
. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

March 2013, Vol. 56 032112:1–032112:9

doi: 10.1007/s11432-011-4343-3

c© Science China Press and Springer-Verlag Berlin Heidelberg 2011 info.scichina.com www.springerlink.com

Finding orthogonal latin squares using finite model
searching tools

MA FeiFei & ZHANG Jian∗

State key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
Beijing 100190, China

Received April 22, 2010; accepted August 23, 2010; published online September 7, 2011

Abstract An important class of problems in combinatorics is to find orthogonal latin squares with certain

properties. Computer search is a promising approach for solving such problems. But generally its worst-

case complexity is high. This paper describes how to use a general-purpose model searching program to find

orthogonal latin squares. New techniques for problem representation and symmetry breaking are proposed to

increase search efficiency.

Keywords latin squares, finite models, symmetry

Citation Ma F F, Zhang J. Finding orthogonal latin squares using finite model searching tools. Sci China Inf

Sci, 2013, 56: 032112(9), doi: 10.1007/s11432-011-4343-3

1 Introduction

The latin square is a fascinating combinatorial structure, attracting much attention from mathematicians

and computer scientists [1]. It was introduced by Leonhard Euler in 1783 as a new kind of magic squares,

and plays an important role in various fields, such as in combinatorics, statistics and informatics.

Latin squares have been studied by many mathematicians for more than two hundred years. They

have developed a rich set of methods for constructing latin squares with certain properties (or proving

their non-existence). But there are still a lot of open problems, among which the existence of orthogonal

latin squares is a very challenging one.

Euler was the first to state the problem. He asked if it is possible to arrange 36 officers drawn from

6 ranks and 6 regiments in a square so that in each row and column there are 6 officers of different

ranks and different regiments. It is known as the famous 36 officer problem, and the square, if exists, is

equivalent to two orthogonal latin squares of order 6. Euler went on to conjecture that such a square does

not exist for n = 6, nor does one exist whenever n ≡ 2 (mod 4). In 1959, Bose, Shrikhande and Parker

disproved Euler’s conjecture [2], which was quite astonishing at that time. Nevertheless, the orthogonal

latin square problem is far from being completely resolved. It remains a great challenge to find out the

spectrum of orthogonal latin squares of certain sizes, i.e., the number of latin squares that are mutually

orthogonal. This problem is not only of great importance to combinatorics, but also closely related to

other fields such as quantum informatics [3].

∗Corresponding author (email: zj@ios.ac.cn)

 https://engine.scichina.com/doi/10.1007/s11432-011-4343-3

Ma F F, et al. Sci China Inf Sci March 2013 Vol. 56 032112:2

As computers become more and more powerful, they have also been used for finding latin squares (esp.

when the size of the square is small). See for example [4, 5]. To solve a specific problem in combinatorics,

one can either design a special-purpose algorithm and tool, or use a general-purpose search program. In

this paper, we shall focus on the latter approach. In particular, we are interested in satisfiability checkers

for the classical logics (or finite model searchers for the first-order predicate logic, e.g. SEM [6]). We

shall discuss some ideas that will be helpful to find orthogonal latin squares using these tools.

2 Basic concepts

In this section, we recall some basic definitions and notations. They are often used in the literature of

combinatorial designs. See, for example, [7].

Definition 1. A latin square of order n is an n× n array in which each cell is an element of an n-set

D, such that each element occurs exactly once in each row and column.

In this paper, we assume that D = {0, 1, . . . , n− 1}. We also introduce two other n-sets R and C, and
let R be the set of row indices and C the set of column indices. For a latin square L, we denote by L(i, j)

the cell value (or the element) on the ith row and the jth column.

Definition 2. A quasigroup is an ordered pair (Q,⊗), where Q is a set and ⊗ is a binary operation

on Q such that the equations a⊗ x = b and y ⊗ a = b are uniquely solvable for every pair of elements a,

b in Q.

Here the operator ⊗ may have many choices, for instance, the subtraction over integers, or the division

over nonzero reals. In this paper, we only discuss quasigroups on finite set. The multiplication table of

such a quasigroup defines a latin square.

