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We reconstruct the cosmological background evolution under the scenario of dynamical dark energy
through the Gaussian process approach, using the latest Dark Energy Spectroscopic Instrument (DESI) bar-
yon acoustic oscillations (BAO) combined with other observations. Our results reveal that the recon-
structed dark-energy equation-of-state (EoS) parameter wðzÞ exhibits the so-called quintom-B behavior,
crossing�1 fromphantom to quintessence regime as the universe expands.We investigate underwhat sit-
uation this type of evolution could be achieved from the perspectives of field theories andmodified gravity.
In particular, we reconstruct the corresponding actions for f ðRÞ; f ðTÞ, and f ðQÞ gravity, respectively. We
explicitly show that, certainmodified gravity can exhibit the quintomdynamics andfit the recent DESI data
efficiently, and for all cases the quadratic deviation from the KCDM scenario is mildly favored.
� 2024 Science China Press. Published by Elsevier B.V. and Science China Press. All rights are reserved,
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1. Introduction energy are known as scalar-field models, including quintessence
With the era of precision cosmology (such as the latest data
release of Dark Energy Spectroscopic Instrument (DESI) baryon
acoustic oscillations (BAO) [1]), our understanding on the evolu-
tion of the universe has greatly advanced. Astonishingly, the High
Redshift Supernova Team [2] and the Supernova Cosmology Project
[3] discovered that distant Type Ia supernovae (SN Ia) were accel-
erating away at an increasing pace, following which further evi-
dence from the Cosmic Microwave Background (CMB) [4], BAO
[5–7], and large-scale structure survey [8–10] confirmed the accel-
erating expansion as well. This led to the concept of dark energy,
responsible for such a phenomenon, but the underlying nature
remains mysterious. Facing to the aforementioned phenomenon,
there are growing interests in various cosmological models.
Despite of the simplest version of the cosmological constant K,
there are many other candidate scenarios, namely dynamical dark
energy models [11–14]. Some implementations of dynamical dark
[15,16], phantom [17], quintom [18], K-essence [19,20] and so
on. The feature shared by all these models is a time-evolving
equation-of-state (EoS) w. For quintessence, the value of w is
always larger than �1, while for phantom w < �1. Meanwhile, w
can cross �1, thereby enabling the description of a broader range
of cosmological evolution in quintom cosmology [21–24]. To be
specific, in the quintom-A scenario w is arranged to evolve from
above �1 at early times to below �1 at late times; while, in
quintom-B w changes from the phantom phase to the quintessence
phase as the universe expands. Note that, in general the realization
of quintom-B is challenging when compared to quintom-A [25,26].

It is worth mentioning that, some observations put hints on an
existence of the negative-valued effective energy density of dark
energy at high redshifts [27–34], which poses a challenge to the
scalar field theory of dark energy, as it violates the null energy con-
dition [26,35,36]. Theoretically, modified gravity [37] can be a
framework to provide an alternative explanation for the above
issue. Particularly, in modified gravity the additional terms relative
to general relativity can behave as a component with the dynami-
cal EoS, and thus can serve as an effective form of dynamical dark
energy. One can develop curvature-based extended gravitational
theories, such as f ðRÞ gravity [38–42]. Modified gravity theories
ing, and

https://doi.org/10.1016/j.scib.2024.07.029
mailto:yifucai@ustc.edu.cn
mailto:msaridak@noa.gr
https://doi.org/10.1016/j.scib.2024.07.029
http://www.sciencedirect.com/science/journal/20959273
http://www.elsevier.com/locate/scib


Y. Yang et al. Science Bulletin 69 (2024) 2698–2704
can also be constructed based on other geometric gravity equiva-
lent to general relativity. Starting from the torsion-based Telepar-
allel Equivalent of General Relativity, one can extend it to f ðTÞ
gravity [43–46]. The extensions of Symmetric Teleparallel Equiva-
lent of General Relativity based on non-metricity leads to f ðQÞ
gravity [47,48]. These theories have been widely studied in cosmo-
logical frameworks [49–52].

