequently used to link curves of differ- 

ent degrees together to form either surfaces or a composite curve. For instance, it can be used to 

find a common representation of two spline curves in skinning surfaces with cross-section curves of 

different degrees, patching two different spline surfaces, or transferring data between two incom- 

patible CAD systems. Unlike Bkzier curves, whose degree-raising is very easy['], degree-raising 

of B-spline curves is difficult. All the algorithms for degree-raising of B-spline curves can be classi- 

fied as two different classes: direct and indirect methods of degree raising. 

In 1984, Prautzsch presented the first algorithm for degree-raising of ~ - s ~ l i n e s [ ~ I .  One year 

later Cohen et a1 . proposed another method for the degree-raising[3'41, which is based on a recur- 

sive scheme. In 1991, Prautzsch and Piper improved the algorithm of the former[51 using its so- 
phisticated organization. Piegl and Tiller used an approach for B-spline curves based on the de- 

gree-raising of BCzier curves in 199416]. Their algorithm consists of three steps: First, decompose 

the B-spline curve into piecewise Bkzier curves by inserting knots. Then, degree-raise the Bezier 

curves. Finally, remove unnecessary knots, and transform the Bkzier curves back to the B-spline 

one. Their method can be classified as an indirect one for degree-raising of B-splines, since Piegl 

and Tiller's method realized the degree-raising of B-spline curves by means of the degree elevation 

of Bezier curves. The other methods can be classified as a class of direct ones for degree-raising of 

B-spline curves. The indirect degree-raising algorithm for B-splines may be very efficient and 

competitive with direct algorithms for degree-raising of B-spline curves, but if rounding er- 

rorscould not be ignored, it would be difficult to transform back to the exact B-spline representa- 

tion from the degree elevated Bezier representation. Thus only an approximative B-spline curve 

would be obtained. 
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Note that, as shown in refs. [7]  and footnotes 1 and 2, the methods of Prautzsch, Cohen et 

a1 . (see refs. [2-5 ] ) will get incorrect results when used for degree-raising of the B-spline 

curves except endpoint-interpolating B-spline curves. 

This paper discusses problems in degree-raising of B-spline curves. A matrix identity of B- 

splines is proved in the paper. Based on this identity, a new algorithm for degree-raising of B- 

spline curves is presented. The new degree-raising method can still get a segment of the uniform 

B-spline curve of degree k instead of a nonuniform B-spline one when used for degree-raising of a 

segment of uniform B-spline curve of degree k - 1. It need insert fewer knots into uniform B- 

spline curves than the existing algorithms when used for degree-raising of cross-section curves for 

skinning surfacesrg1 or patching two different spline surfaces. 

1 B-spline basis functions 

The normalized local support B-spline basis functions of degree k - 1 are defined by the fol- 

lowing deBoor-Cox recursive formula[g. lo' 

with the convention that 0/0 = 0, where t, are the knots, t j < t j  + 1. 

It is clear that B-spline basis functions can be represented as linear combinations of the B- 

splines of a lower degree. In practice, there is the reverse side of the coin; that is, B-spline basis 

functions can be represented as linear combinations of the B-splines of a higher degree. 

Proof. Eq. (2)  can be proved using the idea of multivariate polyhedral B-spline 

recurrence relati~ns"~], or a divided difference identity[13]. Q.E.D. 

Theorem 1. There is the following identity for B-spline functions of degree k : 

1) Qin, K . ,  Two new algorithms for solutions to the problem in "Degree elevation of Bspline curves", to appear in Jounurl 

of Tsinghua University. 

2) Qin, K . ,  A note on the recursive degree raising algorithm for Bspline curves, to appear in Journal of Tsinghua Universi- 

t y .  
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Proof. According to the definition of the k th divided differences, one can get 

Thus 

Using the relation between the normalized local support Bspline basis functions of degree ( k  - 1) 
and the divided differences, one can obtain eq. ( 3 )  from equation ( 4 ) .  Q. E. D.  

Notice that T in eq. ( 3 )  can be equal to any value among t j  + 1 and t j  + k , that is, T E [ tj + 1, 

t ,+nI.  

Theorem 2. Nonuniform B-spline basis functions of degree ( k  - 1 )  can be represented as 

linear combinations of B-splines of degree k : 

where 

yS+,( i  - k + u - j )  
,=o 1 - Y S + j ( i  - k + u - j ) '  

u > v ;  
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Proof. Let T = t, + t, + 2 ,  ..., t j  + in eq. (3 ) ,  respectively. One can obtain the following 

equations from Theorem 1. 

