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Abstract For a sequence of approximate Dirac-harmonic maps from a Riemannian surface with a smooth
boundary into a stationary Lorentzian manifold, we study the boundary blow-up analysis and prove the positive
energy identity for spinors and the Lorentzian energy identity for maps. Moreover, the positive energy identity
for maps holds when the target is a static Lorentzian manifold.
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1 Introduction

Dirac-harmonic maps into Riemannian manifolds are a mathematical version of the nonlinear supersym-
metric sigma model of quantum field theory [6, 9, 18]. The fields in this model correspond to spinors
representing fermionic particles, which take values in Grassmann algebra and are anti-commuting. To
overcome this anti-commuting technical problem for applying analysis tools, Chen et al. [6] proposed
making all the fields real-valued. Although this does result in the loss of supersymmetry, it still retains
a rich mathematical structure, especially the conformal invariance in two-dimensional domains. It is
generally expected that Dirac-harmonic maps, as rooted in a deep structure in quantum field theory,
have profound geometric applications.

In recent decades, the regularity, compactness, and existence of Dirac-harmonic maps into Riemannian
manifolds have been extensively studied. From the viewpoint of general relativity and quantum field
theory, it is natural to consider Dirac-harmonic maps into more general targets, particularly Lorentzian
manifolds or pseudo-Riemannian manifolds. This generalization is of great interest due to its potential
applications in theoretical physics and mathematics. Dirac-harmonic maps are natural generalizations
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of harmonic maps, and the recent development of harmonic maps into pseudo-Riemannian manifolds
is related to minimal surfaces in the anti-de-Sitter space, as discussed by Alday and Maldacena [3].
Geometrically, harmonic maps into the Minkowski space S41 ⊂ R5

1 are linked to conformal Gauss maps of
Willmore surfaces in S3, as studied by Bryant [4].

For harmonic maps into certain pseudo-Riemannian manifolds, especially static Lorentzian manifolds
and more generally stationary Lorentzian manifolds, the regularity of weak solutions has been studied by
Isobe [17] in the static case and later by Zhu [25] for the stationary case. The removability of isolated
singularities was investigated by Hélein [16] for general pseudo-Riemannian targets. The energy identity
for a sequence of harmonic maps with the uniformly bounded energy into stationary Lorentzian manifolds
was established by Han et al. [15], and the neck property was studied by Han et al. [12] in the static case.
The Dirichlet problem for harmonic maps from a disk into a Lorentzian warped product was investigated
by Greco [11]. In the static case, the existence of Lorentzian harmonic maps has been studied via the
heat flow method by Han et al. [13], which was motivated by the parabolic-elliptic system initiated in
the Dirac-harmonic maps situation [7]. Under certain conditions of the initial energy or the curvature
of the targets, Han et al. [13] proved the long-time existence of such a system. Furthermore, Han et
al. [14] studied the existence of a global weak solution to this flow and proved the existence of static
Lorentzian harmonic maps by studying the bubbling convergence of a time-slice sequence at infinity. For
Dirac-harmonic maps into stationary Lorentzian manifolds, the interior regularity of weak solutions was
proved in [1], and the interior bubbling convergence of a sequence of approximate Dirac-harmonic maps
from a surface into static or stationary Lorentzian manifolds was studied in [2].

In this paper, we aim to investigate the blow-up behavior of Dirac-harmonic maps from a compact
Riemannian surface with a boundary into Lorentzian manifolds. This is motivated by the application of
solving the existence problem of Dirac-harmonic maps in Lorentzian manifolds, which will be studied in a
forthcoming work. To this end, we generalize the new type of mixed parabolic-elliptic partial differential
equations developed in [7,19,21] for the case of Riemannian manifolds as targets to the Lorentzian targets.
This approach considers the Dirac-harmonic heat flow with an elliptic constraint on the spinor field, and
under a proper boundary condition, the spinor field behaves as a constraint along the parabolic equation
for the map. The boundary condition is necessary for such a method since it ensures the solvability
of the Dirac-type equation of spinors, in contrast to the closed case, where the solution may have non-
uniqueness. Furthermore, the heat flow may develop singularities at infinite times and we need to consider
the convergence of a time-slice sequence of fields. In other words, we need to investigate the blow-up
behavior of a sequence of approximate Dirac-harmonic maps with a properly chosen boundary condition,
which will provide a full understanding of the behavior of the flow at infinite blow-up times and offer
insights into the existence problem of Dirac-harmonic maps into Lorentzian manifolds.

The blow-up analysis is based on a sequence of analytic results of semi-linear partial differential
equations, such as the small energy estimate or the small-energy regularity, the removal of isolated
singularities, and the gap phenomenon. The small energy estimate can be obtained easily from the routine
method, which can be traced back to Sacks and Uhlenbeck [23]. However, the removal of singularities is
highly non-trivial, as it requires either a decay estimate of the energy near the isolated singularities or
regularity of the weak solution. The regularity results of Dirac-harmonic maps into stationary Lorentzian
manifolds (see [1]) provide full boundary regularity of such fields (see Lemma 3.1 and Corollary 3.2 in
Section 3), and as an application, if we extend the fields delicately and properly across the boundary,
then the removal of singularities is proved as a corollary, as shown in Corollary 3.4 in Section 3. Even
in the case where the spinor vanishes, this removal of singularities theorem improved the corresponding
result by Han et al. [12, Theorem 2.8], where a more restrictive condition than stationarity was assumed.
This removal of singularities theorem will be used in the proof of a gap theorem over the upper half-
space, as stated in Corollary 3.10 in Section 3. This result generalizes the corresponding theorem in [12,
Theorem 2.7], which was originally formulated for Lorentzian harmonic maps and extended in this paper
to Lorentzian Dirac-harmonic maps.

Before moving into the statement of our main results, let us first set up the notations. Let (M, gM )

be a Riemannian surface with a smooth boundary, equipped with a given spin structure, and ΣM be the
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spinor bundle over M . Let (N , gN ) be a stationary Lorentzian manifold, i.e., N = R×N , where (N, gN )

is a closed n-dimensional Riemannian manifold, and the stationary Lorentzian metric over N is given by

gN : = −λ(dr + ϑ)2 + gN ,

where λ > 0 is a smooth function and ϑ is a smooth 1-form over N , and dr is the length element of R1.
Suppose that φ is a map from M to N and ψ is a section of the twisted bundle ΣM ⊗ φ−1TN . Note
that there is a Riemannian metric 〈·, ·〉ΣM⊗ϕ−1TN induced from the one of the spinor bundle ΣM and
the pull-back bundle φ−1TN . Locally, let {∂yj}nj=0 be a basis of N . Then the induced metric connection
∇̃ of the twisted bundle is defined as

∇̃ψ = ∇ΣMψi ⊗ ∂yi(φ) + Γi
jk(φ)dφ

jψk ⊗ ∂yi(φ) for ψ =

n∑
j=0

ψj ⊗ ∂yj (φ),

where {ψj}nj=0 are sections of ΣM , called spinors, and {Γi
jk}ni,j,k=0 are the Christoffel symbols of

the pseudo-Riemannian manifold (N , gN ) with respect to the Levi-Civita connection in the pseudo-
Riemannian setting. The Dirac operator along the map φ is defined by, for a local orthonormal frame
{eα}2α=1,

6Dψ := eα · ∇̃eα =6∂ψi ⊗ ∂yi(φ) + Γi
jk(φ)dφ

j(eα)eα · ψk∂yi(φ),

where · is the Clifford multiplication, and 6∂= eα · ∇ΣM
eα is the usual Dirac operator. It is well known that

6∂ can be viewed as a generalization of the Cauchy-Riemann operator on R2.
A Dirac-harmonic map from M to N is a pair of smooth fields (φ, ψ) such that it is a critical point of

the following Lagrangian:

L(φ, ψ) := 1

2

∫
M

(|∇φ|2gN + 〈ψ, 6Dψ〉ΣM⊗ϕ−1TN ). (1.1)

In order to define the notion of weakly Dirac-harmonic maps, we embed (N , gN ) isometrically to a model
space (RK+1, ḡ) with the signature (K, 1) and extend the definition of L to

(φ, ψ) ∈W 1,2(M,N )×W 1,4/3(M,ΣM ⊗ φ−1TN ).

The boundary condition we consider is of the following Dirichlet-chiral-type:{
φ(x) = φ∂(x), φ∂ ∈ C2,α(∂M,N ), x ∈ ∂M,

Bψ(x) = Bψ∂(x), ψ∂ ∈ C1,α(∂M,ΣM ⊗ φ−1TN|∂M ), x ∈ ∂M,
(1.2)

where α ∈ (0, 1), and B = B±
ϕ is the chiral boundary operator defined by

B±
ϕ : L2(∂M,ΣM ⊗ φ−1TN|∂M ) → L2(∂M,ΣM ⊗ φ−1TN|∂M )

ψ 7→ 1

2
(Id± ν · χ) · ψ,

where ν is the outward unit normal vector field on ∂M with respect to the volume form on M , and

χ =
√
−1e1 · e2 : Γ(ΣM ⊗ φ−1TN ) → Γ(ΣM ⊗ φ−1TN )

is the chiral operator defined by a local orthonormal frame {eα}2α=1 on TM and satisfies

χ ◦ χ = Id, χ∗ = χ, ∇χ = 0, χ ·X = −X · χ, ∀X ∈ Γ(TM).

The chiral boundary condition generalizes the usual chirality boundary condition and mathematically
interprets the supersymmetric nonlinear sigma model with boundaries and the D-branes in superstring
theory [8].
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The two spaces of weak Dirac-harmonic maps and regular Dirac-harmonic maps with Dirichlet-chiral
boundary data

(φ∂ , ψ∂) ∈ C2,α(∂M,N )× C1,α(∂M,ΣM ⊗ φ−1TN|∂M )

are defined, respectively, as follows:

Xw(M,N ) := {(φ, ψ) : φ ∈W 1,2(M,N ) and ψ ∈W 1,4/3(M,ΣM ⊗ φ−1TN ),

φ = φ∂ and Bψ = Bψ∂ for x ∈ ∂M},
X (M,N ) := {(φ, ψ) : φ ∈W 2,2(M,N ) and ψ ∈W 1,2(M,ΣM ⊗ φ−1TN ),

φ = φ∂ and Bψ = Bψ∂ for x ∈ ∂M}.

As usual, we also denote by Xloc, Xw
loc, and X0 the corresponding local Sobolev spaces and Sobolev spaces

of functions with compact support, respectively.
With the help of the isometric embedding (N , gN ) ↪→ (RK+1, ḡ), we can express the Euler-Lagrange

equation of L extrinsically as

τ(φ, ψ) = ∆Mφ−A(∇φ,∇φ)− P(A(dφ(eα), eα · ψ);ψ)−R(φ, ψ), (1.3)
κ(φ, ψ) =6∂ψ −A(dφ(eα), eα · ψ) + Γ(dφ(eα), eα · ψ), (1.4)

where P and A are defined via the shape operator P and the second fundamental form A of N ↪→ RK+1,
respectively, R is defined via the pseudo-Riemannian curvature R, and Γ is the Christoffel symbol of ḡ.
We refer to Section 2 for more details on the definition of notations.
Definition 1.1. A pair of fields (φ, ψ) ∈ Xw(M,N ) is called an (Lp, Lq)-approximate Dirac-harmonic
map with the Dirichlet-chiral boundary, if they satisfy the boundary condition (1.2) on ∂M and
satisfy (1.3) and (1.4) in the weak sense for some τ(φ, ψ) ∈ Lp(M,N ) and κ(φ, ψ) ∈ Lq(M,ΣM⊗φ−1TN ).
If, in addition, there exists a constant Λ > 0 such that

‖∇φ‖2L2(M) + ‖ψ‖4L4(M) ⩽ Λ, ‖τ(φ, ψ)‖pLp(M) + ‖κ(φ, ψ)‖qLq(M) ⩽ Λ,

then we call (φ, ψ) a (Λ;Lp, Lq)-approximate Dirac-harmonic map.
The aforementioned analysis tools are well-suited for the analysis of blow-up phenomena. With the

small-energy regularity and standard blow-up argument, one can construct the bubble tree for a sequence
of approximate Dirac-harmonic maps with the uniformly bounded energy into stationary Lorentzian
manifolds. To study whether the energy identity holds in the bubbling convergence process, one needs
to analyze the neck regions, which are regions that connect the base map (weak limit) and the bubbles
or the regions connecting bubbles over bubbles.