Definition 3. A pair of Latin squares of order n is said to be orthogonal if the n2 pairs of elements

formed by juxtaposing the two squares are all distinct. More formally, two latin squares L1 and L2 are

said to be orthogonal if for any x, y ∈ R, and z, w ∈ C,
(L1(x, z) = L1(y, w) ∧ L2(x, z) = L2(y, w)) → (x = y ∧ z = w).

Here ∧ denotes conjunction (AND), → denotes implication. If two latin squares are orthogonal, one is

called the orthogonal mate of the other.

Example 1. LS1 and LS2 are two orthogonal latin squares. When juxtaposed, we can see that all

ordered pairs of cells are distinct.

1 2 3 0 3 2 1 0 13 22 31 00

3 0 1 2 2 3 0 1 32 03 10 21

2 1 0 3 0 1 2 3 20 11 02 33

0 3 2 1 1 0 3 2 01 30 23 12

LS1 LS2 LS1 and LS2 juxtaposed

Definition 4. Two quasigroups (Q,⊗) and (Q,�) defined on the same set Q are orthogonal if the

equations x⊗ y = z ⊗ w and x� y = z � w together imply x = z and y = w.

Example 2. Consider two quasigroups (Q,⊗) and (Q,�), where Q is a finite set of integers {0,1,2}, ⊗
is defined as x⊗ y = (x− y) (mod 3), and � is defined as x� y = (2x− y) (mod 3). Their multiplication

tables are as follows:

⊗ 0 1 2

0 0 2 1

1 1 0 2

2 2 1 0

� 0 1 2

0 0 2 1

1 2 1 0

2 1 0 2

 https://engine.scichina.com/doi/10.1007/s11432-011-4343-3

Ma F F, et al. Sci China Inf Sci March 2013 Vol. 56 032112:3

The two quasigroups are orthogonal, since (x − y) (mod 3) = (z − w) (mod 3) and (2x − y) (mod 3) =

(2z − w) (mod 3) imply that x (mod 3) = z (mod 3), and further we have x = z, y = w.

When two quasigroups are orthogonal, their corresponding latin squares are also orthogonal in the

usual sense [7]. In the above example, the orthogonality of the latin squares can be easily verified.

Definition 5. A set of latin squares is mutually orthogonal, if any two latin squares in the set are

orthogonal. In this case, the set is called a set of MOLS.

Given positive integers n and k (n > 1, k > 1), it is interesting to find k MOLS of size n. Such a

problem is denoted k-MOLS(n). For n = 10 and k = 3, the case is still open. In other words, we do not

know whether there exist 3 MOLS of order 10. In the sequel, we will mainly use 2-MOLS(n) to compare

different techniques.

Definition 6. The transpose of a latin square L is the matrix created by reflecting L by its main

diagonal (which starts from the top left).

Obviously the transpose of a latin square is also a latin square.

Definition 7. A self-orthogonal latin square (SOLS) is a latin square that is orthogonal to its transpose.

A SOLS of size n is often denoted by SOLS(n). For example, the following square is a SOLS(4):

0 2 3 1

3 1 0 2

1 3 2 0

2 0 1 3

Definition 8. A SOLSSOM(n) denotes a self-orthogonal latin square of size n with a symmetric

orthogonal mate, which is a pair (S, M) such that S is a SOLS(n) and M is a symmetric latin square of

order n that is orthogonal to both S and the transpose of S.

Definition 9. A permutation is a bijective mapping from a finite set to itself.

There are two main notations for a permutation. In relation notation, one can just arrange the original

ordering of the elements being permuted on a row, and the new ordering on another row, for example,(
0 1 2 3 4

1 0 3 4 2

)

stands for the permutation s of the set {0, 1, 2, 3, 4} defined by s(0) = 1, s(1) = 0, s(2) = 3, s(3) =

4, s(4) = 2. Alternatively, a permutation can be denoted by its decomposition in a product of disjoint

cycles, and each cycle (x1 x2 · · ·xk) stands for the permutation that maps xi to xi+1 (i = 1, . . . , k − 1)

and xk to x1. For example, the permutation s can also be denoted by (0 1)(2 3 4). The order of the

cycles in the product does not matter. In this paper, the cycles are ordered non-descendingly by their

lengths.