I N j , k + l ( t  I tj, "', t j + k + l )  

N l , k t l ( t  1 t j ,  ..', t j + k + l )  
where Ai, k+l{ t ) = 

Using the local support property of B-splines, when t E [ t i ,  ti + 1, one can get the following 

identities : 

From Lemma 1 

and the non-negative property of B-splines, one can obtain 
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Thus, eq. (7 )  can be expanded to 

where M is a [ k ( k  + I ) ]  x [ k ( k  + I ) ]  matrix, and 
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The inverse matrix of M  can easily be obtained as 

where Mi, ( i ,  j = 0,1, . . a ,  k ) are block matrices: 

Substituting eq. ( 8 )  multiplied by M - l  into eq. (2 ) ,  one can get equation (5) 
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2 Degree-raising of B-spline curves 

Theorem 2 can be used for degree-raising of B-spline curves. Using identity (5), one can get 
a formula and an algorithm for degree-raising of B-spline curves easily. 

Let a piecewise B-spline curve of degree k - 1 be defined as follows: 

c - k t 1  ( t )  = [ v I T i V ( t ) ,  i = k - 1, k,.. . ,  n - k + 1, (9) 

where v' = [Vi-k+i, Vz-k+2,"', v t I T ,  w ( t )  = [Bi-k+l,k(t),  Bi-k+~,k( t ) ,  " ' , ~ i , k ( t ) l ~ ,  

VJ ( j  = 0,1,  - . a ,  n ) are the control vertices. The knot vector is U = { tj 1 $ + k .  

Substituting eq. (5)  into eq. (9)  yields 

~ - k + l  ( t )  = [ @ I T N ( t ) ,  

Itisveryeasy t o c a l ~ u l a t e a , , ~ ( i )  ( u = O , l , - . . , k - 1 ;  v=O, l , . . . ,  k )  byeq. (6) .  [ e ' IT i s the  

vector of the control vertices, which form the so-called control polygon, obtained by degree-rais- 

ing. The new control polygon for a segment of a B-spline curve has one more control vertex than 

the old control polygon of the curve segment. 

Equation (10) can be used for degree-raising of a segment of B-spline curves regardless of a 

segment of nonuniform or uniform curve. A new algorithm based on Theorem 2 and eq. (10) have 
been presented and used for degree-raising for all of nonuniform B-spline curves, which include u- 

niform, endpoint-interpolating and other nonuniform B-spline curves[71. 

3 Examples 

Example 1 .  Degree-raising of a B-spline curve of order 2 defined by control vertices Vo, 

V1, whose knot vector is defined by U = 10,0,1,11 . 

Using eq. (101, one can easily get the control vertices of the curve of order 3 as follows: 

'V 

The refined knot vector is defined by U = {0 ,0 ,0 ,1 ,1 ,1}  . This result is the same as that derived 

by the degree-raising of Bezier curves[". 
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- 
Example 2. Degree-raising of a uniform B- 

spline curve of order 4 (or  degree 3 ) defined by 

control vertices Vo, V1, Vz and V3. The knot 

vector is defined by U =  { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 / .  
vo v3 

Let the refined knot vector be 

According to eq. ( l o ) ,  one can obtain a curve of 
Fig. 1 .  Degree-raised polygon with original polygon 

and curve of order 4 .  order 5, which is still a uniform B-spline curve as 

shown in figure 1. 

4 Problem discussion 

The conventional theory for degree-raising of B-spline  curve^[^-^' is well known in computer 

graphics and CAD. It include~[~-~I : 

(i) If a B-spline curve needs degree-raising from degree k - 1 to k ,  the multiplicities of all 

the knots must be elevated by one to form ,new refined knots for degree-raising. 

(ii) The degree-raised control polygons will converge to the curve as the degree of the B- 

splines increasesL3' l4 I . 

Unfortunately, we can find many counter examples like Example 2. 

In general, if an algorithm works well for nonuniform B-splines, everybody may think that it 
must work well for uniform B-splines, too. But, when the conventional algorithms are used for 

degree-raising of uniform B-spline curves, they will fail to work although they work well for de- 
gree-raising of the nonuniform B-spline  curve^[^-^] . Why? What is wrong? Let us start discussing 

this problem from the conventional rationale of the degree-raising of B-splines. 

A B-spline curve of degree k - 1 is a piecewise polynomial curve defined as 

where V, are the control vertices, and Bj,  k ( t ) are the B-spline basis functions defined over a knot 
vector. 