We first consider a boundary case with only one bubble, i.e., the energy is concentrated on a point
sitting on the boundary, and show that the neck region can be decomposed into three or four domains
near each other, as illustrated in Figures 1 and 2 in Section 4. By a reduction argument, we prove that
the (positive) energy on domains Ω1 and Ω3 can be made as small as desired. The domain Ω4 is a whole
annular region (the innermost hatch-filled region in Figure 2), which is a typical neck region considered
for interior energy concentration points and can be handled as in [2]. The main results of the current
paper concern the energy identity of approximate Dirac-harmonic maps on the region Ω2.
Theorem 1.2. Suppose that {(φn, ψn)} is a sequence of (Λ;L2, L4)-approximate Dirac-harmonic maps
from the unit upper half-disc D+ (with a given spin structure) into a stationary Lorentzian manifold
(N , gN ) satisfying the boundary condition (1.2) on the flat boundary ∂0D+. If 0 ∈ ∂0D+ is an isolated
energy concentration point on D+ of {(φn, ψn)}, i.e.,

lim
r→0

lim inf
n→∞

∫
Br∩D+

(|∇φn|2 + |ψn|4) ⩾ max{ε20, (ε′0)2} =: ε̄20,

where ε0 > 0 and ε′0 > 0 are the constants as in Lemmas 3.7 and 3.8 in Section 3, respectively, then
up to a subsequence, and without distinguishing between the subsequence and the original sequence, we
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see that there exist sequences of points {xn} and scaling radii {rn} such that as n → ∞, xn → 0 and
rn → 0, and the scaled fields φ̃n(x) := φn(xn + rnx) and ψ̃n(x) =

√
rnψn(xn + rnx) satisfy that for

dn := dist (xn, ∂
0D+) = dist (xn, x

′
n) where x′n ∈ ∂0D+, the following hold:

(1) (a) If limn→∞
dn

rn
< +∞, then

φ̃n(x)⇀ σ̄ ∈W 2,2(B,N ), ψ̃n(x)⇀ ξ̄ ∈W 1,2(B,ΣB ⊗ RK+1),

where (σ̄, ξ̄) is a non-trivial Lorentzian Dirac-harmonic disc with the Dirichlet-chiral boundary condition
σ̄ = const. and Bξ̄ = 0 on ∂B, i.e., a bubble with a boundary.

(b) If limn→∞
dn

rn
= +∞, then

φ̃n(x)⇀ σ ∈W 2,2(S2,N ), ψ̃n(x)⇀ ξ ∈W 1,2(S2,ΣS2 ⊗ RK+1),

where (σ, ξ) is a non-trivial Lorentzian Dirac-harmonic sphere, i.e., a bubble.
In either case, we call the bubbles are corresponding to the blow-up data (xn, rn).
(2) Assume that there is only one bubble at 0, either a Lorentzian Dirac-harmonic disc or a Lorentzian

Dirac-harmonic sphere. Then for any ε > 0, there exist δ > 0 and R > 0 such that for large enough n,
we have

E(φn, ψn;D
+
2r(xn) \D+

r (xn)) < ε2, ∀ r ∈ [rnR/2, 2δ].

(3) Furthermore, in either case (a) or (b), there is no positive energy of {ψn} on the neck Pn : =

D+
δ \D+

rnR
(xn) in the limit sense, i.e.,

lim
R→∞

lim
δ→0

lim
n→∞

E(ψn;Pn) = 0. (1.5)

(4) If we define Ω2 : = D+
δ/2(x

′
n) \D+

2dn
(x′n) ⊂ Pn in the case limn→∞ dn/rn = +∞ and

Ω2 = D+
δ/2(x

′
n) \D+

2rnR
(x′n)

otherwise, then there is no positive energy of {φn} on Ω2 of the neck region in the limit sense, i.e.,

lim
δ→0

lim
n→∞

E(φn; Ω2) = 0. (1.6)

We refer to Section 2 for the definition of various energy.
Remark 1.3. (1) In the last item, comparing [20, Theorem 1.1] and [12, Theorem 1.1], we can improve
the argument of energy identities by directly controlling the total (positive) energy of the map on Ω2,
instead of just the tangent energy. This eliminates the need for the Pohozaev-type argument that relates
the tangent energy and the radial energy and simplifies the argument significantly.

(2) The first item implies that the separation of different types of bubbles is based on the ratio of the
distance of blow-up points to the boundary and the scaling factor.

(3) The second item is a reduction condition from which one can construct the bubble tree; it is also
the starting point of proving the energy identities.

(4) The third item is the (positive) energy identity for spinors, the proof of which is similar to the
interior case [2], except that we need a boundary-version elliptic estimate on the upper half annular region
(see Lemma 3.11 in Section 3).

Combining Theorem 1.2 with the interior blow-up analysis presented in [2], which handles Ω4, a typical
annular region contained in the neck region, we obtain the following global results.
Corollary 1.4. Let M be an oriented Riemannian surface with a smooth boundary ∂M and a given
spin structure, (N , gN ) be a stationary Lorentzian manifold, and {(φn, ψn)} be a sequence of (Λ;L2, L4)-
approximate Dirac-harmonic maps satisfying the boundary condition (1.2) on ∂M with the uniformly
bounded positive energy, i.e.,

E(φn, ψn) =

∫
M

(|∇φn|2 + |ψn|4) ⩽ Λ < +∞
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and
‖τ(φn, ψn)‖L2(M) + ‖κ(φn, ψn)‖L4(M) ⩽ Λ < +∞.

Then, the energy can only be concentrated on a finite point set

S :=

{
x ∈M : lim

r→0
lim inf
n→∞

∫
Br(x)∩M

(|∇φn|2 + |ψn|4) ⩾ ε̄20

}
and up to a subsequence, (φn, ψn) ⇀ (φ∞, ψ∞) in Xloc(M \ S,N ), where (φ∞, ψ∞) is an approximate
Dirac-harmonic map satisfying the boundary condition (1.2). Moreover, the following statements hold:

(1) For each pi ∈ S (i = 1, 2, . . . , I), there are finitely many non-trivial Lorentzian Dirac-harmonic
spheres (σl

i, ξ
l
i) and finitely many non-trivial Lorentzian Dirac-harmonic discs (σ̄k

i , ξ̄
k
i ) with the Dirichlet-

chiral boundary condition σ̄k
i = const. and Bξ̄ki = 0 on ∂B, where l = 1, 2, . . . , Li and k = 1, 2, . . . ,Ki,

such that the following positive energy identity for the spinor fields {ψn} holds:

lim
n→∞

E(ψn) = E(ψ∞) +

I∑
i=1

Li∑
l=1

E(ξli) +

I∑
i=1

Ki∑
k=1

E(ξ̄ki ), (1.7)

and the Lorentzian energy identity holds, i.e., for the maps {φn},

lim
n→∞

Eg(φn) = Eg(φ∞) +

I∑
i=1

Li∑
l=1

Eg(σ
l
i) +

I∑
i=1

Ki∑
k=1

Eg(σ̄
k
i ). (1.8)

Moreover, for any (i, l) 6= (j, k), the corresponding blow-up data (xln,i, r
l
n,i) are related by

lim
n→∞

(
rln,i
rkn,j

+
rkn,j
rln,i

+
|xln,i − xkn,j |
rln,i + rkn,j

)
= +∞. (1.9)

(2) If furthermore, we assume that (N , gN ) is static, i.e., ϑ ≡ 0, then the positive energy identity for
the maps {φn} also holds, i.e.,

lim
n→∞

E(φn) = E(φ∞) +

I∑
i=1

Li∑
l=1

E(σl
i) +

I∑
i=1

Ki∑
k=1

E(σ̄k
i ). (1.10)

Moreover, the image

φ∞(M \ ∂M) ∪
I⋃

i=1

Li⋃
l=1

(σl
i(S

2))

is a connected set.
Remark 1.5. In order to prove Corollary 1.4, by Theorem 1.2, we only need to consider the region
Ω4 ⊂ Pn (see the inner annular region with the vertical hatched pattern in Figure 2 in Section 4), which
is a typical neck region for an interior energy concentration point. In [2], Ai and Zhu used a Pohozaev-
type argument on this region to prove the metric energy identity. Furthermore, in the case of a static
Lorentzian manifold as the target, the positive energy in Ω4 for the map is also proved. This explains
why, in the stationary case, we only obtain the Lorentzian energy identity as stated in (1.8), and the
positive energy identity as stated in (1.10) is only proved in the static case.

The rest of this paper is organized as follows: In Section 2, we fix our notations and record some
basic properties related to stationary Lorentzian manifolds and Dirac-harmonic maps. In Section 3, we
prove the boundary regularity theorem, i.e., Lemma 3.1, and as an application, the boundary version
of the removal of singularities theorem and the gap theorem are proved as corollaries. We also state
the small-energy regularity theorem. Finally, we finish our proof of blow-up analysis in Section 4, and
especially, Theorem 1.2 and Corollary 1.4 are proved.
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2 Preliminaries

Let (M, gM ) be a Riemannian surface with the smooth boundary ∂M equipped with a fixed spin structure,
and (N , gN ) be a stationary Lorentzian manifold. Let φ be a smooth map from M to N and ψ be a smooth
section of ΣM⊗φ−1TN , the twisted bundle with the induced Riemannian metric 〈·, ·〉ΣM⊗ϕ−1TN and the
induced metric connection ∇̃ := ∇ΣM⊗ϕ−1TN . The functional L is given in (1.1), and the Euler-Lagrange
equation of L is given by {

τ(φ) = R(φ, ψ),

6Dψ = 0,

where τ(φ) is the tension field of φ and R is defined via the pseudo-Riemannian curvature R of (N , gN ),
i.e.,

R(φ, ψ) :=
1

2
Rs

ijl(φ)〈ψi,∇φl · ψj〉ΣM∂ys(φ),

where {Rs
ijl} are the components of the pseudo-Riemannian curvature tensor R of (N , gN ).

In order to define the weak solution, it is natural to take an extrinsic view. By our construction [1,
Proposition 2.1], recall that (N , gN ) is isometrically embedded into another pseudo-Riemannian manifold
(N , gN ) = (RK+1, ḡ), which is homeomorphic to the model space with the signature (K, 1). In fact, since
(N, gN ) is a closed Riemannian manifold, we can embed it isometrically into some Euclidean space RK .
This allows us to construct a pseudo-Riemannian metric ḡ over R1×RK ∼= RK+1 via the nearest projection
such that (N , gN ) ↪→ (RK+1, ḡ) is an isometric embedding. Moreover, by the compactness of N and the
fact that both λ > 0 and ϑ are smooth, we have

1

Λ′ ⩽ λ ⩽ Λ′, |ϑ|+ |∇ϑ|+ |∇λ| ⩽ Λ′,

and by the construction of (RK+1, ḡ), if we denote by A, R, and Γ the second fundamental form, the
pseudo-Riemannian curvature of N ↪→ (RK+1, ḡ), and the Christoffel symbol of ḡ, respectively, then the
following boundedness condition holds:

|A|+ |∇A|+ |ḡ|+ |R̄|+ |Γ| ⩽ Λ′ (2.1)

for some positive constant Λ′ > 0.
The Euler-Lagrange equation of L can be rewritten non-intrinsically as{

∆Mφ−A(∇φ,∇φ) = P(A(dφ(eα), eα · ψ);ψ) +R(φ, ψ),

6∂ψ = A(dφ(eα), eα · ψ)− Γ(dφ(eα), eα · ψ),

where R is defined in a similar way to R by replacing the pseudo-Riemannian curvature of N to R.
Under a natural basis {∂va} of N , with ∂v0 = ∂y0 , we have

A(dφ(eα), eα · ψ) := ∇φl · ψj ⊗Ajl, Ajl := A(∂yj , ∂yl) ◦ φ,

Γ(dφ(eα), eα · ψ) := Γ
a

bc(φ)∇φb · ψc ⊗ ∂va(φ),

and
P(A(dφ(eα), eα · ψ);ψ) := gskN 〈P (Ajl; ∂yi), ∂yk〉TN 〈ψi,∇φl · ψj〉ΣM∂ys ,

where P is the shape operator and A is the second fundamental form with respect to the isometric
embedding. R is defined in a similar way to R by replacing R with R.