3 Modeling

We use first order logic as the modeling language to formulate the MOLS problem and encode the

constraints as a set of first order formulas. In this paper, we assume that all the free variables in a logical

formula are universally quantified, unless specified otherwise.

Definition 3 in the previous section indicates a straightforward approach to specifying the k-MOLS(n)

problem. For the ith (1 � i � k) latin square LSi, we introduce a function fi : R× C �→ Di, where Di is

the element domain of LSi. The function fi should satisfy:

fi(x1, y) 	= fi(x2, y) ∨ x1 = x2,

fi(x, y1) 	= fi(x, y2) ∨ y1 = y2.

 https://engine.scichina.com/doi/10.1007/s11432-011-4343-3

Ma F F, et al. Sci China Inf Sci March 2013 Vol. 56 032112:4

In other words, its multiplication table defines a latin square. The constraints of orthogonality between

any two latin squares, LSi and LSj for example, can be naturally represented by the following clauses:

fi(x1, y1) 	= fi(x2, y2) ∨ fj(x1, y1) 	= fj(x2, y2) ∨ x1 = x2,

fi(x1, y1) 	= fi(x2, y2) ∨ fj(x1, y1) 	= fj(x2, y2) ∨ y1 = y2.

Here ∨ denotes the logic operator or, also known as disjunction, which results in true whenever one or

more of its operands are true.

In this paper, however, we shall introduce another formulation which seems more effective. The new

formulation makes use of the transversal concept and reveals the internal relationship between orthogonal

latin squares in a more explicit way.

Definition 10. A transversal in a latin square of order n is a set of n cells, one from each row and

column, containing each of the n symbols exactly once.

Theorem 1. A latin square of order n has an orthogonal mate iff it contains n disjoint transversals

[7].

Consider the latin square of order 4:

0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2

It does not even have a transversal, hence it does not have an orthogonal mate.

The positions of n-cells of a transversal in a latin square L can be recorded as a vector, where the

ith element is the row index of the cell that appears in the ith column, e.g., t = 〈r0, r1, . . . , rn−1〉 which
means {L(ri, i)|0 � i � n− 1}.
Definition 11. If a latin square L contains n disjoint transversals, we construct a matrix from the

vectors of the transversals (each row of the matrix corresponds to a vector). We call it the transversal

matrix of L, denoted by TL1).

Without loss of generality, we fix the jth row of TL to be the transversal that contains cell L(j, 0).

For example, in Figure 1, TL is a transversal matrix of L. Row 0 in TL is 〈0 2 4 1 3〉, and it

represents the transversal {L(0, 0), L(2, 1), L(4, 2), L(1, 3), L(3, 4)}; Row 1 represents the transversal

{L(1, 0), L(3, 1), L(0, 2), L(2, 3), L(4, 4)}, and so on.

It is easy to prove that a transversal matrix is also a latin square. Suppose in some column j of

TL there are two cells taking the same value, i.e., TL(i1, j) = TL(i2, j) = r (i1 	= i2), then the two

transversals corresponding to row i1 and i2 intersect at the cell L(r, j), contradicting the definition of

transversal matrix. It is also obvious that each element occurs exactly once within the same row of TL.

For a latin square L, an orthogonal mate can be obtained from its transversal matrix TL by assigning

one symbol to the cells within the same transversal. Let us still consider the example in Figure 1. We

can build an orthogonal mate of L, denoted by L′, as follows. We set the cells indexed by row i of TL to

element ′i′. More specifically, the cells indexed by row 0 are {L′(0, 0), L′(2, 1), L′(4, 2), L′(1, 3), L′(3, 4)}
and they are all assigned ′0′; the cells {L′(1, 0), L′(3, 1), L′(0, 2), L′(2, 3), L′(4, 4)} are assigned ′1′, and so

on and so forth. Finally we get L′ which is orthogonal to L, as illustrated in Figure 1.

