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ABSTRACT

Sterically spacing and locating functional matters at the nanoscale exert critical effects on their applica-
tion, especially for the fluorescence probes whose aggregation causes emission quenching. Here we
achieved a hierarchical spacing strategy of DNA fluorescence probes for ion detection via locating them
separately on rod-like cellulose nanocrystals (CNCs) and further isolating CNCs by pre-grafting long
molecular chains. Controlling chemical structure of CNC and location degree could adjust the inter-
space of DNA probes (with a molecular length of ca. 3.6 nm) in a range of 3.5-6.5 nm with a gradient
about 0.2 nm. A length up to micrometer scale of the CNC nanorods was necessary to provide DNA probes
with well-separated grafting locations and enough freedom, which brought a vast linear detection range
from 10 nmol/L to 5 umol/L of Hg?" concentration. The abundant reactive sites on CNC allowed a grafting
pre-location of poly (tert-butyl acrylate) (PtBA) to promote the isolation of DNA probes. Controlled rad-
ical polymerization was employed to adjust the length of PtBA molecular chains, which increased the lin-
ear sensitivity coefficient of Hg?* detection by ca. 2.5 times. This hierarchical nanoscale spacing concept
based on chemical design can hopefully conduce to the development of biosensor and medical diagnosis.
A hierarchical spacing strategy was applied to separate DNA fluorescent probes on CNCs and detect ion
concentration linearly. The first-level spacing was to locate probes uniformly on CNCs, obtaining a wide
linear range; and the second-level spacing was to isolate CNCs with polymer, obtaining an increased lin-
ear coefficient.

© 2019 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

1. Introduction

rich-thymine (rich-T) sequence, which decreased the detection
limit to 20 nmol/L. Those fluorescent probes enjoy a lower cost

Regular spacing of nanomaterials or nanoscale-controlled spac-
ing of matters brings various functional benefits [1-4], whereas
their high specific areas usually cause an uncontrollable aggrega-
tion. In the detection technology based on fluorescence probes,
the detection sensitivity decreased sensitively as the probes aggre-
gate [5-8]. Especially for the DNA fluorescence probes, the long
and flexible chains of DNA molecules increase the difficulty in
spacing the probes.

For sterically spacing and locating the fluorescence probes on
DNA molecules, the DNA has been designed and assembled with
a two-dimensional (2D) or three-dimensional (3D) structure
[9-16]. Fan and his co-workers [12,16] have prepared an
Hg?*-responsive DNA tetrahedral with one edge containing the
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and higher portability for fast real-time detection, compared to
other method on Hg?* detection, such as inductively coupled
plasma mass spectrometry (ICP-MS), atomic absorption/emission
spectroscopy [17,18], anodic stripping voltammetry [19], and cap-
illary electrophoresis [20].

However, such 2D or 3D DNA structures required long base
sequence and leaded to a high cost and long preparing time. Graft-
ing the DNA fluorescence probes on templates is another way to
space the probes [21-26]. Ting and his co-workers [27] prepared
rich-thymine (rich T) DNA-derived bio-dots with a mercury (II)
(Hg?") detection linear range of 0-0.5 pmol/L, which used the dots
to space DNA and emit concurrently. Gold nanoparticles [28], silver
nanoclusters [29], carbon nanotube [26] mesoporous silica [30],
and metal-organic framework [31] were also used as templates
of DNA fluorescence sensor to detect Hg?* concentration. Unfortu-
nately, the templates just spaced the probes on a single template,
the aggregation of templates could still cause the contact of probes.

2095-9273/© 2019 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
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Scheme 1. Hierarchical spacing strategy to separate rich-T DNA fluorescence probes and increase Hg?* detection sensitivity. Uniformly separated grafting location sites were
set on CNC via TEMPO-mediated oxidation carboxylation, and DNA probes were primarily spaced via a degree-controllable chemical location on CNC. The primary spacing
could not avoid the contact between CNC nanoparticles, which cause non-Hg?*-induced FRET (red break cycle in the left down image). Pre-grafting polymers on CNC could
avoid the contact and further isolate the probes on different CNC nanoparticles (right down image), increasing the detection sensitivity.

To increase the sensitivity of DNA fluorescence probes on tem-
plates further, a hierarchical spacing strategy is still needed to con-
trol the steric space between the probes. Herein, we first separately
located the rich-T DNA fluorescence probes on rod-like cellulose
nanocrystals (CNCs) by using the long inter-distance of location
sites on CNCs, as shown in Scheme 1. The abundant grafting sites
also allowed us to pre-graft polymer chains to isolate the probes
secondary. We also studied the effects of the length and chemical
structure of CNC on spacing DNA fluorescence probes and their
sensitivity for detecting Hg?".