For an integer l ⩾ 0 and a real number p ∈ (1,+∞), define

W l,p(M,N ) := {φ ∈W l,p(M,RK+1) : φ(x) ∈ N for a.e. x ∈M},
W l,p(M,ΣM ⊗ φ−1TN ) := {ψ ∈W l,p(M,ΣM ⊗ RK+1) : for any ν ∈ T⊥

ϕ(x)N ,
〈ν, ψ〉ḡ = 0 for a.e. x ∈M}.
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Here, for φ = (ϕ0, ϕ) ∈ R1 × RK , the norm is defined as

‖φ‖p
W l,p(M,N )

:=

l∑
k=0

‖∇kφ‖pLp(M,N ), ‖∇kφ‖pLp(M,N ) := ‖∇kϕ0‖pLp(M,R1) + ‖∇kϕ‖p
Lp(M,RK)

,

and for ψ = ψa ⊗ ∂va(φ) =: ψ0∂v0(φ) + ψ′, we have

∇̃eαψ = ∇ΣM
eα ψa ⊗ ∂va + Γa

bc(φ)dφ
b(eα)eα · ψc∂va =: ψa

|α ⊗ ∂va =: ψ0
|α + ψ′

|α

and

‖ψ‖pW 1,p(M,ΣM⊗ϕ−1TN ) := ‖ψ‖pLp(M,ΣM⊗ϕ−1TN ) + ‖∇̃ψ‖pLp(M,ΣM⊗ϕ−1TN ),

‖∇̃ψ‖pLp(M,ΣM⊗ϕ−1TN ) := ‖ψ0
|α‖

p
Lp(M,ΣM⊗R1) + ‖ψ′

|α‖
p
Lp(M,ΣM⊗RK)

,

and define ‖∇kψ‖Lp(M,ΣM⊗ϕ−1TN ) similarly.
Next, let us recall the definition of various energy. For a measurable subset Ω ⊂ M , the Lorentzian

energy of φ and ψ is defined by

Eg(φ; Ω) :=

∫
Ω

|∇φ|2gN , Eg(ψ; Ω) :=

∫
Ω

|ψ|4ΣM⊗ϕ−1TN =

∫
Ω

〈ψ,ψ〉2ΣM⊗ϕ−1TN ,

respectively. By employing the embedding (N , gN ) ↪→ (RK+1, ḡ), if we write φ = (ϕ0, ϕ) ∈ R0 ×RK and
ψ = (ψ0, ψ′) ↪→ (ΣM ⊗ R1)× (ΣM ⊗ RK), then the positive energy of φ and ψ is defined by

E(φ; Ω) :=

∫
Ω

|∇φ|2 =

∫
Ω

(|∇ϕ0|2 + |∇ϕ|2),

E(ψ; Ω) :=

∫
Ω

|ψ|4 =

∫
Ω

(〈ψ0, ψ0〉2ΣM⊗R1 + 〈ψ′, ψ′〉2ΣM⊗RK ),

respectively.
Finally, let us recall some results of Dirac-harmonic maps into stationary Lorentzian manifolds.

In [1], the equation of weak Dirac-harmonic maps into stationary Lorentzian manifolds was rewritten
into a critical elliptic system with a potential. This potential is a priori in L2 and has a certain
hidden antisymmetric structure, but no divergence-free structure. This generalizes the case of harmonic
maps [25], where the hidden divergence-free structure is assured and provides a new perspective on the
interior regularity of weak Dirac-harmonic maps. More precisely, the following proposition is proved.
Proposition 2.1 (See [1, Proposition 4.1]). Suppose that (φ, ψ) ∈ Xw(B,N ) is a weak Dirac-harmonic
map from the unit ball B ⊂ M into the stationary Lorentzian manifold. Then the equation of φ can be
written as {

−div (Q∇ϕ) = Θ ·Q∇ϕ+ FΩ ·Q∇ϕ+ υ,

−div Ω =W,
(2.2)

where locally we write φ = (ϕ0, ϕ) = (ϕ0, ϕ1, . . . , ϕK) ∈ R1 × RK and

Q ≡ Q(ϕ) :=

(
λ(ϕ) λ(ϕ)ϑ

0 IK

)
, ϑ := (ϑ1, . . . , ϑK),

Θ :=

(
0 0

0 (Θab)K×K

)
, F :=


0 0 · · · 0

−Υ1 Υ11 · · · Υ1K

...
... . . . ...

−ΥK ΥK1 · · · ΥKK

 ,

Ω := λ(ϕ)diag (V ♯, . . . , V ♯), V ♯ := ∇ϕ0 + ϑa∇ϕa,

W := diag(w, . . . , w), w := RP0(φ, ψ),
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υ := (w, v1, . . . , vK), va := RPa(φ, ψ)−Qaw,

Θab ≡ Θab(ϕ), RP0(φ, ψ) and RPa(φ, ψ) are RK-valued vector fields on M , and Υa ≡ Υa(ϕ), Υab ≡
Υab(ϕ), and Qa ≡ Qa(ϕ) are functions on M .

By imposing certain smallness of the norm on the coefficients in (2.2), we especially prove the following
regularity results, which are a special case of the corresponding higher-dimensional one.
Lemma 2.2 (See [1, Theorem C]). Suppose that B ⊂ R2 is the unit ball and n > 0 is an integer.
Denote by M(n) the set of n × n real metrics. For any Λ > 0, there exists an ε = ε(Λ) > 0 such
that for any Θ ∈ L2(B, so(n) ⊗ ∧1R2), Ω ∈ L2(B,M(n) ⊗ ∧1R2), F,G ∈ W 1,2 ∩ L∞(B,M(n)), Q ∈
W 1,2 ∩ L∞(B,GL(n)), and

W ∈ Lq(B,M(n)), υ ∈ Ls(B,Rn) for some 1 < q < 2 and 1 < s < 2,

if u ∈W 1,2(B,Rn) is a weak solution of the following elliptic system{
−div (Q∇u) = Θ ·Q∇u+ FΩ ·G∇u+ υ,

−div Ω =W
(2.3)

with the coefficients satisfying the following conditions

‖∇u‖L2 + ‖Θ‖L2 + ‖Ω‖L2 + ‖W‖Lq + ‖∇Q‖L2 + |∇F |L2 + |∇G| ⩽ ε

and
|Q|+ |Q−1|+ |F |+ |G| ⩽ Λ a.e. in B,

then for some α ∈ (0, 1), we have

[u]Cα(B1/2) ⩽ C(Λ)(ε+ ‖υ‖Ls(B)).

In particular, u is Hölder continuous in B1/2.
Remark 2.3. One word about the notations: we denote by R2

+ := {x = (x1, x2) ∈ R2 : x2 ⩾ 0} the
upper half-space, by Br(x) the ball in R2 with radius r and center x, and by D+

r (x) = Br(x) ∩ R2
+ the

part of Br(x) contained in the upper half-space; the two boundaries of D+
r (x) are denoted by

∂+D+
r (x) := ∂Dr(x) ∩ R2

+, ∂0D+
r (x) := Br(x) ∩ ∂R2

+,

respectively.

3 Analysis lemmas for blow-up analysis

In this section, we recall and prove some basic lemmas for blow-up analysis, which include the small-
energy regularity, the removal of singularities, and the gap theorem. The interior case is treated in [2]
and we generalize it to the boundary case. The most important is the boundary regularity of weak Dirac-
harmonic maps (see Corollary 3.2), which is proved as a corollary of the boundary regularity theorem
for a class of partial differential equations, with a proper structure on the equation (see Lemma 3.1 for
more details). This result is of fundamental importance, without which we cannot improve the removal
of isolated singularities and the gap theorem compared with the corresponding results in [12].

3.1 Boundary regularity of weak Dirac-harmonic maps

We extend several quantities of the equation of φ in the proof of boundary regularity, and for the exact
definition of these quantities, we refer to [1, Proposition 4.1]. Since the regularity question is local, we
may choose coordinates xi centered at a point x0 ∈ ∂M such that locally M is the upper half-disc D+.
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Since φ|∂M = φ∂ |∂M and φ∂ ∈ C2,α(M), we may assume φ∂ ∈ C2,α(B) and φ(0) = 0 ∈ RK+1. Let us
extend φ as

φ̂(x) = −(φ(x∗)− φ∂(x
∗)), x = (x1, x2) ∈ D− := B \D+,

where x∗ = (x1,−x2), and we take φ̂ = φ− φ∂ in D+. It is clear that φ̂|∂0D+ = −(φ− φ∂)|∂0D+ = 0.
Let us write φ̂ locally as û. Then the above extension implies û(x) = −û(x∗), and we call it an odd

extension. Let us also extend the Riemannian manifold (N, gN ) to (N̂ , ĝN ) such that

N̂ = {−y : y ∈ N ↪→ RK}

and ĝN = (σ−1)∗gN , where σ : N → N̂ and y 7→ −y. For the function λ > 0 and the 1-form ϑ on N , we
extend them locally and evenly to N t N̂ , i.e.,

λ̂(û(x)) = λ̂(û(x∗)) ⇔ λ̂(û(x)) =

{
λ(u(x)), x ∈ D+,

λ(u(x∗)), x ∈ D−,

and for ρ : D+ → D−,

ϑ̂(û) = ρ∗(ϑ̂(û)) ⇔ ϑ̂(û(x)) =

{
ϑ(u(x)), x ∈ D+,

ρ∗(ϑ(u(x∗))), x ∈ D−.

Note that if we write ϑ(u(x)) = ϑ1dx
1 + ϑ2dx

2 and ϑ̂(û(x)) = ϑ̂1dx
1 + ϑ̂2dx

2, then

ϑ̂1(x) =

{
ϑ1(x), x ∈ D+,

ϑ1(x
∗), x ∈ D−,

ϑ̂2(x) =

{
ϑ2(x), x ∈ D+,

−ϑ2(x∗), x ∈ D−.

Thus, ϑ̂1(x) = ϑ̂1(x
∗) and ϑ̂2(x) = −ϑ̂2(x∗), from which the equivalence follows.

The above extension implies the quantity

Q ≡ Q(u) :=

(
λ(u) λ(u)ϑ(u)

0 IK

)

extends evenly, i.e.,
Q̂(x) = Q̂(x∗) ⇔ Q̂(û(x)) = Q̂(û(x∗)).

Since in the real application, G = Q, we extend G evenly as the same as Q.
Similarly, we can extend the quantity Ω = λ(u)diag (V ♯, . . . , V ♯) oddly, where

V ♯ = ∇u0 +
K∑

a=1

ϑa∇ua,

i.e., if we write Ω = Ω1∂1 +Ω2∂2 and Ω̂ = Ω̂1∂1 + Ω̂2∂2, then

Ω̂(x) = −ρ∗Ω̂(x) ⇔

{
Ω̂1(x) = −Ω̂1(x

∗),

Ω̂2(x) = Ω̂2(x
∗),

or equally,

Ω̂1(x) =

{
−Ω1(x), x ∈ D+,

Ω1(x
∗), x ∈ D−,

Ω̂2(x) =

{
Ω2(x), x ∈ D+,

Ω2(x
∗), x ∈ D−.

In particular, we see that if Ω ∈ W 1,2, then Ω̂ ∈ W 1,2 too, since the odd extension Ω̂1 ≡ 0 on ∂0D+,
which follows from the definition of Ω and the fact that u ≡ 0 on ∂0D+. For the same reason, we can
extend W = diag (w, . . . , w) oddly, where w = RP0(φ, ψ).
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For the matrix-valued 1-form Θ ∈ L2, we extend it evenly, i.e.,

Θ̂(x) = ρ∗Θ̂(x).