Proposition 1. A k-MOLS(n) exists iff there exists a latin square of order n, LS, which has k − 1

transversal matrices, and for any two transversal matrices Ti and Tj (i 	= j), it holds that

(Ti(t1, y1) = Tj(t2, y1) ∧ Ti(t1, y2) = Tj(t2, y2)) → y1 = y2. (1)

Proof. In the only if direction, we assume the k latin squares are LS1, LS2, . . . ,LSk. Firstly, from each

LSi (1 � i � k−1) we construct a new n×nmatrix Ti. For all x ∈ R and y ∈ C, assign cell Ti(LSi(x, y), y)

with x.

1) The superscript can be omitted for simplicity, if no ambiguity arises.

 https://engine.scichina.com/doi/10.1007/s11432-011-4343-3

Ma F F, et al. Sci China Inf Sci March 2013 Vol. 56 032112:5

Figure 1 Transversal matrix.

Obviously Ti is a latin square. Moreover, when constructing Ti, if we substitute Ti(t, y) for x, we get

Ti(LSi(Ti(t, y), y), y) = Ti(t, y), and furthermore LSi(Ti(t, y), y) = t. The equation LSi(Ti(t, y), y) = t is

an essential property that would be used in the following proof.

We now show that Ti is a transversal matrix of LSk.

For one thing, each row of Ti represents a transversal of LSk. Let us examine an arbitrary row vector,

say row t. The cells it indexes in LSk are {LSk(Ti(t, 0), 0),LSk(Ti(t, 1), 1), . . . ,LSk(Ti(t, n − 1), n − 1)}.
Apparently these cells are distributed in different rows and different columns. Assume that for some

y1 and y2 (y1 	= y2), we have LSk(Ti(t, y1), y1) = LSk(Ti(t, y2), y2). From the construction of Ti it can

be derived that Ti(LSi(Ti(t, y1), y1), y1) = Ti(t, y1), and furthermore LSi(Ti(t, y1), y1) = t. Similarly we

have LSi(Ti(t, y2), y2) = t. Therefore, we get

LSk(Ti(t, y1), y1) = LSk(Ti(t, y2), y2) ∧ LSi(Ti(t, y1), y1) = LSi(Ti(t, y2), y2).

This formula violates the premise that LSi and LSk are orthogonal, thus it is impossible for LSk(Ti(t, y1),

y1) and LSk(Ti(t, y2), y2) to take the same value. Hence row t of Ti represents a transversal of LSk.

For the other, since Ti is a latin square, we have Ti(t1, y) 	= Ti(t2, y) for any t1, t2 (t1 	= t2) and

y, and further LSk(Ti(t1, y), y) 	= LSk(Ti(t2, y), y), which implies that any two transversals are disjoint.

Therefore, Ti is a transversal matrix of LSk.

We now prove by contradiction that any two of these transversal matrices, say Ti and Tj (i 	= j),

would satisfy Formula (1). Suppose there are t1, t2 and y1, y2 (y1 	= y2) such that Ti(t1, y1) = Tj(t2, y1)∧
Ti(t1, y2) = Tj(t2, y2). Since LSi(Ti(t1, y1), y1) = t1, LSi(Ti(t1, y2), y2) = t1, LSj(Tj(t2, y1), y1) = t2 and

LSj(Tj(t2, y2), y2) = t2, it holds that

LSi(Ti(t1, y1), y1) = LSi(Ti(t1, y2), y2) ∧ LSj(Tj(t2, y1), y1) = LSj(Tj(t2, y2), y2).

On the previous assumption, this formula violates the premise that LSi and LSj are orthogonal. Hence

Ti and Tj satisfy Formula (1).

In the if direction, assuming the latin square is LS, we construct an n × n square LSi out of each

transversal matrix Ti. For all t ∈ Di and y ∈ C, assign cell LSi(Ti(t, y), y) with t. Since Ti is a latin

square, LSi is also a latin square.

We now prove by contradiction that LSi is orthogonal to LS. Suppose there are some x1, x2 (x1 	= x2)

and y1, y2 (y1 	= y2) such that

LS(x1, y1) = LS(x2, y2) ∧ LSi(x1, y1) = LSi(x2, y2).

