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Since the introduction of Hooke’s Law, the development
of material constitutive laws has progressed rapidly over the
past century. However, their establishment remains reliant on
phenomenological models that often inadequately describe
material responses [1]. Symbolic learning, characterized by
its high interpretability and flexibility driven by data, offers
a novel approach to discovering these laws, significantly im-
pacting key challenges such as capturing complex nonlinear
material relationships and accelerating the discovery of con-
stitutive laws.

The methods for discovering material constitutive laws
using symbolic learning can be categorized into sparse re-
gression, genetic programming, symbolic neural networks,
Monte Carlo tree search (MCTS), and other hybrid ap-
proaches [2]. Sparse regression focuses on identifying con-
stitutive law expressions from a pre-constructed library. Ge-
netic programming combines and updates common analyt-
ical functions to fit given datasets. As universal function
approximators, neural networks impose constraints of con-
stitutive models via weak-form methods, suitable for large
datasets. Additionally, combining these methods provides
more flexible options for uncovering constitutive laws.

Figure 1 illustrates the process of discovering solid con-
stitutive laws using symbolic learning methods and its pri-
mary approaches. Among these methods, Bomarito et al. [3]
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proposed a symbolic regression framework based on ge-
netic programming for plasticity models, utilizing auto-
matic multi-scale computational homogenization techniques
to identify plastic yield potential from representative volume
element (RVE) response data. For hyperelastic material mod-
els, Abdusalamov et al. [4] developed an automatic genera-
tion method for constitutive laws based on strain energy func-
tion. This method mitigates the high computational costs
associated with RVE-based homogenization and can be ex-
tended to include additional mechanical parameters like tem-
perature. Subsequently, the EUCLID method developed by
Flaschel et al. [5] expanded the types of materials consti-
tutive laws that symbolic learning can handle, encompass-
ing elasticity, viscosity, plasticity, and arbitrary combinations
thereof. The EUCLID method requires only the full-field
displacement (or strain) data under various loading condi-
tions and the net reaction forces at the boundaries as in-
put, using sparse regression algorithms like LASSO to select
simple subsets from a large candidate feature library estab-
lished based on the theory of generalized standard materials
to characterize Helmholtz free energy and dissipation poten-
tial, from which constitutive relationships and internal vari-
able evolution can be derived.

With advancements in computational power, Fuchs et
al. [6] combined traditional MCTS with deep reinforce-
ment learning to enhance the exploration capability of high-
dimensional parameter spaces while reducing the search
space. For symbolic neural networks, KAN 2.0 method es-
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Figure 1

(Color online) Illustration of the methodology for discovering solid constitutive laws through symbolic learning techniques. Experimental data

{x,y} is input into these methods, including symbolic neural networks, genetic programming, sparse regression, Monte Carlo tree search (MCTS) and hybrid
approaches. These methods utilize basic arithmetic operations (addition, subtraction, multiplication, division) and functions such as sine, exponential, natural
logarithm, square, inverse, and absolute value to predict variables like strain &, stress o-, temperature 7', and strain rate &. The goal is to derive concise expres-
sions for constitutive equations. Constraints such as unit consistency and conservation laws are applied throughout this prediction process to ensure physical

validity.

tablished by Liu et al. [7] posits that any multivariate con-
tinuous function can be decomposed into combinations of
univariate functions through addition operations. This ap-
proach allows for more flexible and direct incorporation of
prior knowledge. However, it also faces challenges when
dealing with noisy or sparse datasets due to its high depen-
dence on empirical pruning strategies. In contrast, the Sym-
bolic Physics Learner method proposed by Sun et al. [2] uti-
lized physical prior knowledge to guide the search process by
combining MCTS with context-free grammar. This approach
reduces the need for manual tuning of specific pruning strate-
gies and threshold parameters thereby enhancing the adapt-
ability to noisy or sparse datasets.

Despite promising results achieved in certain scenarios,
three main challenges persist: (1) ensuring discovered laws
conform to physical principles; (2) minimizing human inter-
vention; and (3) reducing the training difficulty while main-
taining prediction accuracy. In the design of algorithms,
it is crucial to incorporate hard constraints that ensure the
predicted constitutive laws adhere to physical requirements.
Early consideration of physical principles in the development
of these algorithms is equally important. While human ex-
pertise can simplify the complexity of algorithm training and
inference, it often limits the expressive power of the algo-
rithms, affecting their ability to generalize to more complex
and unknown material characteristics. Moreover, due to the

inherent high computational cost of symbolic learning, exist-
ing methods still face significant training costs for complex
expressions.

Developing efficient symbolic learning algorithms for ma-
terial constitutive laws has become a key research area in
establishing material constitutive models. However, cur-
rent methods are predominantly data-driven. Future research
should face the challenge of integrating physical principles
such as dimensional constraints, symmetry, and conservation
laws, reducing human involvement, and enhancing training
efficiency, thereby advancing the application and develop-
ment of symbolic learning in material science.
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