Finally, we need to extend the matrix F ∈W 1,2 oddly, where

F =


0 0 · · · 0

−Υ1 Υ11 · · · Υ1K

...
... . . . ...

−ΥK ΥKK · · · ΥKK

 ,

Υd :=
1

2λ(u)
(∂dλ− ∂eλv

e
l v

d
l ),

Υdb := ∂bϑd − ∂dϑb − (∂bϑe − ∂eϑb)v
e
l v

d
l ,

and νl = (v1l , . . . , v
K
l ), l = n + 1, . . . ,K are the orthonormal frame of T⊥N in RK , and recall that λ

and ϑ are extended to a tabular neighborhood of N ↪→ RK via the nearest projection. Note that we need
to choose coordinates in RK properly such that gradλ = 0 at the origin and ∇N

Xϑ
♯ = 0 for any tangent

vector X of N at the origin. These conditions ensure that Υd = Υdb = 0 at the origin of RK , resulting
in F̂ ∈W 1,2(B) provided that F ∈W 1,2(D+).

With these extensions in hand, we are now ready to prove the following regularity result, which serves
as the starting point for blow-up analysis and plays a fundamental role in the development of a sequence
of analysis lemmas that will be used repeatedly in blow-up analysis. It generalizes the regularity theorem
of harmonic maps and Dirac-harmonic maps in pseudo-Riemannian manifolds to the boundary case.
Lemma 3.1. Suppose that D+ ⊂ R2

+ is a unit upper half-disc, and n > 0 is an integer. Denote
by M(n) the set of n × n real matrices. For any Λ > 0, there exists an ε = ε(Λ) > 0 such that for
every Θ ∈ L2(D+, so(n) ⊗ ∧1R2), F,G ∈ W 1,2 ∩ L∞(D+,M(n)), Q ∈ W 1,2 ∩ L∞(D+,GL(n)), and
W ∈ Lq(D+,M(n)), υ ∈ Ls(D+,Rn) for some 1 < q < 2 and 1 < s < 2, if u ∈ W 1,2(D+,Rn) is a weak
solution of the following elliptic system{

−div (Q∇u) = Θ ·Q∇u+ FΩ ·G∇u+ υ, x ∈ D+,

u = 0, x ∈ ∂0D+,
(3.1)

where ∂0D+ is the flat boundary of D+, and Ω satisfies

−div Ω =W, x ∈ D+ (3.2)

in the weak sense, with the coefficients satisfying the following conditions

‖∇u‖L2(D+) + ‖Θ‖L2(D+) + ‖Ω‖L2(D+) + ‖W‖Lq(D+)

+ ‖∇Q‖L2(D+) + ‖∇F‖L2(D+) + ‖∇G‖L2(D+) ⩽ ε (3.3)

and
|Q|+ |Q−1|+ |F |+ |G| ⩽ Λ a.e. in D+, (3.4)

then for some α ∈ (0, 1), we have

[u]Cα(D+
1/2

) ⩽ C(Λ)(ε+ ‖υ‖Ls(D+)).

In particular, u is Hölder continuous in D+
1/2.

Proof. Recall that we extend the objects appearing in the lemma as follows: For x = (x1, x2), define
x∗ = (x1,−x2),

û(x) =

{
u(x), x ∈ D+,

−u(x∗), x ∈ D−,
υ̂(x) =

{
υ(x), x ∈ D+,

−υ(x∗), x ∈ D−,



660 Ai W J et al. Sci China Math March 2025 Vol. 68 No. 3

and

Q̂(x) =

{
Q(x), x ∈ D+,

Q(x∗), x ∈ D−,

and similarly for the matrix G. For matrices W and F , we extend them oddly, and for Θ and Ω, we
extend them as

Θ̂ =

{
Θ(x), x ∈ D+,

(ρ∗Θ)(x), x ∈ D−,
Ω̂ =

{
Ω(x), x ∈ D+,

−(ρ∗Ω)(x), x ∈ D−,

where ρ : D− → D+ and x 7→ x∗.
Let us first check the equation of Ω̂. First, recall that the above extension makes Ω̂ ∈W 1,2(B) provided

that Ω ∈ W 1,2(D+), which is a consequence of u ≡ 0 on ∂0D+. For any η ∈ C∞
0 (B,Rn), we decompose

it into odd and even parts as follows:

η(x) = ηo(x) + ηe(x), ηo(x) =
1

2
(η(x)− η(x∗)), ηe(x) =

1

2
(η(x) + η(x∗)).

Clearly, ηo(x) = −ηo(x∗) and ηe(x) = ηe(x
∗).

Note that for x ∈ D−,

〈Ω̂(x),∇ηo(x)〉ḡ = 〈Ω(x∗),∇ηo(x∗)〉ḡ, 〈Ω̂(x),∇ηe(x)〉ḡ = −〈Ω(x∗),∇ηe(x∗)〉ḡ,

〈Ŵ (x), ηo(x)〉ḡ = 〈W (x∗), ηo(x
∗)〉ḡ, 〈Ŵ (x), ηe(x)〉ḡ = −〈W (x∗), ηe(x

∗)〉ḡ,

and since ηo ≡ 0 on ∂0D+, test −div Ω =W with ηo, and we obtain

0 =

∫
D+

〈Ω,∇ηo〉ḡ −
∫
D+

〈W,ηo〉ḡ =

∫
D−

〈Ω(x∗),∇ηo(x∗)〉ḡ −
∫
D−

〈W (x∗), ηo(x
∗)〉ḡ,

i.e.,

0 =

∫
D+

〈Ω̂,∇ηo〉ḡ −
∫
D+

〈Ŵ , ηo〉ḡ =

∫
D−

〈Ω̂,∇ηo〉ḡ −
∫
D−

〈Ŵ , ηo〉ḡ. (3.5)

Similarly, ∫
D+

〈Ω,∇ηe〉ḡ −
∫
D+

〈W,ηe〉ḡ =

∫
D−

〈Ω(x∗),∇ηe(x∗)〉ḡ −
∫
D−

〈W (x∗), ηe(x
∗)〉ḡ,

i.e., ∫
D+

〈Ω̂,∇ηe〉ḡ −
∫
D+

〈Ŵ , ηe〉ḡ = −
∫
D−

〈Ω̂,∇ηe〉ḡ +
∫
D−

〈Ŵ , ηe〉ḡ. (3.6)

From (3.5) and (3.6), we obtain∫
D+

〈Ω̂,∇η〉ḡ −
∫
D+

〈Ŵ , η〉ḡ = −
∫
D−

〈Ω̂,∇η〉ḡ +
∫
D−

〈Ŵ , η〉ḡ,

which implies −div Ω̂ = Ŵ in the weak sense.
In the same vein, we can verify that û satisfies the following equation weakly:

−div (Q̂∇û) = Θ̂ · Q̂∇û+ F̂ Ω̂ · Ĝ∇û, x ∈ B.

It can be verified directly that the extended quantities are still in the same Sobolev space as before,
and the conditions (3.3) and (3.4) are satisfied with constants ε and Λ being replaced by a multiple,
respectively. Then, we are ready to employ the interior regularity theorem (see [1, Theorem C] or
Lemma 2.2, to conclude the result).
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As a first application, the above regularity result implies the boundary regularity of weak Dirac-
harmonic maps in stationary Lorentzian manifolds. Recall that for V ⊂ ∂U , the space W k,p

∂ (V,Rn) is
defined as

W k,p
∂ (V,Rn) := {u∂ ∈ L1(V ) : u∂ = ũ|V , ũ ∈W k,p(U)}

with the norm
‖u∂‖Wk,p

∂ (V,Rn) := inf
ũ∈Wk,p(U),

ũ|V =u∂

‖ũ‖Wk,p(U).

Corollary 3.2. Suppose that u∂ ∈ W 2,2
∂ (∂0D+,Rn), and u ∈ W 1,2(D+,Rn) is a weak solution of the

following elliptic system with the non-homogeneous boundary condition
−div (Q∇u) = Θ ·Q∇u+ FΩ ·G∇u+ υ, x ∈ D+,

−div Ω =W, x ∈ D+,

u = u∂ , x ∈ ∂0D+.

(3.7)

If the same condition in Lemma 3.1 is satisfied, then for some α ∈ (0, 1), we have

[u]Cα(D+
1/2

) ⩽ C(Λ)(ε+ ‖υ‖Ls(D+) + ‖u∂‖W 2,2
∂ (∂0D+)).

In particular, u is Hölder continuous in D+
1/2.

Remark 3.3. Since the map φ of a weak Dirac-harmonic map (φ, ψ) ∈ Xw(M,N ) satisfies (3.7),
Corollary 3.2 implies that φ is Hölder continuous on M up to the boundary.
Proof. Consider v = u − ũ, where ũ ∈ W 2,2(D+,Rn), ũ = u∂ on ∂0D+, and u∂ ∈ W 2,2

∂ (∂0D+,Rn).
The equation for v is given by

−div (Q∇v) = Θ ·Q∇v + FΩ ·G∇v + υ̃, x ∈ D+,

−div Ω =W, x ∈ D+,

v = 0, x ∈ ∂0D+,

where
υ̃ := υ +∇Q · ∇ũ+Q ·∆ũ+Θ ·Q∇ũ+ FΩ ·G∇ũ.

Note that
‖υ̃‖Ls ⩽ C(Λ)(ε+ ‖υ‖Ls + ‖ũ‖W 2,2),

and the results follow from the last inequality, Lemma 3.1, and taking the infimum of ũ.

3.2 The removal of singularities

The following removal of singularities for weak Dirac-harmonic maps generalizes the corresponding interior
results to the boundary case; we refer to [2, Theorem 2.6]. Thanks to the structure discovered in [1,
Proposition 4.1], then the removal of the isolated singularities of Dirac-harmonic maps follows as a
corollary of Lemma 3.1.
Corollary 3.4. Suppose that (φ, ψ) ∈ X (D̊+,N ) is a regular Dirac-harmonic map from the punctured
upper half-disc D̊+ = D+ \ {0} to a stationary Lorentzian manifold (N , gN ) satisfying the boundary
condition (1.2) on ∂0D+. Then (φ, ψ) can be extended to a regular Dirac-harmonic map over the whole
upper half-disc D+.
Remark 3.5. The above result generalizes the corresponding result in [12, Theorem 2.8] by removing
the static condition, where the authors addressed the removal of isolated energy of weak harmonic maps
(vanishing spinor fields of Dirac-harmonic maps) into Lorentzian manifolds. The static condition is a
strong one, which simplifies the structure of the equation and even allows for the no-neck property to
hold for a uniformly bounded energy blow-up sequence.
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Remark 3.6. The main improvement relies on the result that the equation of weak Dirac-harmonic
maps from a surface into a static Lorentzian manifold satisfies a good structure (see [1, Proposition 4.1]),
which allows for compensation regularity (see [1, Theorem C]) and generalizes many of the regularity
theorems of harmonic maps and Dirac-harmonic maps. This structure provides a more comprehensive
understanding of the regularity of these maps.
Proof of Corollary 3.4. As the same strategy in the interior case, we can verify that (φ, ψ) ∈ X (D̊+,N )

can be extended to a weak Dirac-harmonic map over the whole upper half-disc D+, and the map
satisfies (3.7). Then, Corollary 3.2 of the regularity result Lemma 3.1 implies that φ is Hölder continuous.
An easy modification of the argument in the interior case (see [1, Theorem 5.1]) to the boundary case
implies that (φ, ψ) is actually regular over the whole upper half-disc D+.