Based on the construction of LSi, we know there is some t such that Ti(t, y1) = x1 and Ti(t, y2) = x2.

Because LS(Ti(t, y1), y1) = LS(x1, y1) and LS(Ti(t, y2), y2) = LS(x2, y2), LS(x1, y1) and LS(x2, y2) are

two cells in the same transversal indexed by row t of Ti. However, in the assumption the two cells are of

the same value. Because of this contradiction, the original assumption should be rejected.

For any two squares LSi and LSj (i 	= j), the proof of their orthogonality is quite similar to the above

one, and is thus omitted.

As a result, instead of searching for k MOLSs of order n, we try to find one latin square and k − 1 of

its transversal matrices satisfying Formula (1). We use function f : R× C �→ Dk to represent the latin

 https://engine.scichina.com/doi/10.1007/s11432-011-4343-3

Ma F F, et al. Sci China Inf Sci March 2013 Vol. 56 032112:6

square. For the ith (1 � i � k − 1) transversal matrix Ti, we introduce a function fi : Di × C �→ R,

where Di is the element domain of LSi.

The first order formulas for encoding k-MOLS(n) consist of three parts:

1. f(x1, y) = f(x2, y) → x1 = x2,

f(x, y1) = f(x, y2) → y1 = y2,

fi(t1, y) = fi(t2, y) → t1 = t2,

fi(t, y1) = fi(t, y2) → y1 = y2.

These formulas specify that f and fi are latin squares. The first formula implies that in an arbitrary

column y of f , if any two cells have the same value, then they must be the same cell. Similarly, the

second formula implies that each value occurs no more than once within any row x of f . For the same

reason, the last two formulas indicate that fi is also a latin square.

2. f(fi(t, y1), y1) = f(fi(t, y2), y2) → y1 = y2.

fi is the transversal matrix of f .

3. (fi(t1, y1) = fj(t2, y1) ∧ fi(t1, y2) = fj(t2, y2)) → y1 = y2.

The latin squares LSi and LSj constructed from fi and fj are orthogonal to each other.

4 Symmetry breaking

Two sets of MOLSs are isomorphic if one set can be obtained from the other by a combination of row

permutations, column permutations, permutations of elements in each latin square. For instance, Figure

2 illustrates two isomorphic 2-MOLS(4) instances.

Generally, in the search for latin squares and other similar structures, it is important to avoid exploring

symmetric subspaces in the search space. There are quite a few methods for breaking symmetries in

backtracking search.

For MOLS problems, Appa et al. [8, 9] proposed a specific method for symmetry breaking. Essentially

it fixes some variables’ values (or value domains) before the search begins. Take the 2-MOLS problem for

example. The first row of each latin square is fixed in natural order as well as the first column of the first

latin square. Moreover, for the first column of the second latin square, the value domains are reduced.

The configuration is demonstrated in Figure 2 in [9].

The symmetry breaking method we propose is also to fix variables in advance as in [9]. But instead of

reducing value domains in the first column of the second latin square, we restrict the second column of

the first latin square to a few options.

The key observation is that any two columns (rows) of a latin square can be viewed as a permutation of

the elements. For example, the first two columns of the first latin square in Figure 2 define a permutation:(
1 3 2 0

2 0 1 3

)
= (1 2)(3 0).

It is worth noticing that in such a permutation, there is no identity mapping, i.e., no cycle of length 1.

Otherwise, there will be an element appearing twice in the same row (column).

Proposition 2. Any k-MOLS(n): {LSi(1 � i � k)} can be transformed to the following canonical

form:

1. The elements in the first column of LSi are naturally ordered.

2. The elements in the first row of LS1 are naturally ordered.

3. The first two columns of LS1 define a permutation as:

(0 1 · · · k1)(k1 + 1 k1 + 2 · · · k2) · · · (ki + 1 ki + 2 · · ·n− 1),

where the cycles are in non-descending order, i.e., 2 � k1 + 1 � k2 − k1 � · · · � ki − ki−1 � n− ki − 1.