Confronted with the landscape of theoretical upsurge such as
the physical meaning of dark energy, and the gravitational descrip-
tions underpinning the geometry of the universe, there is an urgent
need for observational guidance to steer the course of theoretical
development. BAO data act as a powerful tool for probing cosmic
distances, and play a pivotal role in the study of dark energy prop-
erties. Previous works had found implications of dynamical dark
energy: 3:5r evidence by Bayesian Method with the data from
SDSS DR7, BOSS and WiggleZ [53–56]. Recently, the release of DESI
provided measurements of the transverse comoving distance and
Hubble rate, showing a possible tension with respect to the KCDM
scenario at the level of 3.9r [1]. Combining the DESI data with CMB
and Supernova, provides indications of a deviation from a cosmo-
logical constant in favor of dynamical dark energy in Ref. [57].
Thus, confrontation with DESI data has attracted the interest of
the community, suggesting interacting dark energy [58], quintes-
sence scalar fields [59,60], dark radiation [61], and other scenarios
beyond KCDM paradigm [62–68].

In this work, we take full advantage of the most recent DESI
data to reconstruct the dynamic evolution of our universe via the
model-independent Gaussian process. We explain the quintom
behavior of wðzÞ within the framework of modifications of gravity,
including f ðRÞ; f ðTÞ, and f ðQÞ theories, then reconstruct the corre-
sponding involved unknown function.
Fig. 1. (Color online) The reconstructed HðzÞ arising from DESI and P-BAO data
through Gaussian process, without imposing the value of H0 . The black curve
denotes the mean value, while the light blue shaded zones indicate the allowed
regions at 1r confidence level for DESI + P-BAO. The dashed line corresponds to the
KCDM scenario with the best fit value H0 ¼ 68:52� 0:62 km s�1 Mpc�1 of Ref. [1],
while the mean value of the reconstructed HðzÞ from DESI only or P-BAO only are
additionally presented with the brown and pink curves respectively.
2. Dynamical evolution and quintom cosmology

BAO measurements are conducted across various redshift inter-
vals, thereby enabling the imposition of constraints upon the cos-
mological parameters that regulate the distance-redshift
relationship. The DESI BAO data include tracers luminous red
galaxy (LRG), emission line galaxies (ELG) and the Lyman-a forest
(Lya QSO) in a redshift range 0:1 6 z 6 4:2 [69,70]. The preliminary
data include quantities of DMðzÞ=rd;DHðzÞ=rd and DVðzÞ=rd within 7
distinct redshift bins. Here rd is the drag-epoch sound horizon and
the transverse comoving distance DMðzÞ ¼ rd=Dh, equivalent dis-
tance DHðzÞ ¼ c=HðzÞ and angle-average distance DVðzÞ ¼
ðzD2

MðzÞDHðzÞÞ1=3. For later reconstruction we use the 5 DHðzÞ=rd
data and assume no derivation from KCDM at high redshift, thus
imposing rd ¼ 147:09� 0:26 Mpc [4] obtained from CMB to
directly calibrating the BAO standard ruler.

To investigate the impact of the DESI data on the dark-energy
EoS parameter, we consider three scenarios: in the first case, we
exclusively utilize the distance data from DESI to reconstruct the
evolution of the Hubble parameter with redshift. As a control sam-
ple, the second group consists solely of data from SDSS and Wig-
gleZ, which serves to verify whether the results from DESI indeed
provide stronger evidence for models featuring dynamical dark
energy. For the third scenario, we combine the DESI data with com-
plementary datasets [6,71–73] from SDSS and WiggleZ. All the
samples we used including five DESI data and previous BAO (P-
BAO) data are listed in the Supplementary materials Section A.
The covariance matrix of all the data points are assumed to be
diagonal. To validate this assumption, we combine independent
datasets: WiggleZ [74], BOSS DR12 [5], and eBOSS DR16 [75–80].
The reconstruction result of w exhibits comparable behavior, dif-
fering by approximately 15% from subsequent results, which indi-
cates that this assumption is sufficiently robust.
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In order to reconstruct the history of cosmic dynamics evolution
from the BAO data, we perform a model-independent reconstruc-
tion of the Hubble parameter by using the Gaussian process. The
Gaussian process is a stochastic procedure to acquire a Gaussian
distribution over functions from observational data [81], which
has been widely used for the function reconstruction in cosmology
[82–92]. The distribution of the function at different redshifts is
related by the covariance function with hyperparameters. We
reconstruct the evolution function of HðzÞ and its derivative
through Gaussian Process in Python (GAPP) based on the exponen-

tial covariance function k x; x0ð Þ ¼ r2
f e

� x�x0ð Þ2=ð2l2Þ, where the rf and l
are the hyperparameters [93].