3.3 Small-energy regularity

In this subsection, we state the small-energy regularity, and the proof follows easily from [2, Theorem 2.2]
and [19, Theorem 2.1]. We remark that there is a minor improvement in the range of index q compared
with [19, Theorem 2.1].
Lemma 3.7 (See [2, Theorem 2.2]). There is a small constant ε0 > 0 such that for any (Lp, Lq)-
approximate Dirac-harmonic map (φ, ψ) ∈ X (B,N ), where p, q ∈ (1, 2], if

E(φ, ψ;B) =

∫
B

(|∇φ|2 + |ψ|4) < ε20, (3.8)

then when p, q ∈ (1, 2),

‖φ− φ̄‖W 2,p(B1/2) ⩽ C(‖∇φ‖Lp(B) + ‖τ‖Lp(B)), (3.9)
‖ψ‖W 1,q(B1/2) ⩽ C(‖ψ‖Lq(B) + ‖κ‖Lq(B)), (3.10)

where φ̄ is the integral mean over B and C > 0 is a constant depending only on p, q, and the constant Λ′

given in (2.1). Moreover, if we further assume that (φ, ψ) is a (Λ;L2, L2)-approximate Dirac-harmonic
map, i.e.,

‖τ‖L2(B) + ‖κ‖L2(B) ⩽ Λ < +∞,

then the same results hold for p = q = 2, except that the constant C also depends on Λ.
Let φ̃ be a solution of {

∆φ̃ = 0, x ∈M,

φ̃ = φ∂ , x ∈ ∂M,

i.e., φ̃ is the harmonic extension of φ∂ on M . Since φ∂ ∈ C2,α(∂M), we have

‖φ̃‖C2,α(M) ⩽ C(α,M)‖φ∂‖C2,α(∂M).

For the boundary case, we have the following lemma.
Lemma 3.8. There is a small constant ε′0 > 0 such that for any (Lp, Lq)-approximate Dirac-harmonic
map (φ, ψ) ∈ X (D+,N ) satisfying the boundary condition (1.2) on ∂0D+, where p, q ∈ (1, 2], if

E(φ, ψ;D+) =

∫
D+

(|∇φ|2 + |ψ|4) < (ε′0)
2, (3.11)

then when p, q ∈ (1, 2),

‖φ− φ̄∂‖W 2,p(D+
1/2

) ⩽ C(‖∇φ‖Lp(D+) + ‖τ‖Lp(D+) + ‖∇φ̃‖W 1,p(D+)), (3.12)

‖ψ‖W 1,q(D+
1/2

) ⩽ C(‖ψ‖Lq(D+) + ‖κ‖Lq(D+) + ‖Bψ∂‖W 1−1/q,q(∂0D+)), (3.13)
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where φ̄∂ is the integral mean over ∂0D+ and C > 0 is a constant depending only on p, q, and the constant
Λ′ given in (2.1).

Moreover, if we further assume that (φ, ψ) is a (Λ;L2, L2)-approximate Dirac-harmonic map, i.e.,

‖τ‖L2(D+) + ‖κ‖L2(D+) ⩽ Λ < +∞,

then the same results hold for p = q = 2, except that the constant C also depends on Λ.
Corollary 3.9. Suppose that (φ, ψ) satisfies the condition in Lemma 3.7 or Lemma 3.8. Then by the
Sobolev embedding W 2,p ⊂ C0, we have

‖φ‖osc(B1/2) := sup
x,y∈B1/2

|φ(x)− φ(y)| ⩽ C(‖∇φ‖Lp(B) + ‖τ‖Lp(B))

or
‖φ‖osc(D+

1/2
) := sup

x,y∈D+
1/2

|φ(x)− φ(y)| ⩽ C(‖∇φ‖Lp(D+) + ‖τ‖Lp(D+) + ‖φ∂‖C2,α(∂0D+)),

respectively.

3.4 The gap theorem

We are now ready to prove the gap theorem of Dirac-harmonic maps from R2
+ to stationary Lorentzian

manifolds. This proof is based on the removal of the singularities theorem (see Corollary 3.4), and extends
the corresponding theorem in harmonic maps into Lorentzian harmonic maps to Dirac-harmonic maps,
as seen in [12, Theorem 2.7].
Corollary 3.10. Suppose that (φ, ψ) ∈ X (R2

+,N ) is a regular Dirac-harmonic map satisfying the
boundary condition φ = const. and Bψ = 0 on the boundary ∂R2

+. Then, there exists a constant ε0 > 0

depending on (N , gN ) such that if ∫
R2

+

(|∇φ|2 + |ψ|4) < ε20,

then φ is trivial (constant) and ψ ≡ 0.
Proof. The proof is based on a modification of the argument for Dirac-harmonic maps in [19,
Theorem 1.4]. Consider the conformal map

f : R2
+ → B, (x, y) = z 7→ i

z − i

z + i
= (u, v),

and it is clear that f(i) = 0 and f(∂R2
+) = ∂B\{i}. Also, for gB := du2+dv2 and gR2

+
:= dzdz̄ = dx2+dy2,

we have
(f−1)∗gR2

+
= ζ2gB , ζ =

2

u2 + (v − 1)2
.

Since L(φ ◦ f−1, ξ−1/2ψ ◦ f−1) = L(φ, ψ), we know (φ̃, ψ̃), where

φ̃ := φ ◦ f−1, ψ̃ := ξ−1/2ψ ◦ f−1,

is a regular Dirac-harmonic map on B \ {i}. Since f−1 maps the boundary of B \ {i} to ∂R2
+, and the

boundary condition involves taking no derivatives, we know that the boundary condition is transformed
into φ̃ = 0 and Bψ̃ = 0 on ∂B \ {i}.

By Corollary 3.4, we know that (φ̃, ψ̃) can be extended to a regular Dirac-harmonic map over the
whole ball (B, gB), and the boundary conditions are satisfied over ∂B. Since the positive energy is also
conformal invariant, we have∫

B

|∇φ̃|2 =

∫
B

(|∇φ̃|2 + |ψ̃|4) =
∫
R2

+

(|∇φ|2 + |ψ|4) < ε20.
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Thus, by the elliptic estimates for Dirac equations (see [7, Theorem 1.1]), when ε0 is small enough,
we conclude that ψ̃ ≡ 0 and φ̃ is a harmonic map from B to N with the constant Dirichlet boundary
condition. Now, note that φ̃|∂B is a constant. If we take ε0 < ε′0, then Lemma 3.8 implies

R‖∇φ̃‖L∞(D+
R/2

) ⩽ C‖∇φ̃‖L2(D+
R) ⩽ Cε0, ∀D+

R ⊂ R2
+.

Taking R → +∞, we obtain φ̃ is a constant. Since (φ, ψ) is conformal to (φ̃, ψ̃), we know that φ is a
constant and ψ ≡ 0.

3.5 An elliptic estimate of spinors over the neck

In the proof of the positive energy identity of spinors, we need the following elliptic estimate of spinors
over the neck. Define A+

ρ1,ρ2
:= D+

ρ1
\D+

ρ2
for some ρ1 > ρ2. We refer to [2, Lemma 3.8] for the interior

case.
Lemma 3.11. Suppose that (φ, ψ) ∈ X (A+

ρ1,ρ2
,N ) is a (Λ;L2, L2)-approximate Dirac-harmonic map

satisfying the boundary condition (1.2) on ∂0A+
ρ1,ρ2

= ∂0D+
ρ1

\ ∂0D+
ρ2

, where 0 < 4ρ2 < ρ1 < 1. Then, we
have

‖ψ‖L4(A+
ρ1/2,2ρ2

) + ‖∇ψ‖L4/3(A+
ρ1/2,2ρ2

)

⩽ C0(‖∇φ‖L2(A+
ρ1,ρ2

) · ‖ψ‖L4(A+
ρ1,ρ2

) + ‖ψ‖L4(A+
ρ1,ρ2

)

+ ‖κ‖L4/3(A+
ρ1,ρ2

) + ‖ρ1/41 Bψ∂‖L4/3(∂0D+
ρ1

) + [Bψ∂ ]W 1/4,4/3(∂0D+
ρ1

)), (3.14)

where C0 is a constant independent of ρ1 and ρ2, and the Gagliardo semi norm [u]W s,p(Ω) is defined as

[u]W s,p(Ω) :=

(∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|n+sp
dxdy

)1/p

, 0 < s < 1, 1 ⩽ p < +∞,

and the norm ‖u‖W s,p(Ω) is defined as

‖u‖W s,p(Ω) := (‖u‖pLp(Ω) + [u]pW s,p(Ω))
1/p.

It is easy to verify that under the scaling ψ̃ =
√
ρψ(x0 + ρx), the semi norm [Bψ]W 1/4,4/3 is invariant.

Proof. Note that all the terms in (3.14) are invariant under the scalings φ̃(x) = φ(x0 + ρx) and
ψ̃(x) =

√
ρψ(x0 + ρx). In particular, if we take ρ = ρ0 = ρ2/ρ1, then we only need to prove (3.14) for

ρ1 = 1 and ρ2 = ρ0. Let η0 be a cut-off function such that

η0|A+
1/2,2ρ0

≡ 1, supp η0 ⊂ A+
1,ρ0

, |∇η0| <
4

ρ0
.

By (1.4), we know that

6∂ (η0ψ) = η0(A(dφ(eα), eα · ψ)− Γ(dφ(eα), eα · ψ) + κ(φ, ψ)) +∇η0 · ψ.

Since
|A(dφ(eα), eα · ψ)− Γ(dφ(eα), eα · ψ)| ⩽ C0(Λ

′)|∇φ||ψ|,
the elliptic estimate of the Dirac-operator implies

‖η0ψ‖W 1,4/3(D+) ⩽ C0(Λ
′)(‖η0 · |∇φ| · |ψ|‖L4/3(D+) + ‖η0κ̃‖L4/3(D+)

+ ‖|∇η0| · |ψ|‖L4/3(D+) + ‖η0 · Bψ∂‖W 1/4,4/3(∂D+))

⩽ C0(Λ
′)(‖∇φ‖L2(A+

1,ρ0
)‖ψ‖L4(A+

1,ρ0
) + ‖κ̃‖L4/3(A+

1,ρ0
)

+ ‖ψ‖L4(A2ρ0,ρ0
) + ‖Bψ∂‖W 1/4,4/3(∂0D+)).

Now, note that

‖Bψ∂‖W 1/4,4/3(∂0D+) ⩽ 2(‖Bψ∂‖L4/3(∂0D+) + [Bψ∂ ]W 1/4,4/3(∂0D+)).

Combining it with the Sobolev embedding W 1,4/3(D+) ↪→ L4(D+), and scaling back, we obtain the
result.
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4 The energy identity

In this section, we first prove Theorem 1.2 by applying the standard blow-up procedure to constructing
the bubble tree and reduce the neck region to two types based on the ratio of the blow-up radius and the
distance of the blow-up point to the boundary, as shown in Figures 1 and 2. We then prove the energy
identity for spinors, which is based on the elliptic estimates in Lemma 3.11 over the neck. Finally, we
prove the energy identity for maps, using a new observation which eliminates the need for a Pohozaev-type
argument. Corollary 1.4 will then be proved as an easy consequence.

4.1 The construction of the bubble tree

Suppose that {(φn, ψn)} ⊂ Xw(M,N ) is a sequence of (Λ;L2, L2)-approximate Dirac-harmonic maps
satisfying the boundary condition (1.2), i.e.,

E(φn, ψn;M) ⩽ Λ, ‖τ(φn, ψn)‖L2 + ‖κ(φn, ψn)‖L2 ⩽ Λ,

and {
φn = φ∂ , x ∈ ∂M,

Bψn = Bψ∂ , x ∈ ∂M,

where φ∂ ∈ C2,α(∂M,N ) and ψ∂ ∈ C1,α(∂M,ΣM ⊗ φ−1
n TN|∂M ). The blow-up or energy concentration

set of {(φn, ψn)} is defined by

S :=

{
x ∈M : lim

r→0
lim inf
n→∞

∫
Br(x)∩M

(|∇φn|2 + |ψn|4) ⩾ ε̄20

}
.

A direct consequence of the above definition is the finiteness of S. In fact, suppose {pi}Ii=1 ⊂ S. Then
we can take r small enough such that {Br(pi) ∩M}Li=1 are mutually disjoint, and

Λ ⩾ E(φn, ψn;M) ⩾
I∑

i=1

E(φn, ψn;Br(pi) ∩M).

Taking limits, we obtain I ⩽ Λ/ε̄20 <∞.
Since the energy identity and the no-neck property are proved for the closed Riemannian surface [2],

we focus on the boundary case. Without loss of generality, assume that 0 ∈ ∂M is an isolated energy
concentration point in D+ = B ∩M ⊂M , i.e., for any 0 < r < 1,

lim inf
n→∞

E(φn, ψn;D
+
r ) ⩾ ε̄20.