2. Materials and methods
2.1. Materials

The cotton was purchased from Hubei Chemical Fiber
Group Co., Ltd. (China). The sodium hypochlorite solution with
6wt%-14wt% active chlorite, 1-Ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride (EDC), trimethylamine, dimethyl for-
mamide (DMF), dichloromethane, 2-bromoisobutyryl bromide,
N,N,N',N',N"-pentamethyldiethylenetriamine (PMDETA), tert-butyl
acrylate (tBA), and N-hydroxysuccinimide (NHS) was purchased
from Sigma-Aldrich Inc. (St. Louis, MO). The 2,2,6,6-tetramethylpi
peridine-1-oxyl (TEMPO, 98%), 2-morpholinoethanesulfonic acid
monohydrate (MES), solution of 33wt% hydrogen chloride (HCI),
sodium hydroxide (NaOH), ethanol, acetic acid, tetrahydrofuran
(THF), and sodium bromide (NaBr) were purchased from Macklin
Chemical Inc. (Shanghai, China). The dialysis tubing (Float-A-
Lyzer MWCO 10000) and Mikrocross ultrafilters were purchased
from Spectrum Laboratories Inc. (Rancho Dominguez, CA). Hg?*
stock solution (0.1 mol/L) was prepared by dissolving Hg(NOs),
with 0.5wt% HNOs. The pH of the Hg?* stock solution was adjusted
to 6.0, to prevent the formation of HgO particles. Milli-Q water
(18.2 MQ/cm) was used for all experiments.

The 6-FAM and Cy3 dual-labelled DNAs were synthesized and
purified by Sangon Biotech Shanghai Co. Ltd. (Shanghai, China).
The sequence of the oligonucleotide-involved DNA was as fol-
lowed: 5-(6-FAM)-CTT GTT GTC CT (-amino C12) G TTG TTG TTC-
Cy3-3 (Mercury-specific oligonucleotide). A 0.1 mol/L sodium
phosphate buffer (pH 7.2) containing 0.1 mol/L NaCl was used as
the working buffer. The length of the DNA probe was calculated
according to the length of nucleobases [32].

2.2. CNC preparation and surface modification

The cCNC was prepared from pure cotton cellulose by sulfuric
acid hydrolysis [33]. Briefly, 25 g cotton was immersed intoa 1 L
2wt% NaOH solutions for 12 h with mechanical stirring, and
12.5 g obtained fibers were immersed in a 250 mL aqueous solu-
tion of 65wt% H,S0,4 at 45 °C for 60 min with mechanical stirring.
The obtained suspension was centrifuged and washed with dis-
tilled water until its pH > 6, and then dialyzed against deionized
water for five days. After that, the suspension was concentrated
and then dispersed into deionized water to obtain cCNC dispersion
by ultrasonic treatment for 15 min using a Branson sonifier
equipped with a microtip and power setting of 4.

The tCNC was obtained from tunicate cellulose as followed [34].
10 g tunicate powders pretreated with 200 mesh sieve were dis-
persed in a 300 mL aqueous solution of 5 wt% KOH with mechanic
stirring. After a 12 h reaction at 80 °C, the solid product was cen-
trifuged out and washed by water until pH ~ 7. The obtained pow-
ders reacted twice with 10 mL acetic acid and a 7.1 mL 4wt%-6wt%
aqueous solution of NaClO at 60 °C. After centrifugation, washing
until pH ~ 7, and drying at 60 °C, the obtained powders (4 g) were
dispersed into 400 mL water with a 120 s low-speed treatment and
240 s high-speed treatment of a waring blender (HGB2WTS3, War-
ing commercial). 270 mL 65wt% aqueous solution of H,SO, was
added into the dispersion. After a 4 h reaction at 50 °C under stir-
ring, the product was centrifuged out and washed by water until
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pH ~ 7. After a dialysis with deionized water for 7 days, the tCNC
dispersion was obtained. The tCNC powders were then obtained
by freeze-drying.

2.3. Carboxylating CNC

The obtained CNC dispersion, for both cCNC and tCNC, was
treated via TEMPO-mediated carboxylation to convert the surface
6-site primary hydroxyls of cellulose to COOH groups [35-37].
Briefly, a 100 mL aqueous solution of 1.88 mmol/L TEMPO and
31.4 mmol/L NaBr was added into a 100 mL 0.01wt% CNC disper-
sion within 20 min under mechanically stirring. The carboxylation
started when 10 mL 7.5wt% NaClO solution was added into the
dispersion. The pH was adjusted to 10 at room temperature by
adding a 10 mL aqueous solution of 0.5 mol/L NaOH. After a cer-
tain time of stirring, the reaction was terminated with ethanol
(ca. 4mL) and the pH was adjusted to 7 with 0.5 mol/L HCI.
The suspension was centrifuged and washed with deionized
water five times. The obtained carboxylated cCNC (OcCN) and
carboxylated tCNC (OtCN) were dialyzed against deionized water
and then stored at 4 °C.