By applying the GAPP steps, we obtain the reconstructed HðzÞ
function which is depicted in Fig. 1. The black curve denotes the
mean value of the reconstruction by using DESI and P-BAO data,
while the light blue shaded zones indicate the allowed regions at
1r confidence level. Furthermore, thKCDM scenario with the best
fit valuee KCDM model has been depicted with the dash line,
imposing the best fit H0 ¼ 68:52� 0:62 km s�1Mpc�1 in Ref. [1].
One can read that, at low redshift it can fit the reconstruction result
by DESI and P-BAO data well, but at high redshift the differences
are statistically significant, as the KCDM results are higher than
those derived from reconstruction. Meanwhile, the mean values
of the reconstructed HðzÞ by DESI or P-BAO only are also shown
in the figure. We find that the value HDESI

0 ¼ 94:22� 13:81 km

s�1Mpc�1 which results from only DESI is too high to fit CMB or
SNIa observations. This suggests that due to the limited number
of BAO data points from DESI, there is an absence of information
for low redshift bins. Moreover, we also acquire the H0 values from
the reconstruction processes for other two cases, which are
HP�BAO

0 ¼ 63:08� 2:94 km s�1Mpc�1;HDESIþP�BAO
0 ¼ 64:64� 2:52

km s�1Mpc�1, respectively.
Surprisingly, we notice that the DESI data point around z ¼ 0:51

is much higher than the range of 1r allowed by the reconstruction
result. Actually, the DESI data near z ¼ 0:51 are 2:44r away from
the P-BAO only result and 2:42r away from DESI + P-BAO. This
unexpected phenomenon is also mentioned in Refs. [58,64], and
if it indeed arises from systematics, a possible explanation would
be statistical fluctuations. Thus, in the future we may need more
observational data at z ¼ 0:51 to extract more precise results.



Table 1
The a; b; c and d dimensionless parameter values for best fitting, according to
parametrization (2).

Data P-BAO DESI + P-BAO

a �0:73 �0:78
b 0.13 0.10
c 0.10 0.23
d �0:03 �0:11
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We then use the HðzÞ function presented above to reconstruct
the dark-energy EoS. Following the Friedmann equations, one can
easily define the dark-energy EoS as

w ¼ �2 _H � 3H2 � pm

3H2 � qm

; ð1Þ

where c � 8pG � 1 is adopted. qm and pm are the energy density
and pressure of the matter sector (baryonic plus cold dark matter),
assuming it to be a perfect fluid. One can easily find

qm ¼ 3H3
0Xm0ð1þ zÞ3 by the continuity equation of matter

_qm þ 3Hðqm þ pmÞ ¼ 0, where Xm0 ¼ 0:3153� 0:0073 is the present
value of the matter density parameter measured by Planck [4].

The reconstructedwðzÞ for different data set is shown in Fig. 2. It
is worth emphasizing that our reconstruction method, namely the
Gaussian process, is model-independent, which implies that we do
not need to parameterize the evolution of w as priors. Hence, we
can obtain the evolution characteristics and behavior of w in a
model-independent way. The mean values of wðzÞ given by the
three sets of data, all tend towards dynamical evolution. The
results show thatw has a tendency to cross zero for DESI data only,
resulting from the divergence when the effective dark energy den-
sity crosses zero. For the result from P-BAO or the combined data,
w exhibits a quintom-B behavior, which implies that it can cross
�1 from the phantom phase to the quintessence phase. Further,
we calculate the confidence of the quintom-B dynamics using the
Monte Carlo simulation and obtain results of 0:93r and 0:78r for
P-BAO only and DESI + P-BAO, which shall be better constrained
by combining CMB and SN Ia data. The crossing redshift, in which
w crosses�1, is found to be 1:80;2:18 for P-BAO only and DESI + P-
BAO respectively, which indicate that the presence of DESI data can
increase the value of w at high redshifts since the value of H at
z ¼ 2:33 from DESI is also larger than other data at the same red-
shift. It is worth noting that a similar quintom-B behavior of dark
energy has also been found in previous articles [57]. However,
the difference is that here we use BAO data to reconstruct w in a
model-independent way, while in that work they used SN Ia data
to perform the Monte Carlo Markov Chain method by assuming
the evolution of w. Additionally, we find a different value for the
crossing z. Meanwhile the results also show that KCDM scenario
is beyond the 1r allowed regions at low redshifts for both P-BAO
only and DESI + P-BAO.