Let xn ∈ D+ and rn > 0 such that

E(φn, ψn;D
+
rn(xn)) = sup

x∈D+,r⩽rn
D+

r (x)⊂D+

E(φn, ψn;D
+
r (x)) = ε̄20/4. (4.1)

Clearly, by Lemma 3.8, xn → 0 and rn → 0.
We blow up the sequence {(φn, ψn)} at the scale rn and obtain a bubble at the energy concentration

point 0. Let

φ̃n(x) := φn(xn + rnx), ψ̃n(x) :=
√
rnψn(xn + rnx), x ∈ Bn := {x ∈ R2 : xn + rnx ∈ D+}.

Then the equations of φ̃n and ψ̃n are given by

τ̃(φ̃n, ψ̃n) = r2nτ(φn, ψn) = ∆M φ̃n −A(∇φ̃n,∇φ̃n)− P(A(dφ̃n(eα), eα · ψ̃n); ψ̃n)−R(φ̃n, ψ̃n) (4.2)

and
κ̃(φ̃n, ψ̃n) = r3/2n κ(φn, ψn) =6∂ ψ̃n −A(dφ̃n(eα), eα · ψ̃n) + Γ(dφ̃n(eα), eα · ψ̃n) (4.3)
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with boundary data {
φ̃n(x) = φ∂(xn + rnx), xn + rnx ∈ ∂0D+,

Bψ̃n(x) =
√
rnBψ∂(xn + rnx), xn + rnx ∈ ∂0D+.

(4.4)

In order to consider the limit of (φ̃n, ψ̃n), we divide the discussion into two cases based on the limit of
dn/rn. Recall that dn := dist (xn, ∂

0D+).
Case (a) lim supn→∞

dn

rn
< +∞.

In this case, without loss of generality, we may assume that the limit is a real number a ⩾ 0. Note
that Bn → R2

a := {x = (x1, x2) ∈ R2 : x2 ⩾ −a} as n → ∞. It is easy to see that for any R > 0, if we
take n large enough, then

E(φ̃n, ψ̃n;B4R ∩Bn) ⩽ E(φn, ψn;B1/2(xn) ∩D+) ⩽ Λ <∞,

and if we set τ̃n := τ̃(φ̃n, ψ̃n) and similarly for the notations τn, κ̃n, and κn, then

‖τ̃n‖L2(B4R∩Bn) + ‖κ̃n‖L2(B4R∩Bn)

⩽ rn‖τn‖L2(B1/2(xn)∩D+) + r1/2n ‖κn‖L2(B1/2(xn)∩D+) ⩽ Λ <∞.

Thus, by scaling invariance of the energy E(φ̃n, ψ̃n), we may apply Lemma 3.8 to (4.2)–(4.4) to obtain

‖φ̃n‖W 2,2(B4R∩Bn) + ‖ψ̃n‖W 1,2(B4R∩Bn) ⩽ C(R,Λ,Λ′).

Since D+
3R + (0, dn/rn) ⊂ B4R ∩Bn for R > 2|a|, we obtain

‖φ̃n(x− (0, dn/rn))‖W 2,2(D+
3R) + ‖ψ̃n(x− (0, dn/rn))‖W 1,2(D+

3R) ⩽ C(R,Λ,Λ′),

and there exists a subsequence. We will not distinguish such that

(φ̃n(x− (0, dn/rn)), ψ̃n(x− (0, dn/rn)))

converges strongly to some (σ̄, ξ̄) in Xw
loc(R2

+,N ) with boundary data σ̄ = φ∂(0) and Bξ̄ = 0 on ∂R2
+.

Note that for R > 2|a|, we have B2R ∩ Bn ∩ R2
a + (0, a) ⊂ D+

3R and B2R ∩ Bn ∩ R2
a + (0, dn/rn) ⊂ D+

3R,
and therefore, (φ̃n, ψ̃n) converges strongly to (σ̄(x+(0, a)), ξ̄(x+(0, a))) in Xw

0 (B2R∩Bn∩R2
a,N ). Now,

since the measure of B2R∩Bn\R2
a converges to zero, and due to the W 2,2×W 1,2 boundedness of (φ̃n, ψ̃n)

on B4R ∩Bn, we know that

lim
n→∞

‖φ̃n‖W 1,2(BR∩Bn) = ‖σ̄(x+ (0, a))‖W 1,2(BR∩R2
a)
,

lim
n→∞

‖ψ̃n‖L4(BR∩Bn) = ‖ξ̄(x+ (0, a))‖L4(BR∩R2
a)
.

(4.5)

We also note that by (4.1), we have

E(φ̃n, ψ̃n;B1 ∩Bn) = E(φn, ψn;D
+
rn(xn)) = ε̄20/4. (4.6)

Clearly, (4.5) and (4.6) imply E(σ̄, ξ̄;R2
+) ⩾ ε̄20/4, and thus Corollary 3.10 implies that (σ̄, ξ̄) is a

non-trivial Lorentzian Dirac-harmonic map over R2
+ with boundary data σ̄ = φ∂(0) and Bξ̄ = 0. By

the removal of singularities (see Corollary 3.4), we know that (σ̄, ξ̄) is a non-trivial Lorentzian Dirac-
harmonic disc from D to N with the boundary condition σ̄ = const. and Bξ̄ = 0 on ∂B. In particular,
this proves Theorem 1.2(1)(a).
Case (b) lim supn→∞

dn

rn
= +∞.

For this case, the scaled fields (φ̃n, ψ̃n) defined on Bn tend to the whole plane R2 as n→ ∞. Now, for
any y ∈ R2, when n is large enough, (4.1) implies that

E(φ̃n, ψ̃n;B1(y)) ⩽ ε̄20/4.



Ai W J et al. Sci China Math March 2025 Vol. 68 No. 3 667

By Lemma 3.7, there exists a subsequence, still denoted by {(φ̃n, ψ̃n)}, such that (φ̃n, ψ̃n) converges
strongly to some (σ, ξ) ∈ Xw

loc(R2,N ). Moreover, from (4.1), we know that E(σ, ξ;B1) = ε̄20/4 and (σ, ξ)

can be extended to a non-trivial Dirac-harmonic sphere [2, Subsection 3.4], i.e., a bubble. In particular,
this proves Theorem 1.2(1)(b).

Next, we follow the scheme in [10] to construct the bubble tree (see also [22, Appendix] for more details
on such a construction). We still focus on the boundary case, without loss of generality, assuming that
0 ∈ ∂0D+ is an isolated energy concentration point. For large enough n, set Pn := D+

δ \D+
rnR

(xn), where
R > 0 is any large real number, and rn and xn are defined as in (4.1). Usually, Pn is called the neck
region of the bubble corresponding to the data (xn, rn). Based on the limit of dn/rn being finite or not,
we also divide the discussion into two cases.
Case (a′) lim supn→∞

dn

rn
< +∞.

Note that in this case, for any fixed R > 0, when n is large enough, we have that the neck region can
be decomposed as (see Figure 1)

Pn = (D+
δ \D+

δ/2(x
′
n)) ∪ (D+

δ/2(x
′
n) \D+

2rnR
(x′n)) ∪ (D+

2rnR
(x′n) \D+

rnR
(xn)),

and we denote the three regions by Ωi (i = 1, 2, 3). x′n ∈ ∂0D+ is the projection of xn onto ∂0D+, i.e.,

dn = dist (xn, ∂
0D+) = |xn − x′n|.

Since limn→∞ dn/rn < +∞, we know that for any fixed large enough R, when n is large enough, we have

Ω1 ⊂ D+
2δ(xn) \D

+
δ/2(xn), Ω3 ⊂ D+

4rnR
(xn) \D+

rnR
(xn).

Case (b′) lim supn→∞
dn

rn
= +∞.

Note that in this case, for any fixed R > 0, when n is large enough, we have

D+
rnR

(xn) = BrnR(xn) ⊂ D+
δ ,

and from Figure 2, it is clear that the neck region Pn can be decomposed as

Pn = (D+
δ \D+

δ/2(x
′
n)) ∪ (D+

δ/2(x
′
n) \D+

2dn
(x′n))

∪ (D+
2dn

(x′n) \D+
dn
(xn)) ∪ (D+

dn
(xn) \D+

rnR
(xn)),

and we denote the four regions by Ωi (i = 1, 2, 3, 4). Since limn→∞ dn = 0 and limn→∞ dn/rn = +∞,
when n is large enough, we have

Ω1 ⊂ D+
2δ(xn) \D

+
δ/2(xn), Ω3 ⊂ D+

4dn
(xn) \D+

dn
(xn), Ω4 = Bdn

(xn) \BrnR(xn).

First, suppose that there is only one bubble at 0 (either a Lorentzian Dirac-harmonic sphere or a
Lorentzian harmonic disc with the Dirichlet-chiral boundary condition), where 0 is the isolated boundary
energy concentration point in D+. Then, we make the following claim.
Claim 4.1. Under the one-bubble assumption, we have that for any ε > 0, there exist δ = δ(ε) > 0,
R > 0, and n0 = n0(δ,R) > 0 such that for any n ⩾ n0,

E(φn, ψn;D
+
2r(xn) \D+

r (xn)) < ε2, ∀ r ∈ [rnR/2, 2δ]. (4.7)

In particular, this proves Theorem 1.2(2).
In fact, if (4.7) does not hold, then there would exist ε1 > 0, δn → 0, and Rn → ∞ such that for some

r′n ∈ [rnRn/2, 2δn], we have

E(φn, ψn;D
+
2r′n

(xn) \D+
r′n
(xn)) =

∫
D+

2r′n
(xn)\D+

r′n
(xn)

(|∇φn|2 + |ψn|4) ⩾ ε1. (4.8)
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D
+

δ

xn

x
′

n
0 D

+

δ/2(x
′

n)D
+

2rnR
(x′

n) D
+

rnR
(xn)

Ω3 Ω2 Ω1

Figure 1 The neck region Pn is decomposed into three hatched regions in Case (a′)

D
+

δ

xn

x
′

n
0

D
+

rnR
(xn)

D
+

δ/2(x
′

n)D
+

2dn

(x′

n)

D
+

dn

(xn)

Ω4Ω3 Ω3 Ω2 Ω1

Figure 2 The neck region Pn is decomposed into four hatched regions in Case (b′)

We show that, in that case, there is another bubble. For that purpose, let

φ′n(x) := φn(xn + r′nx), ψ′
n(x) :=

√
r′nψn(xn + r′nx), x ∈ B′

n := {x ∈ R2 : xn + r′nx ∈ D+}.

Clearly, (φ′n, ψ′
n) is also an (L2, L2)-approximate Dirac-harmonic map with

τ ′n := τ(φ′n, ψ
′
n) = r′n

2
τ(φn, ψn), κ′n := κ(φ′n, ψ

′
n) = r′n

3/2
κ(φn, ψn),

which imply
E(φ′n, ψ

′
n;B

′
n) ⩽ E(φn, ψn;D

+) ⩽ Λ <∞

and
‖τ ′n‖L2(B′

n)
+ ‖κ′n‖L2(B′

n)
⩽ r′n‖τn‖L2(D+) + r′n

1/2‖κn‖L2(D+) ⩽ Λ <∞.

By passing to a subsequence if necessary, we may assume

lim
n→∞

dn/r
′
n = b ∈ [0,+∞].
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We divide the discussion into two cases: (1) b = +∞ and (2) b < +∞. Clearly, when b = +∞, B′
n → R2,

and when b < +∞,
B′

n → R+
b := {x = (x1, x2) ∈ R2 : x2 > −b}.

Note that in Case (a′), we must have b = 0.
Claim 4.2. 0 ∈ S ′, where S ′ is the blow-up set of {(φ′n, ψ′

n)}.
In fact, by the definitions of rn and xn, we know that for any r > 0, if n is large enough, then∫

Br∩B′
n

(|∇φ′n|2 + |ψ′
n|4) =

∫
Brn·r·r′n/rn

(xn)∩D+

(|∇φn|2 + |ψn|4)

⩾
∫
D+

rn (xn)

(|∇φn|2 + |ψn|4) = ε̄20/4, (4.9)

because r′n/rn > Rn/2 → ∞. This clearly implies that 0 is an energy concentration point for {(φ′n, ψ′
n)}.