2.4. Locating DNA probes on CNCs

Locating the amino-modified DNA onto the CNC, for both cCNC
and tCNC, was performed via a carboxylation-amidation reaction
[38]. This reaction created a covalent amide bond between the pri-
marily amino-modified ssDNA and carboxylated CNC by COOH-
NH, coupling. Briefly, a 200 pL 0.1wt% carboxylated CNC suspen-
sion was added into a mixing solution of EDC (1 mg/mL) and
NHS (1 mg/mL) at 4 °C under stirring. The pH was kept at ca. 5.7
with a buffer of 0.05 mol/L MES/0.5 mol/L NaCl. After a reaction
of 30 min, the excess reactants were removed from the EDC-
activated carboxylated CNC by alternately concentrating with a
MicroKross ultrafilter (MWCO 50 kD) and diluting with filtered
deionized water. The obtained EDC-activated carboxylated CNC
was added into a certain-volume solution of 0.65 umol/L amino-
modified DNA oligomer in 1 mmol/L phosphate buffer (pH ~ 7.2)
with 0.5 mol/L NaCl. After 12 h, the product, cCNC-lo-DNA (or
tCNC-lo-DNA), was centrifuged out and washed by deionized water
five times, and then stored in a 1 mmol/L phosphate buffer
(pH ~ 7.2) at -20 °C.

2.5. Pre-grafting polymer on CNC-lo-DNA

1g tCNC was dispersed in 33 mL triethylamine and 100 mL
DMF under nitrogen protection [39]. 26 mL 2-bromoisobutyryl
bromide was added dropwise into the dispersion. After a 24 h reac-
tion at 70 °C, the solid product was centrifuged out. The solid was
then treated by a 24 h Soxhiet extraction with dichloromethane
and ethanol to obtained Br-grafted tCNC. 0.6 g Br-grafted tCNC
was dispersed into a 4.86 mL DMF solution of 23.7 mmol/L CuBr,
47.3 mmol/L PMDETA, 11.7 mmol/L EBiB, and a certain concentra-
tion of tBA. After a 12 h reaction at 75 °C under nitrogen protection,
the tCNC pre-grafting poly (tert-butyl acrylate) (PtBA) was
obtained by centrifugation and washing with water. The obtained
product was grafted by DNA probes with the method of “Carbodi-
imide coupling of oligonucleotide and CNCs”, and coded as tCNC-
lo-DNA/PtBA.

2.6. COOH content measurement

A 50 mg sample was dispersed into a 15 mL aqueous solution of
0.01 mol/L HCl with stirring and then titrated by a solution of
0.01 mol/L NaOH [40]. The COOH content was obtained with the
curve of electric conductivity titration and Eq. (1):

C Vo=V
COOH content = M, (1)
mg
where cnaon and myg are the concentration of NaOH solution and the
mass of sample, respectively. Fig. S1 (online) shows the method to
obtained V, and V;.

2.7. FRET measurement

Fluorescence measurements were carried out with an F-7000
Fluorescence spectrophotometer (Hitachi, Japan). A PBS buffer of
1 mmol/L (pH 7.2) was used as the working buffer. The stock solu-
tions were prepared in PBS buffer and stored at —20 °C. The aque-
ous Hg?* solutions were prepared with 0.5% HNO; to avoid
hydrolyzation. One volume of 5 uL of the above Hg?" solution
was introduced into a 2 mL CNC-lo-DNA dispersion with a concen-
tration of 5 nmol/L. After incubation for 20 min at room tempera-
ture, the spectra of FAM and Cy3 in the probe were recorded
with excitation wavelength of 492 nm. The ratio of the fluores-
cence intensity at the emission wavelength 564 and 518 nm
(rseass18) was used as the semi-quantitative value of the FRET
effect. The linear coefficient was the slope of the OLS (ordinary
least square) fitting curve of the relationship between rsg4s51s
and Hg?* concentration. The beginning of the linear range for
Hg?* detection was set as 3¢/(linear slope), where ¢ is the standard
deviation of the background change [41]. The end of the linear
range was the Hg?* concentration whose T'se4/518 Was s% higher or
lower than the fitting curve, where s% was the standard deviation
of the fitting.