Additionally, with the green curve in Fig. 2 we depict the best-
fit result of w0-wa parametrization, namely w ¼ w0 þwað1� aÞ
where w0;wa are free parameters. It is evident that while the best
fit of w0-wa parametrization still falls within the reconstructed 1 r
region, it deviates from the mean value, indicating that a simple
parametrization of dark energy evolution using traditional w0-wa

may not be sufficient. Therefore, higher order terms beyond linear
Fig. 2. (Color online) The reconstructed dark-energy EoS parameter wðzÞ for different da
indicate the allowed regions at 1r confidence level. Additionally, we depict
a ¼ �0:73; b ¼ 0:13; c ¼ �0:10; d ¼ �0:03) and for DESI + P-BAO data (where a ¼ �
corresponding to w0-wa parametrization by green curves. Finally, the red curve corresp
phantom divide is crossed.
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order need to be introduced. To fit the model-independent recon-
struction result of w, we use the parametrization, namely

wðzÞ ¼ aþ bzþ cz2 þ dz3; ð2Þ
where a; b; c;d are dimensionless parameters. The parameter values
are presented in Table 1, while the best fit curves are also shown in
Fig. 2.

It is worth emphasizing that according to the ‘‘No-Go” theorem,
the EoS parameters of a single scalar field is forbidden to cross �1
[26,94,95]. Therefore, this reconstruction results pose a significant
challenge to the single scalar field dark energy model. The quintom
model can be realized through various theories such as two scalar
fields [96,97], spinor fields [98], string theory [99], DHOST
[100,101] and Horndeski [102], more details are available in Ref.
[26]. Due to the ‘‘No-Go” theorem, the explicit construction of
the quintom scenario is more complex than that of other dynami-
cal dark energy models. The realization of the quintom scenario
requires a non-zero derivative of w near the crossing point. Also
both the background and perturbations of scalar field must be
stable and cross the boundary smoothly.

Meanwhile, the quintom model is widely used in the early uni-
verse. In a bouncing universe scenario, the universe initially con-
tracts to a non-vanishing minimal radius before entering a
subsequent phase of expansion. Following the bounce, as the uni-
verse transits into the hot Big Bang era, the EoS must shift from
w < �1 to w > �1. This transition is characteristic of a quintom
scenario [103,104]. The quintom dynamics can also be utilized to
realize cyclic cosmology [105] and emergent universe [106–108],
potentially providing a solution to the singularity problem in the
Big Bang cosmology.

One typical way to obtain a realization of the quintom-like phe-
nomenon is within two scalar fields theory, if we combine one
quintessence scalar field / and one phantom scalar field r. In such
a case, the EoS parameter of quintom dark energy wq can be writ-
ten as

wq ¼ p/ þ pr
q/ þ qr

¼
1
2
_/2 � V/ð/Þ � 1

2
_r2 � VrðrÞ

1
2
_/2 þ V/ð/Þ � 1

2
_r2 þ VrðrÞ

; ð3Þ
tasets. The black curve denotes the mean value, while the light blue shaded zones
the best fit function wðzÞ ¼ aþ bzþ cz2 þ dz3 ,for P-BAO only data (where

0:78; b ¼ �0:10; c ¼ 0:23;d ¼ �0:11). Furthermore, we depict the best-fit curves
onds to the KCDM scenario in which w ¼ �1. zcross marks the point in which the
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where V/ð/Þ;VrðrÞ are the potentials for each scalar field respec-
tively. However, the appropriate potentials and initial conditions
to realize the quintom behavior are quiet difficult to be chosen.
Nevertheless, since phantom scalar fields may exhibit problems at
the quantum level [109,110], it would be more natural and simpler
to explain the quintom behavior within modified gravity
framework.