Otherwise, by the finiteness of energy concentration points, we can take r small enough such that Br∩B′
n

contains no energy concentration point. By Lemma 3.7, (φ′n, ψ
′
n) → (σ′, ξ′) weakly in X (Br,N ) and

E(φ′n, ψ
′
n;Br) → E(σ′, ξ′;Br) when b = +∞; similarly, by Lemma 3.8, (φ′n, ψ

′
n) → (σ′, ξ′) weakly in

X (Br ∩ R+
b ,N ) and E(φ′n, ψ

′
n;Br ∩ R+

b ) → E(σ′, ξ′;Br ∩ R+
b ) when b < +∞; in both cases, the energy

E(φ′n, ψ
′
n;Br ∩B′

n) tends to 0 as r → 0, a contradiction to (4.9), and the claim is proved.
The proof of Claim 4.1 is based on the idea that if the claim is false, we can construct an additional

bubble that contradicts the assumption of having only one bubble. To establish this, we divide the
argument into the following cases:

(1) Case b < +∞. In this case, B′
n → R2

b as n→ ∞.
To construct an alternative bubble, we further divide the argument into the following two cases:
(1a) {(φ′n, ψ′

n)} has no other energy concentration point.
In this case, similar to the proof of Case (a), the small energy condition is satisfied on any B1(y)∩B′

n

for (φ′n, ψ′
n), and thus we can apply Lemma 3.8 to showing that there exists a Lorentzian Dirac-harmonic

map (σ̄′, ξ̄′) ∈ Xloc(R2
+,N ) with boundary data σ̄′ = φ∂(0) and Bξ̄′ = 0 on ∂R2

+ such that by passing to
a subsequence if necessary, we have

lim
n→∞

‖φ′n‖W 1,2(BR∩B′
n)

= ‖σ̄′(x+ (0, b))‖W 1,2(BR∩R2
b)
,

lim
n→∞

‖ψ′
n‖L4(BR∩B′

n)
= ‖ξ̄′(x+ (0, b))‖L4(BR∩R2

b)
.

The above norm-convergence and (4.8) imply that

E(σ̄′, ξ̄′;R2
+) ⩾ E(σ̄′(x+ (0, b)), ξ̄′(x+ (0, b));BR ∩ R2

b)

= lim
n→∞

E(φ′n, ψ
′
n;BR ∩B′

n)

= lim
n→∞

E(φn, ψn;Br′nR(xn) ∩D
+)

⩾ lim inf
n→∞

E(φn, ψn;D
+
2r′n

(xn) \D+
r′n
(xn)) ⩾ ε1.

By the conformal invariance of Lorentzian harmonic maps, the removal of singularities (see Corollary 3.4)
and the gap theorem (see Corollary 3.10) imply that (σ̄′, ξ̄′) can be extended to a non-trivial Lorentzian
Dirac-harmonic disc, which can be viewed as another bubble with a boundary, and contradicts the “one
bubble” assumption.

(1b) {(φ′n, ψ′
n)} has another energy concentration point p 6= 0.

Since the blow-up set of {(φ′n, ψ′
n)} is a finite point set, we may assume that p is an isolated energy

concentration point in B(p)∩B′
n. Similar to the proceeding blow-up argument, there exist subsequences

x′′n → p ∈ B(p) ∩B′
n and r′′n → 0 such that

E(φ′n, ψ
′
n;Br′′n

(x′′n) ∩B′
n) = sup

x∈B(p)∩B′
n,r⩽r′′n

Br(x)∩B′
n⊂B(p)∩B′

n

E(φ′n, ψ
′
n;Br(x) ∩B′

n) = ε̄20/4. (4.10)
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For x ∈ B′′
n := {x′′n + r′′nx ∈ B′

n}, define

φ′′n(x) := φ′n(x
′′
n + r′′nx) = φn(xn + r′nx

′′
n + r′nr

′′
nx),

ψ′′
n(x) :=

√
r′′nψ

′
n(x

′′
n + r′′nx) =

√
r′nr

′′
nψn(xn + r′nx

′′
n + r′nr

′′
nx).

Taking a subsequence if necessary, we may assume (note that by the definition of r′′n, we must have
r′nr

′′
n > rn)

lim
n→∞

dn + r′nd
′
n

r′′nr
′
n

= lim
n→∞

b+ d′n
r′′n

= d ∈ [0, ā], d′n = dist (x′′n, ∂B
′
n), ā = lim sup

n→∞

dn
rn
.

It is clear that if d ⩽ ā < +∞, then b = 0 and limn→∞ d′n/r
′′
n = d. As in the proof of Case (a),

Lemmas 3.7 and 3.8 imply that (φ′′n, ψ
′′
n) sub-converges weakly to some Dirac-harmonic maps (σ̄′′(· +

(0, d)), ξ̄′′(· + (0, d))) in Xloc(R2
d,N ). The boundary condition for (σ̄′′, ξ̄′′) ∈ Xloc(R2

+,N ) is given by
σ̄′′ = φ∂(0) and Bξ̄′′ = 0 on ∂R2

+. By (4.10),

E(σ̄′′, ξ̄′′;R2
+) ⩾ E(σ̄′′(·+ (0, d)), ξ̄′′(·+ (0, d));D+ ∩ R2

d)

= lim
n→∞

E(φ′′n, ψ
′′
n;D

+ ∩B′′
n)

= lim
n→∞

E(φ′n, ψ
′
n;D

+
r′′n
(x′′n) ∩B′

n) ⩾ ε̄20/4.

Thus, similar to Case (1a), (σ̄′′, ξ̄′′) can be extended to a non-trivial Lorentzian Dirac-harmonic disc, i.e.,
a bubble with a boundary.

If in the case d = ā = +∞, B′′
n → R2, then similar to the construction of the bubble in Case (b),

(φ′′n, ψ
′′
n) sub-converges to some Dirac-harmonic map (σ′′, ξ′′) ∈ Xw

loc(R2,N ). Moreover, by the choices of
x′′n and r′′n (see (4.10)), we know that (σ′′, ξ′′) is a non-trivial Dirac-harmonic map on R2, and the removal
of singularities Corollary 3.4 implies that it is a bubble.

No matter whether d is finite or not, we can claim that the above-obtained bubble is a new one by
verifying that the blow-up data (xn + r′nx

′′
n, r

′
nr

′′
n) of (σ̄′′, ξ̄′′) and (σ′′, ξ′′) satisfy

lim
n→∞

|(xn + r′nx
′′
n)− xn|

rn + r′nr
′′
n

= lim
n→∞

|x′′n|
rn/r′n + r′′n

= ∞,

as r′′n → 0, r′n/rn = Rn → ∞, and x′′n → p 6= 0. In fact, [5, Lemma 3.6] shows two bubbles with blow-up
data that violate (1.9) differ by an affine transformation. Thus, (σ̄′′, ξ̄′′) is a bubble different from (σ̄, ξ̄)

and (σ′′, ξ′′) is a bubble different from (σ, ξ).
(2) Case b = +∞. In this case, B′

n → R2 as n→ ∞.
As in the case b < +∞ that we have already considered, to construct an alternative bubble, we further

divide the argument into two cases.
(2a) {(φ′n, ψ′

n)} has no other energy concentration point.
In this case, we know that by Lemma 3.7, (φ′n, ψ

′
n) → (σ′, ξ′) weakly in Xloc(R2 \ {0},N ). By

Corollary 3.4, (σ′, ξ′) is a Dirac-harmonic map over S2. Since by (4.8),

E(φ′n, ψ
′
n;B2 \B1) = E(φn, ψn;B2r′n

(xn) \Br′n
(xn)) ⩾ ε1,

(σ′, ξ′) is a bubble. Note that the data for (σ′, ξ′) are (xn, r
′
n), which clearly satisfy (1.9), so (σ′, ξ′) and

(σ, ξ) are distinct bubbles.
(2b) {(φ′n, ψ′

n)} has another energy concentration point p 6= 0.
Since p is an energy concentration point of {(φ′n, ψ′

n)} and the blow-up set is a finite point set, we
may assume that p is an isolated energy concentration point in B(p). We can do the same procedure as
before to blow up (φ′n, ψ

′
n) such that for some x′′n → p ∈ B(p) and r′′n → 0 satisfying (4.10), we have that

(φ′′n(x), ψ
′′
n(x)) converges to a bubble (σ′′, ξ′′) weakly in Xloc(R2,N ), where

φ′′n(x) := φ′n(x
′′
n + r′′nx) = φn(xn + r′nx

′′
n + r′nr

′′
nx),
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ψ′′
n(x) :=

√
r′′nψ

′
n(x

′′
n + r′′nx) =

√
r′nr

′′
nψn(xn + r′nx

′′
n + r′nr

′′
nx).

Note that in this case, we must have d = +∞, which is clear from b = +∞ and the definition of d.
Similar to Case (1b), we can verify that the blow-up data of (σ′′, ξ′′) satisfy (1.9). So (σ′′, ξ′′) is a new
bubble distinct from (σ, ξ).

In conclusion, assuming that Claim 4.1 is false, then we can always construct a new bubble distinct
from the original one, which contradicts the one-bubble assumption. This finishes the proof of Claim 4.1
under the one-bubble assumption.

4.2 The energy identity for spinors

Next, we prove the positive energy identity (1.5) for spinors in Theorem 1.2. We remark that the proof
depends only on the elliptic estimates of Lemma 3.11. Let us decompose the neck region into finitely
many parts, i.e.,

Pn =

Q′
n⋃

k=1

P k, P k = A+
rk+1,rk

,

where Q′
n ⩽ Q and Q is a uniform integer independent of n such that

E(φn;P
k) ⩽ 1

4C2
, k = 1, . . . , Q′

n, (4.11)

where C is the constant in Lemma 3.11. In fact, we can start from Claim 4.1 and increase the length
of P k until the energy of φn on P k reaches 1/(4C2), do this again and again, and we get the partition.
As our energy E(φn, ψn) is uniformly bounded by Λ, the number of such divisions is uniformly bounded.
We refer to [24, p. 134ff] for more details. Applying Lemma 3.11 on each P k, we have

‖ψn‖L4(Pk) ⩽ C(‖∇φn‖L2(A+
2rk+1,rk/2

)‖ψn‖L4(A+
2rk+1,rk/2

) + ‖ψn‖L4(A+
2rk+1,rk/2

) + ‖κn‖L4/3(A+
2rk+1,rk/2

)

+ ‖(2rk+1)
1/4Bψ∂‖L4/3(∂0D+

2rk+1
) + [Bψ∂ ]W 1/4,4/3(∂0D+

2rk+1
))

⩽ C(‖∇φn‖L2(Pk)‖ψn‖L4(Pk) + ‖κn‖L4/3(D+
2rk+1

))

+ C(‖(2rk+1)
1/4Bψ∂‖L4/3(∂0D+

2rk+1
) + [Bψ∂ ]W 1/4,4/3(∂0D+

2rk+1
))

+ C(‖∇φn‖L2(Ark,rk/2) + ‖∇φn‖L2(A2rk+1,rk+1
))‖ψn‖L4(Pk)

+ C‖∇φn‖L2(Pk)(‖ψn‖L4(Ark,rk/2) + ‖ψn‖L4(A2rk+1,rk+1
))

+ C(‖ψn‖L4(Ark,rk/2) + ‖ψn‖L4(A2rk+1,rk+1
))

× (‖∇φn‖L2(Ark,rk/2) + ‖∇φn‖L2(A2rk+1,rk+1
)) + C‖ψn‖L4(Ark,rk/2).

By Claim 4.1, we know that

‖∇φn‖L2(Ark,rk/2) + ‖ψn‖L4(Ark,rk/2) ⩽ 2
√
ε,

and combining it with (4.11) and the boundedness of the energy E(φn, ψn), we obtain

‖ψn‖L4(Pk) ⩽ C(‖κn‖L4/3(D+
2rk+1

) + ‖(2rk+1)
1/4Bψ∂‖L4/3(∂0D+

2rk+1
) + [Bψ∂ ]W 1/4,4/3(∂0D+

2rk+1
) +

√
ε).