2.8. Instruments

2.8.1. Microscope measurements

The Atom force microscope (AFM) images were obtained with a
Dimension ICON AFM (Digital Instruments, Bruker) at a tapping
mode of a 3.0 V amplitude with samples on mica plates and ana-
lyzed by a software of Gwyddion 2.19. Transmission electron
microscope (TEM) images were obtained with a JEOL JEM-
1200EX TEM (Tokyo, Japan) at an accelerating voltage of 100 kV.

2.8.2. Zeta potential measurement
The zeta-potential was measured with a Zetasizer Nano ZS90
(Malvern Instruments Ltd., Worcestershire, United Kingdom).

2.8.3. Gel permeation chromatogram (GPC)

The GPC measurement was conducted with a Waters Chromatog-
raphy (model 1515-2414) equipped by a DRI detector of type 410, a
two-angle light-scattering detector of type PD2040,and a 7.5 mm B-
300 chromatographic column of type tricolumn-series-polymer
(Laboratories PLgel 10 um). The test was conducted at 35 °C with
absolute THF as the eluent (speed: 1.00 mL/min) and polystyrene
(M, =9 x 10* g/mol, M,,/M, < 1.04) as the calibration polymer.

3. Results
3.1. First-level space DNA probes located on CNC

Two CNCs with different lengths were chosen to graft DNA
probes: one extracted from cotton (cCNC, ca. 140 nm) and another
extracted from tunicate (tCNC, ca. 2 um) (as shown in Fig. S2
online). Fig. 1 shows the FT-IR spectra of the nanoparticles in the
different steps to locate probes onto CNC. Insets of Fig. 1a and b
show that only the final location products, cCNC-lo-DNA and
tCNC-lo-DNA, owned an FT-IR peak of -NH at 1,548 cm™!, which
came from the DNA molecules. Those results indicated that the
DNA probes were located on cCNC and tCNC with amide bonds
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Fig. 1. The FT-IR spectra (a) cCNC, OcCN, and cCNC-lo-DNA; and (b) tCNC, OtCN, and tCNC-lo-DNA. OcCN and OtCN refer to the TEMPO-mediated carboxylated cCNC and
tCNC, respectively. The (a inset) and (b inset) are the FTIR spectra in a range from 1,800 to 1,500 cm ™. The COOH contents in both OcCN and OtCN were 0.3 mmol/g. Both the
cCNC-lo-DNA and tCNC-lo-DNA were obtained with a 1:1 molar regent ratio between COOH on carboxylated CNC and DNA (MRT C/D).

[42]. The TEM and AFM images also indicated that the shape and
size of cCNC and tCNC changed little after locating DNA probes,
as shown in Fig. S2 (online), which meant the location did not
induce the CNC aggregation.

Adjusting the location degree (D;) of DNA probes on CNC was
based on controlling the COOH content on carboxylated CNC. With
different carboxylating reaction time, the COOH contents on OcCN
and OtCN were adjusted from 0.04 to 0.30 mmol/g and from 0.11
to 0.30 mmol/g, respectively, as shown in Fig. 2a. The D, of DNA
probes on CNC then varied with different molar regent ratios

between DNA and the COOH on carboxylated CNC, as shown in
Fig. 2b and c [43]. We further calculated the average space between
DNA probes (inter-space) on CNC (Fig. 2d and e) with Eq. (2):

[ 4
din = DINApdv

where d;, is the inter-distance, D; is measured and calculated with
Eq. (3), N, is the Avogadro number, p is the density of CNC
(1.6 g/cm?), and d is the average diameter of CNC (10-20 nm).
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D] = Ccc — Crp, (3)
where ccc and cgp refer to the COOH contents on carboxylated CNC
and final products of probe grafting.

The results indicated that the DNA probes were spaced in the
first level with an inter-space covering a range from 3.1 to
5.1 nm in an accuracy of 0.1 nm on cCNC and from 3.5 to 6.5 nm
in an accuracy of 0.2 nm on tCNC, respectively.

Hg?* with different concentration could induce the varied
degree of fluorescent resonance energy transferring (FRET)
between the FAM and Cy3 in the rich-T DNA of this work, as shown
in Fig. 3a. The Fig. 3a inset also shows that photoluminescence (PL)
spectra of DNA probes (not on CNC) at different Hg?* concentration
presented a lower FRET effect than those on CNC. However, the lin-
ear range of the relationship between the FRET effect and Hg?" con-
centration was much less stable for cCNC-lo-DNA than that for
tCNC-lo-DNA, as shown in Fig. 3b and c. Since the inter-space con-
trol gradient on cCNC was twice more accurate than that on tCNC,
the high stability of tCNC should be related to its longer length. The
long length of tCNC (14.3 times of cCNC) may provide DNA probes
more space to locate uniformly on tCNC, which leading to a more
stable FRET effect. The evolution of the linear coefficient for detect-
ing Hg?* concentration at different COOH content and inter-space
was also more regular with tCNC than cCNC, as shown in Fig. 3d
and e.