Proof. Suppose the first two columns of LS1 define a permutation:

(x0x1 · · ·xk1)(xk1+1xk1+2 · · ·xk2) · · · (xki+1xki+2 · · ·xn−1).

 https://engine.scichina.com/doi/10.1007/s11432-011-4343-3

Ma F F, et al. Sci China Inf Sci March 2013 Vol. 56 032112:7

Figure 2 Two isomorphic 2-MOLS(4) instances.

Firstly, replace each element xt (0 � t � n − 1) in LS1 with t. Such a bijective mapping preserves the

latin square property of LS1 while converting the permutation defined by the first two columns of LS1 to

the canonical form.

Secondly, sort the rows in such a way that the first column of LS1 is 0, 1, . . . , n − 1. Notice that the

rows of each LSi must be sorted simultaneously to preserve the orthogonality property. Similarly, the

columns are sorted so that the elements in the first row of LS1 are naturally ordered.

Finally, for each LSi, apply some element permutation which converts its first column to 〈0, 1, . . . , n−1〉.
For a concrete example, we now demonstrate how to transform LS1 and LS2 in Figure 2 to the canonical

form. The first two columns of LS1 define a permutation (1 2)(3 0). In LS1, we replace 1 with 0, 2 with

1, 3 with 2 and 0 with 3. LS2 remains unchanged. We get

0 1 2 3 3 2 1 0

2 3 0 1 2 3 0 1

1 0 3 2 0 1 2 3

3 2 1 0 1 0 3 2

Perform a permutation of the set R. More specifically, swap the second row with the third row. Then

the 2-MOLS is transformed to
0 1 2 3 3 2 1 0

1 0 3 2 0 1 2 3

2 3 0 1 2 3 0 1

3 2 1 0 1 0 3 2

Now LS1 reaches the canonical form. For LS2, perform a permutation of its element set D2: replace 3

with 0, 0 with 1, and 1 with 3. We get the final form, which satisfies all requirements in Proposition 2.

It is another instance of 2-MOLS(4).

0 1 2 3 0 2 3 1

1 0 3 2 1 3 2 0

2 3 0 1 2 0 1 3

3 2 1 0 3 1 0 2

As for the 2-MOLS(10) problem, the permutation defined by the first two columns of LS1 can be

standardized to one of the 12 patterns listed below:

1. (0 1)(2 3)(4 5)(6 7)(8 9).

2. (0 1)(2 3)(4 5)(6 7 8 9).

3. (0 1)(2 3)(4 5 6)(7 8 9).

4. (0 1)(2 3)(4 5 6 7 8 9).

5. (0 1)(2 3 4)(5 6 7 8 9).

6. (0 1)(2 3 4 5)(6 7 8 9).

7. (0 1)(2 3 4 5 6 7 8 9).

8. (0 1 2)(3 4 5)(6 7 8 9).

9. (0 1 2)(3 4 5 6 7 8 9).

10. (0 1 2 3)(4 5 6 7 8 9).

11. (0 1 2 3 4)(5 6 7 8 9).

12. (0 1 2 3 4 5 6 7 8 9).

 https://engine.scichina.com/doi/10.1007/s11432-011-4343-3

Ma F F, et al. Sci China Inf Sci March 2013 Vol. 56 032112:8

Table 1 CPU time for the 2-MOLS(n) problem

n
LS QG

Straightforward Transversal Straightforward Transversal

5 0.00 0.00 0.01 0.00

6 92.81 1.51 2.59 0.19

7 13.80 0.02 17.76 0.04

8 − 0.18 − 7.69

9 − 55.71 131.44 0.00

10 − 15.10 − 1944.12

−: 4 hours’ time out.