3. Gravitational reconstruction

For the gravitational reconstruction, we consider metric-affine
gravity [111], describing gravity with a metric and a general affine
connection. Such a general formulation can reduce to f ðRÞ; f ðTÞ, and
f ðQÞ gravity under certain conditions, based only on curvature, tor-
sion or non-metricity respectively. These three metric-affine mod-
ified gravity theories constitute the geometric trinity of gravity.
The action for curvature f ðRÞ gravity, torsional f ðTÞ gravity and
non-metric f ðQÞ gravity can be uniformly expressed as [40,43,47]

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p 1
2
f ðXÞ þ Lm

� �
; ð4Þ

where X represents R; T or Q, with R; T;Q the Ricci scalar, torsion
scalar and non-metricity scalar, Lm represents the matter Lagran-
gian density respectively. To apply these modified gravity theories
in a cosmological framework, we consider the isotropic and homo-
geneous flat Friedmann-Robertson-Walker (FRW) metric

ds2 ¼ dt2 � aðtÞ2ðdr2 þ r2dh2 þ r2 sin2 hd/2Þ, with aðtÞ the scale fac-
tor. The modified Friedmann equations can be expressed effectively
as

3H2 ¼ qm þ qde;

�2 _H � 3H2 ¼ pm þ pde;
ð5Þ

where qm and pm denote the energy density and pressure of matter,
and the effective energy density qde and pressure pde are in terms of
the gravitational modifications.

In f ðRÞ gravity, we have
Fig. 3. (Color online) The reconstructed FðXÞ for different datasets, with FðXÞ ¼ f ðXÞ � X,
the mean value, while the light blue shaded zones indicate the allowed regions at 1r confi
show the result of FðTÞ or FðQÞ gravity (since they coincide at the background level for
FðXÞ=X0 ¼ Aþ BX=X0 þ CX2=X2

0 , to fit the reconstruction result, with the parameter values
the red line depicts the KCDM scenario, with KP�BAO ¼ 0:7� 3H2 P�BAO

0 and KDESIþP�BAO ¼
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qde;R ¼ 1
f R

1
2
ðf � RfRÞ � 3H _Rf RR

� �
;

pde;R ¼ 1
f R

ð2H _Rf RR þ €Rf RRÞ

þ 1
f R

_R2f RRR �
1
2
ðf � RfRÞ

� �
;

ð6Þ

where R ¼ �12H2 � 6 _H and f R ¼ df=dR; f RR ¼ d2f=dR2, and accord-
ingly the effective dark-energy EoS is w � pde;R=qde;R.

Similarly, in f ðTÞ gravity, we have the torsional energy density
and pressure as

qde;T ¼ �1
2
F þ TFT ;

pde;T ¼ F � TFT þ 2T2FTT

2þ 2FT þ 4TFTT
;

ð7Þ

where we have introduced f ðTÞ ¼ T þ FðTÞ for convenience, and
with T ¼ �6H2, and thus the effective dark-energy EoS parameter
is w � pde;T=qde;T. For f ðQÞ gravity within coincident gauge, in the

FRW metric at the background level, where Q ¼ �6H2, the corre-
sponding expressions can be obtained from the one of f ðTÞ gravity,
with the replacement T ! Q .

Since we have reconstructed the evolution of the dark-energy
EoS parameter from the data, and we have expressed it in terms
of the modified gravity involved function, based on HðzÞ and its
derivative we can straightforwardly obtain the reconstruction of
these functions too in a nearly model-independent way. The details
are provided in the Supplementary materials Section B. Then, from
the Supplementary materials Section B we can reconstruct the evo-
lution of f ðzÞ with HðzÞ and H0ðzÞ in f ðXÞ cosmology. Afterwards,
based on the relationship between X and HðzÞ, we can obtain f as
the reconstructed function of X. The relation between f ðXÞ and X,
using the reconstructed HðzÞ results for P-BAO only and DESI +
P-BAO from Fig. 1, are presented in Fig. 3. We mention that we
do not use the DESI only result to obtain the reconstruction, since
the HðzÞ at low redshift does not behave very efficient. And we find
where X represents R; T or Q, and with X0 the current value. The black curve denotes
dence level. The upper panels show the result of FðRÞ gravity, while the lower panels
FRW geometry within the coincident gauge). We use the parametrization (8), i.e.,
shown in Table 2 for P-BAO only and DESI + BAO data set, respectively. Additionally,
0:7� 3H2 DESIþP�BAO

0 .