Assume that knot vector U has the following form: 

where mj = m + 1 , and m l ,  m2, . . a ,  and m ,  denote the multiplicities of the knots. Accord- , = 1 

ing to the conventional theory of the degree-raising of ~ - s ~ l i n e s [ ~ - ~ ] ,  the new knot vector for de- 
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gree-raising must take the following form (see eq. (2 .4)  on p. 172 of ref. [4]  ) 

where m = m + s. 

In practice, there are other alternative knot vectors for degree-raising unless the B-splines of 
degree (k - 1)  are defined over a kind of the knot vector 

such that the higher the degree of the B-splines is raised, the more the construction of the curve 
resembles that of Bezier curves. Clearly, if ml#k and m,#k in knot vector U ,  then knot vec- 

tor U is one of the different forms of knot vectors from knot vector V. The following example 

can be used to explain this problem clearly. 

Assume that a B-spline curve of degree 3, whose control vertices and knot vector are Vo, 

Vl, VZ, V3 and {1,2,3,4,5,6,7,81,  needsdegree-raisingfromdegree3 to4 .  

First, if the degree of the curve is raised by Prautzsch's algorithms[2-51 from degree 3 to 4, 

then according to the conventional theory of degree-raising of B-spline curves, the new knot vec- 

tor must be defined as 

1 1 , 1 , 2 , 2 , 3 , 3 , 4 , 4 , 5 , 5 , 6 , 6 , 7 , 7 , 8 , 8 / .  

Unfortunately, Boehm's algorithm[15' for inserting knots will fail to insert the knots 1,2,3,4,6,  

7 ,8  except the knot 5 .  Only the knot i E (4 ,5]  can be inserted into this curve by the algorithms 

for inserting new knots into B-spline curves. The Olso will also fail to insert the 

boundary knots into the curve. Thus, Prautzsch' s algorithms for degree-raising of B-spline curves 

cannot work unless the algorithms are improved. Neither can the recursive algorithm[3'41 for de- 
gree-raising of B-splines by Cohen et a l .  work without improving their algorithm for analogy rea- 

son. 

Second, from a point of view of linear spaces, B-spline basis functions B,, 5 ( t ) (4  = t4< t<  
t s = 5 ;  j=0 ,1 , . . . , 5 )  definedover a knot vector U'= { t o ,  t l ,  .-., t 9 / ,  which are linearly inde- 

pendent, can be used for a set of bases of the linear space. On the other hand, the following poly- 
nomials 

can also be used for a set of bases of the space. According to the following equations['71 
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where 

it is clear that one of the two sets of bases can be represented as linear combinations of the basis 

functions of another one. Notice that U' can be either the form of knot vector O or V, or other 

forms of knot vectors. In other words, the B-spline basis functions of a higher degree obtained by 

degree-raising can be those defined over different forms of knot vectors. 

Third, as the degree of the splines increases, the control polygons associated with the given 
curve of degree 3 are not sure to converge to the curve. The counter situation may occur; that is, 

the higher the degree of the splines, the farther away the control polygons are from the curve. 

Such a couple of examples can be found in sec. 3 of this paper. 

Finally, only a specific fraction of nonuniform B-splines are the splines defined over such a 

knot vector V. Thus, a method or theory for such a fraction of nonuniform B-spline curves can- 

not be used for all nonuniform B-spline curves and uniform B-spline curves without any limits to 

the method or theory. 

From the above discussions, a main conclusion can be obtained as 'follows. 

The conventional theory for degree-raising of B-splines is not always correct. It has to be re- 

vised. 

5 Conclusions 

In this paper, an efficient method, which makes a breakthrough at the conventional theory 

of degree-raising of B-spline curves, is presented for degree-raising of B-splines. It not only can 

raise the degree of any nonuniform B-spline curves, but also can get a segment of uniform B-spline 

curve of a higher degree after the degree of a given segment of uniform B-spline curve is raised. 

In generation of skinning surfaces, cross-section curves are usually composed of conics and 

sculptured curves, which can be represented by NURBS['*'. It is necessary that the degrees of 

some of the cross-section curves be raised so that all the curves with different degrees have the 

same degree. The new method presented for degree-raising for uniform and other nonuniform B- 

spline curves except the endpoint-interpolating curves has more advantages than the conventional 

methods for degree-raising. It needs fewer knots to be inserted into the original curve, and gener- 

ates fewer control vertices in the degree elevation process than the conventional algorithms, so 

that the computation of such surface modeling can significantly be reduced. For skinning surfaces 

with cross-section curves of uniform B-splines, the more the cross-section curves, the more the re- 

duction for computation of the degree-raised control polygons, because the new algorithm needs 

fewer knots inserted into the curve than the conventional algorithms. 
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