Table 2 CPU time for the SOLSSOM problem

n Straightforward Transversal

6 0.03 0.00

7 0.30 0.02

8 402.78 5.94

9 49094.81 1464.62

Table 3 Comparison of two symmetry breaking methods

2-MOLS(n)
SB2 SB1

Patterns # Models Time # Models Time

5 2 3 0.00 4 0.00

6 4 0 0.19 0 1.02

7 4 4132 980.61 6236 10922.08

It is worth mentioning that the permutations of rows, columns and elements not only preserve the

orthogonality of the MOLS but also preserve the number of transversals in each latin square. The cells in

a transversal of the original latin square will still form a transversal after a permutation. Since the main

diagonal of an idempotent latin square is a transversal, it can be proved that our symmetry breaking

technique is also applicable to idempotent latin squares with a slight modification.

5 Experimental results

We utilize the first order model generator SEM to search for MOLS. The experiments were performed on

an Intel 1.86 GHZ 2 CPU PC with Fedora 7 OS. All timings are given in seconds.

We compare the two different representations on the 2-MOLS problem and the SOLSSOM problem.

The results are illustrated in Table 1 and Table 2. Note that there are two distinct ideas concerning how

to model a latin square: one is to treat its rows, columns and elements as different domains; the other

is to regard the latin square as a quasigroup, that is, all variables share the same domain. Both of the

ideas are evaluated in Table 1, with the former labeled “LS” and the latter “QG”. However, it seems

that there is no clear winner. So in the rest experiments we only list the performance of the latter.

Although the transversal formulation has as many variables as the direct approach, our experiments

show that it can significantly reduce the search time.

To compare the pruning power of our symmetry breaking method (denoted by SB2) with the method

proposed by Appa et al. (denoted by SB1), we conduct some experiments on the 2-MOLS(n) problems

and compare the numbers of models and running times. Since for order n � 8 the searching process to

find all models cannot be completed within reasonable time, we only list the cases where n � 7. It can

be seen in Table 3 that our method can eliminate more isomorphic models and significantly reduce the

running times.

 https://engine.scichina.com/doi/10.1007/s11432-011-4343-3

Ma F F, et al. Sci China Inf Sci March 2013 Vol. 56 032112:9

6 Conclusions

In this paper, we have demonstrated how to find MOLS with finite model searching tools. In particular,

we have proposed a novel approach to modeling the problem. The basic idea is to search for a latin square

with transversal matrices. Experiments show that the new modeling method is more efficient than the

ordinary one. Another contribution of the paper is a new symmetry breaking technique for the MOLS

problem.

We are also developing other techniques to further accelerate the searching process, including efficient

constraint propagation mechanism for the model searching program, more thorough symmetry breaking

techniques, as well as parallelization of the program.

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 60673044). We are

grateful to Jia Xiangxue for his help in this research. We also thank Zhu Lie and Fang Kaitai for their valuable

advices.

References

1 Denes J, Keedwell A D. Latin Squares and their Applications. New York: Academic Press, 1974. 1–547

2 Bose R C, Shrikhande S S, Parker E T. Further results on the construction of mutually orthogonal latin squares and

the falsity of Euler’s conjectures. Can J Math, 1960, 12: 189–203

3 Paterek T, Daki’c B, Brukner C. Mutually unbiased bases, orthogonal latin squares, and hidden-variable models. Phys

Rev A, 2009, 79: 1–6

4 Lam C W H. The search for a finite projective plane of order 10. Am Math Mon, 1991, 98: 305–318

5 Slaney J, Fujita M, Stickel M. Automated reasoning and exhaustive search: quasigroup existence problems. Comput

Math Appl, 1995, 29: 115–132

6 Zhang J, Zhang H. SEM: a system for enumerating models. In: Proceedings of the 14th International Joint Conference

on Artificial Intelligence. Burlington: Morgan Kaufmann, 1995. 298–303

7 Colbourn C J, Dinitz J H. Handbook of Combinatorial Designs. 2nd ed. Boca Raton: Chapman & Hall / CRC, 2006.

135–211

8 Appa G, Mourtos I, Magos D. Integrating constraint and integer programming for the OLS problem. LNCS, 2002,

2470: 17–32

9 Appa G, Magos D, Mourtos I. Searching for mutually orthogonal latin squares via integer and constraint programming.

Eur J Oper Res, 2006, 173: 519–530

 https://engine.scichina.com/doi/10.1007/s11432-011-4343-3