We also note that
‖κn‖L4/3(D+

2rk+1
) ⩽

√
2rk+1‖κn‖L2(D+

2rk+1
) ⩽ Λ

√
2δ.

Finally, since ψ∂ ∈ C1,α(∂M,ΣM ⊗ φ−1TN ) for some α ∈ (0, 1), we obtain

‖(2rk+1)
1/4Bψ∂‖L4(∂0D+

2rk+1
) + ‖Bψ∂‖W 1/4,4/3(∂0D+

rk+1
)

⩽ C(r
1/4
k+1‖ψ∂‖L∞(∂0D+

2rk+1
)|∂

0D+
2rk+1

|1/4 + [ψ∂ ]C0,1(∂0D+
2rk+1

)|∂
0D+

2rk+1
|3/2)



672 Ai W J et al. Sci China Math March 2025 Vol. 68 No. 3

⩽ C‖ψ∂‖C1,α(∂0M)(r
1/2
k+1 + r

3/2
k+1) ⩽ C(δ1/2 + δ3/2).

In conclusion,
‖ψn‖L4(Pk) ⩽ C(

√
ε+

√
δ + δ3/2), (4.12)

and the finiteness of the number of {P k} implies

lim
δ→0

lim
R→∞

lim
n→∞

‖ψn‖L4(D+
δ \D+

Rrn
(xn))

= 0, (4.13)

which is equivalent to the positive energy identity (1.5) of spinors in Theorem 1.2. In particular, this
proves Theorem 1.2(3).

4.3 The energy identity for maps

To prove Theorem 1.2(4), we only consider the case Ω2 = D+
δ/2(x

′
n) \D+

2dn
(x′n). The argument is based

on Claim 4.1, which holds in either case, so the case Ω2 = D+
δ/2(x

′
n) \D+

2rnR
(x′n) can be proved without

any further difficulty.
Firstly, we transform Claim 4.1 to regions centered at x′n as follows: For any 2dn ⩽ r ⩽ δ, we have

D+
2r(x

′
n) \D+

r (x
′
n) ⊂ D+

4r(xn) \D
+
r/2(xn).

Thus, Claim 4.1 implies

E(φn, ψn;D
+
2r(x

′
n) \D+

r (x
′
n)) ⩽ 3ε2, ∀ r ∈ [2dn, δ],

and applying the above small energy condition to Corollary 3.9, we see that the standard scaling argument
induces

oscD+
2r(x

′
n)\D

+
r (x′

n)
φn ⩽ C(‖∇φ‖L2(D+

4r(x
′
n)\D

+
r/2

(x′
n))

+ ‖rτ‖L2(D+
4r(x

′
n)\D

+
r/2

(x′
n))

+
√
r‖φ∂‖C2,α(∂0D+

4r(x
′
n)\∂0D+

r/2
(x′

n))
)

⩽ C(ε+
√
δ). (4.14)

In order to estimate the energy of φn on Ω2, let us define Ω̂2 : = Bδ/2(x
′
n) \ B2dn(x

′
n) and un(x) : =

φn(x)− φ̃(x) for x ∈ Ω2. Recalling that φ̃ is the harmonic extension of φ∂ over M and

ûn :=

{
un(x), x ∈ Ω2,

−un(x∗), x ∈ Ω̂2 \ Ω2,

we see that ûn ∈W 2,2(Ω̂2) satisfying the following equation:

∆ûn(x) =

{
∆φn(x)−∆φ̃, x ∈ Ω2,

−(∆φn(x
∗)−∆φ̃(x∗)), x ∈ Ω̂2 \ Ω2.

We also recall that

∆φn(x) = A(∇φn,∇φn)(x) + P(A(dφn(eα), eα · ψn);ψn)(x) +R(φn, ψn)(x) + τ(φn, ψn)(x)

and

|A(∇φn,∇φn) + P(A(dφn(eα), eα · ψn);ψn) +R(φn, ψn)| ⩽ C(Λ′)(|∇φn|2 + |∇φn| · |ψn|2).

Without loss of generality, we may assume δ/2 = 2Tn(2dn). Although the energy of φn is as small as
that required on each A+

2r,r(x
′
n), the main obstruction is that the number of that kind of annular regions

tends to infinity as n→ ∞. Let us define

A+
i := A+

2i+1dn,2idn
(x′n) := D+

2i+1dn
(x′n) \D+

2idn
(x′n),
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Ai := A2i+1dn,2idn
= B2i+1dn

(x′n) \B2idn
(x′n),

and Si := ∂B2idn
(x′n). For simplicity, we drop the subscript n, and write ûn as û and so on, whenever

there is no confusion. Now, let us consider a vector-valued piecewise linear function h = h(|x|) on Ω̂2

such that h(2idn) equals the integral mean value of û on Si. In fact, by our construction of û, we have
h ≡ 0. It is clear that ∆(û− h) = ∆û, and in order to compare it with the argument of [12], we keep h

for the sake of consistency, i.e.,∫
Ai

|∇(û− h)|2 = −
∫
Ai

∆û · (û− h) +

(∫
Si

−
∫
Si+1

)(
(û− h) · ∂û

∂r

)
⩽ C(ε+

√
δ)

∫
Ai

|∆û|+
(∫

Si

−
∫
Si+1

)(
(û− h) · ∂û

∂r

)
,

where we employ (4.14) to obtain

‖û− h‖L∞(Ω̂2)
= max

1⩽i⩽Tn

‖û‖L∞(Ai) ⩽ max
1⩽i⩽Tn

‖û‖osc(Ai) (since û = 0 on ∂0D+ ∩ Ω2)

⩽ 2 max
1⩽i⩽Tn

‖u‖osc(A+
i ) ⩽ C(ε+

√
δ). (4.15)

Now, since ∫
Ai

|∆û| =
∫
A+

i

|∆u|+
∫
Ai\A+

i

|−∆u(x∗)| = 2

∫
A+

i

|∆u|

⩽ C(Λ′)

∫
A+

i

(|∇φn|2 + |∇φn| · |ψn|2 + |τ(φn, ψn)|+ |∆φ̃|)

⩽ C(Λ′)

[ ∫
A+

i

(|∇φn|2 + |∇φn| · |ψn|2) + 2idn(‖τ‖L2(A+
i ) + ‖φ̃‖C2,α(A+

i ))

]
⩽ C(Λ′,Λ, ‖φ∂‖C2,α(∂M))

[ ∫
A+

i

(|∇φn|2 + |ψn|4) + 2idn

]
,

which implies that, noting that1) h ≡ 0, we drop the dependence on C for simplicity in what follows,∫
Ai

|∇û|2 ⩽ C(ε+
√
δ)

[ ∫
A+

i

(|∇φn|2 + |ψn|4) + 2idn

]
+

(∫
Si

−
∫
Si+1

)(
(û− h) · ∂û

∂r

)
.

We also note that∫
Ai

|∇û|2 =

∫
A+

i

|∇u|2 +
∫
Ai\A+

i

|−∇u(x∗)|2 = 2

∫
A+

i

|∇u|2 ⩾ 2

∫
A+

i

(|∇φn|2 − |∇φ̃|2),

and thus,

(2− C(ε+
√
δ))

∫
A+

i

|∇φn|2 ⩽ C(ε+
√
δ)

[ ∫
A+

i

|ψn|4 + 2idn

]
+

(∫
Si

−
∫
Si+1

)(
(û− h) · ∂û

∂r

)
.

Taking ε and δ small enough, we see that∫
A+

i

|∇φn|2 ⩽ C(ε+
√
δ)

[ ∫
A+

i

|ψn|4 + 2idn +

(∫
Si

−
∫
Si+1

)(
(û− h) · ∂û

∂r

)]
. (4.16)

Summing over i = 1, 2, . . . , Tn, we obtain∫
Ω2

|∇φn|2 ⩽ C(ε+
√
δ)

[ ∫
Ω2

|ψn|4 + δ

]
+

(∫
S1

−
∫
STn+1

)(
(û− h) · ∂û

∂r

)
.

1) In the case h ̸≡ 0, we only have the tangent energy of û controlled, and we need a Pohozaev-type argument to control
the total energy by the tangent one.
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Finally, let us estimate the boundary term. Applying the trace theorem W 1,2(Ω) ↪→ L2(∂Ω) and
noting (4.15), we have that for r = 2dn or r = δ/2,∫

∂Br(x′
n)

(û− h) · ∂û
∂r

⩽ C(ε+
√
δ)

∫
∂Br(x′

n)

|∇û|

⩽ C(ε+
√
δ)

∫
∂+Dr(x′

n)

|∇u|

⩽ C(ε+
√
δ)

∫
∂+Dr(x′

n)

(|∇φn|+ |∇φ̃|)

⩽ C(ε+
√
δ)

[√
r

(∫
∂+Dr(x′

n)

|∇φn|2
)1/2

+ 1

]
.

Now, the scaling argument shows

r

∫
∂+Dr(x′

n)

|∇φn|2 ⩽
∫
A+

3r/2,3r/4
(x′

n)

|∇φn|2 + r2
∫
A+

3r/2,3r/4
(x′

n)

|∇2φn|2,

and by Lemma 3.8, we have

RHS ⩽ C(‖∇φn‖L2(A+
2r,r/2

(x′
n))

+ r‖τ‖L2(A+
2r,r/2

(x′
n))

+
√
r‖φ∂‖C2,α(∂0D+

δ )) ⩽ C.

Plugging this back in, we obtain the boundary term(∫
S1

−
∫
STn+1

)(
(û− h) · ∂û

∂r

)
⩽ C(ε+

√
δ).

In conclusion, ∫
Ω2

|∇φn|2 ⩽ C(ε+
√
δ)

[ ∫
Ω2

|ψn|4 + 1

]
,

and thus, (1.6) follows from the energy identity of ψn. In particular, Theorem 1.2(4) is proved, and the
proof of Theorem 1.2 is finished.
Proof of Corollary 1.4. Firstly, we can repeat the steps in the proof of Claim 4.1 to obtain the whole
bubble tree, and the relation of blow-up data holds for each bubble, as illustrated in the proof of Claim 4.1,
and moreover on each neck (4.7) holds. By Lemmas 3.7 and 3.8, we have

• (φn, ψn) → (φ∞, ψ∞) weakly in X0(M \ S,N ) and strongly in Xw
0 (M \ S,N ) as n→ ∞;

• (φln,i, ψ
l
n,i) → (σl

i, ξ
l
i) weakly in X (S2,N ) and strongly in Xw(S2,N ) as n→ ∞.

Clearly, with the above observation at hand, the energy identities (1.7), (1.8), and (1.10) are equivalent
to there being no energy on the neck Pn := D+

δ \D+
rnR

(xn), i.e.,

lim
R→∞

lim
δ→0

lim
n→∞

E(ψn;Pn) = 0, (4.17)

lim
R→∞

lim
δ→0

lim
n→∞

Eg(φn;Pn) = 0, (4.18)

lim
R→∞

lim
δ→0

lim
n→∞

E(φn;Pn) = 0, (4.19)

respectively. In particular, (1.7) follows from (1.5).
By the neck region decomposition, we know that the neck region

Pn = Ω1 ∪ Ω2 ∪ Ω3

in Case (a′) or
Pn = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4

in Case (b′). By Claim 4.1, we know that in either case,

E(φn, ψn; Ω1) + E(φn, ψn; Ω3) ⩽ 3ε2.
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Since Ω4 = Bdn(xn) \ BrnR(xn), the energy identity of approximate Dirac-harmonic maps with interior
energy concentration points (see [2, Theorem 1.2]) implies

lim
R→∞

lim
n→∞

Eg(φn, ψn; Ω4) = 0,

and in the static case,
lim

R→∞
lim

n→∞
E(φn, ψn; Ω4) = 0.

Therefore, the energy identities for φn, i.e., (1.8) and (1.10), which are equivalent to (4.18) and (4.19)
respectively, follow from (1.6), i.e., the energy is as small as possible on Ω2. The connecting of images is
proved in [2, Theorem 1.4] since we only consider interior blow-up points. This finishes the proof.
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