Table 2
The best-fit parameter values for the modified gravity parametrization (8), namely for f ðRÞ; f ðTÞ; f ðQÞ gravity with quadratic corrections.

Model f ðRÞ f ðTÞ or f ðQÞ
Data P-BAO DESI + P-BAO P-BAO DESI + P-BAO

A �0:601 �0:531 0.808 0.791
B 0.0342 0.00782 �0:0848 �0:0833
C 0.00391 0.00554 0.00261 0.000916
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the reconstruction results indicate f ðXÞ beyond the standard
KCDM. We know that as the universe evolves, the absolute value
of R; T or Q gradually decreases, which implies that in the late-
time universe we can always perform a polynomial expansion of
the gravitational actions f ðXÞ, re-expressing them as a sum of dif-
ferent series. However, such a description in the late-time universe
is only an effective description of the original action [112]. In order
to fit the reconstructed results of f ðXÞ, we use the function form

FðXÞ=X0 ¼ Aþ BX=X0 þ CX2=X2
0; ð8Þ

where FðXÞ ¼ f ðXÞ � X characterizes the derivation from general
relativity, and A; B;C are dimensionless parameters with X0 repre-
sents the value of X at current time. Finally, in Table 2 we provide
the parameter values for different metric-affine theories and differ-
ent datasets. As we can see, in all cases, the quadratic deviation
from KCDM scenario is mildly favoured by the data.

4. Conclusion

The latest cosmological data released by DESI collaboration pro-
vide new insights for the exploration of the universe. In this work,
we use the Hubble parameter data provided by DESI BAO and pre-
vious BAO observations to reconstruct the cosmological evolution
of dynamical dark energy using Gaussian process, which indicates
a quintom-B dynamics for dark energy. Then we realize this sce-
nario within modified gravity theories and reconstruct the corre-
sponding action functions under the f ðRÞ; f ðTÞ, and f ðQÞ
frameworks.

As a first step we reconstruct the Hubble parameter HðzÞ and
the EoS parameter wðzÞ for dynamical dark energy. We find that
due to the lack of low-redshift information, the five BAO data
points from DESI alone are insufficient to provide a complete pic-
ture of cosmic evolution. Additionally, the value of DESI data at
z ¼ 0:51 is beyond the 1r allowed regions of the reconstructed
HðzÞ function. In particular, it is 2:44r and 2:42r away from the
P-BAO only and DESI + P-BAO result, respectively. Interestingly,
both P-BAO only and DESI + P-BAO datasets indicate that w exhi-
bits a quintom-B behavior, crossing �1 from phantom to quintes-
sence regime. The inclusion of data from DESI shifts the crossing
point of w towards a higher redshift, namely from 1:80 to 2:18.
The best fit function of the reconstructed w is also given. In order
to explain such a quintom-B behavior, we choose the metric-
affine modified gravity theory. Particularly, we derive the iterative
relationship of the function f with respect to z. Subsequently, the
corresponding functions f ðRÞ; f ðTÞ, and f ðQÞ can be obtained using
the reconstruction results of HðzÞ and its high-order derivatives.
Furthermore, we provide the best fit functions, and in all cases
the quadratic deviation from KCDM diagram is mildly favored.
We conclude that these modified gravity theories can yield the
dynamical dark energy scenarios inclined by BAO.

It has been 20 years since the conception of quintom dark
energy was first proposed [18]. This nontrivial phenomenon indi-
cate the potentially dynamical nature of the late-time cosmic
acceleration which renew the understanding about our universe.
Now the recent DESI data release seems to hint on the quintom-
B behavior and challenge the KCDM paradigm. While accumulated
observational data are expected to bolster the corresponding con-
2702
fidence level, this magnificent phenomenon already pave the way
for observational tests of the quintom-B theoretical framework.
Modified gravity or other possible theories as alternative mecha-
nisms hold promise for being tested as well. Although current
research is still far from conclusively deciding the nature of gravi-
tational theory, our work fosters a bridge for future precise cosmo-
logical observations and theoretical mechanisms.
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