3.2. Second-level spacing DNA probes

Although the FRET linear range of tCNC-lo-DNA was more stable
and wider than that of cCNC-lo-DNA, the average linear coefficient
of tCNC-lo-DNA (0.7207 L/nmol) was just about one third of that of
CCNC-lo-DNA (2.1494 L/nmol). The lower coefficient might come

from the fact that longer particles contact easilier in their disper-
sion, which could cause the connection of DNA probes on different
tCNC nanoparticles. The similar electrostatic repulsions of cCNC-lo-
DNA nanoparticles ({-potential=-48 mV) and tCNC-lo-DNA
nanoparticles ({-potential = —52 mV) also suggested that here the
length rather than the surface charge strongly affected the coeffi-
cient. We thus pre-grafted a polymer, PtBA, on tCNC-lo-DNA to
space the DNA probes on different tCNC nanoparticles in the sec-
ond level.

Fig. 4a shows the typical FT-IR spectrum of PtBA-grafting prod-
ucts (tCNC-lo-DNA/PtBA). The sharp peak of carbonyl at
1,725 cm™!, which tCNC-lo-DNA did not owned, proved that the
PtBA was grafted onto the tCNC-lo-DNA with ester bonds. The
characteristic peak of the tertiary alkyl from PtBA at 1,370 cm™!
was also observed. The molar mass of PtBA was adjusted by tuning
the molar reagent between tBA and initiator EBiB (na:nggig), as
shown in Fig. 4b. Fig. 4c and d indicate that the FRET linear coeffi-
cient was stable and kept in a range from 10 nmol/L to 5 pmol/L
with PtBA of different molar masses. Fig. 4d shows that the linear
Hg?*-detection coefficient of DNA probes on tCNC increased by ca.
2.5 times after grafting a PtBA of 4.8 x 10® g/mol (total length
~47.2 nm) shows the relationship between the Is¢4 nm/Is19 nm Of
the tCNC-lo-DNA/PtBA and the Hg?* concentration with different
molar masses of PtBA. When the molecular mass of PtBA increased
from 0 to 4.8 x 10° g/mol, the PtBA could separate the different
CNC nanoparticles in an increasing degree, leading to a more sen-
sitive fluorescent detection with DNA probes on CNC. However,
further increasing the molar masses of PtBA severely reduced the
{-potential of the nanoparticles, as shown in Fig. 4e. This feature
may promote the contact between the nanoparticles and then
decrease the coefficient, as shown in Fig. 4d.
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Fig. 3. The linearity of Hg?* concentration detection with DNA fluorescence probes on CNC. (a) PL spectra of cCNC-lo-DNA prepared with an OcCN containing 0.30 mmol/g
COOH and MRT C/D of 1:1 at different Hg?* concentration. (a) inset is the PL spectra of DNA probes (not on CNC) at different Hg?>" concentration. The linear range to detect
Hg?* with (b) cCNC-lo-DNA and (c) tCNC-lo-DNA fluorescence probes prepared at different MRT C/D with carboxylated CNCs owning different COOH contents. The linear
coefficient to detect Hg?* with (d) cCNC-lo-DNA and (e) tCNC-lo-DNA fluorescence probes at different inter-spacing and prepared with carboxylated CNCs owning different

COOH contents.
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4. Conclusions and implication

Summarily, at the first level of spacing matters on a single CNC
nanorod, DNA probes were separated with an inter-space of
3.5-6.5 nm in an 0.2 nm accuracy by controlling the carboxyl func-
tionality on CNC and location degree of DNA on CNC. The higher
aspect-ratio CNC with a length of ca. 2 um provided probes with
enough space to locate on CNC uniformly and obtain a stable and
wide linear range (from 10 nmol/L to 5 pmol/L) of detecting Hg**.
At the second spacing level of isolating the DNA probes on different
CNC nanorods, PtBA was pre-grafted on CNC and controlled to be a
proper chain length of ca. 47.2 nm leading to a ca. 2.5 times
increase in linear coefficient. Overall, the hierarchical spacing of
DNA probes has been achieved via the concept of “molecular engi-
neering on programmed nanocrystal surface”, which not only
offered a new design of highly sensitive detection, but opened a
method to chemically operate matter in space at nanoscale for
more advanced applications.
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