湖泊底泥疏浚对内源释放影响的过程与机理

范成新 张路 王建军 郑超海 高光 王苏民

(中国科学院南京地理与湖泊研究所, 南京 210008; 中国科学院研究生院, 北京 100039; 河海大学, 南京 210098. E-mail: <u>cxfan@niglas.ac.cn</u>)

摘要 对城郊污染湖泊五里湖和玄武湖底泥疏浚前后内源负荷模拟研究和现场样品采集分析表明,疏浚可在短期内使内源污染负荷得到一定程度的抑制,由于疏浚方法所造成的疏浚质量差异将对底泥内源控制效果产生影响;随着颗粒沉降、动力扰动和生物转化等生物地球化学过程的持续作用,内源回复现象将有可能逐步出现,其回复的速度主要与疏浚方式、新生表层界面过程变化有关,沉积物中较高的营养物和有机物含量本底对底泥界面过程和营养物再生起促进作用. 浚前研究污染湖泊底泥物化、生物特性和底泥释放特征. 对确定污染湖泊底泥疏浚方式和预测疏浚效果等极其重要.

关键词 底泥疏浚 效果 内源释放 污染回复 界面过程 湖泊

我国东部湖泊水环境污染严重, 国家对湖泊环 境整治的力度不断增大, 底泥疏浚(Sludge dredging) 作为改善水环境的重要手段之一, 对污染湖泊内源 负荷控制效果的问题, 人们的认识不一, 一些疏浚工 程实施后确使水体的污染得到有效的控制[1.2]. 但是 人们也发现, 随着时间的推移, 良好的水质状态不能 得到较好的保持, 个别甚至于比原先的污染程度还 有所加重[3]. 1982 年日本在诹访湖局部深度疏浚 (45~120 cm)1年后, 疏浚区水质未达预期改善目标[4]: 杭州西湖是我国实施底泥疏浚最早和次数最多的湖 泊之一, 但每次浚后良好水质状态的维持时间都不 长. 由于外源输入的影响未予排除, 使得疏浚后内源 污染回复的现象是否存在、疏浚对内源控制效果到底 有多大等问题一直难有定论[2.3.5.6]. 玄武湖和五里湖 分别为江苏省南京市和无锡市的城市湖泊, 20 世纪 80年代末以来均呈重富营养, 湖底污泥淤积明显, 有 机质含量极高[7.8], 内源负荷显著[9.10]. 为了改善湖体 水质, 1997年11月至1998年3月和2002年6月至 2003 年 3 月两湖分别用排干冲淤法和绞吸法进行了 大规模疏浚, 疏浚平均深度分别为 30 和 60 cm. 本文 跟踪和模拟了两湖不同疏浚深度和疏浚后一定时间 内源释放速率的变化,分析了界面过程及转化机理, 旨在为污染湖泊内源治理的科学决策提供依据.

1 材料与方法

1.1 样品采集和分析

() 沉积物. 在玄武湖西北湖区距环洲岸 100~150 m 处设置两个样点(X1 和 X2), 两点相距 20

m, 其中 X2 为未疏浚对照点. 在西五里湖宝界桥西 (W1)和五里湖闸门附近(W2)选择两个采样点, 其中 W2 为未疏浚对照点. 所有采集沉积物样品工作均在 GPS 系统 (精度 10~33~m)定位下进行, 用装有 ϕ 62×1000~mm 有机玻璃管的日产(Rigo~Co.)柱状采样 器采集, 沉积物芯样(30~40~cm)两端用橡皮塞塞紧, 垂直放置, 小心带回实验室, 进行实验与分析.

- ()水样. 在湖泊疏浚前后及疏浚过程中,用 GPS 定位,于玄武湖北部湖心和东五里湖心距表层 0.5m 采集水样,带回室内后立即经玻璃纤维滤膜 (Whatman GF/F)过滤后,放入 4 下蔽光保存,分析 DTN 和 DTP.
- () 孔隙水采集. 在疏浚后 11 个月的东五里湖心(W3)测点和未疏浚对照点(W2)搭置竹制三角架,分别用peeper(渗析式孔隙水采样器)技术^[11]采集孔隙水,即用去离子水将平置、底面已覆渗析膜的peeper采集器窗孔充盈,覆膜压板在去离子密闭桶中,充氮气1h;用自制投放器将peeper垂直投放至湖底,约平衡30天后取出,即刻测定*Eh*,现场取1 mL孔隙水在缓冲液中与 10%邻菲罗琳溶液显色固定(带回室内测定Fe²⁺),再抽取窗孔中剩余溶液,冰袋冷藏,用流动注射仪(Skalar-SA1000)分析NH₄+-N和PO₄³⁻-P.

1.2 实验方法

() 疏浚对沉积物氮磷释放的影响.

实验 1. 1998 年 5 月 24 日和 2001 年 5 月 31 日分别在未疏浚的玄武湖X2 测点和五里湖W2 测点采集若干根柱状泥样;室内制成模拟不同疏浚深度(0,10,20,30 和 40 cm)的柱状样,另用一根无泥的柱作

对照, 无扰动滴注 30 cm高度滤后上覆水, 标注刻度. 所有采样管均垂直放入已恒定在指定温度下的循环水浴恒温器(Colora WK100, \pm 0.1)中, 蔽光培养. 分别在 0, 3, 6, 12, 24, 36, 48 和 72 h时, 用注射器抽取距底泥表层上约 5 cm处 35 mL体积水样, 同时另用已过滤的原样点水样补充至原刻度. 所取水样经 0.45 μ m 玻璃纤维滤膜过滤后, 低温冷冻待分析. 水样分别用钼蓝比色、纳氏比色和酸性高锰酸钾方法[12]分析 PO_4^{3-} - P, NH_4^+ - N和溶解性 $COD_{Mn}(DCOD)$ 含量,释放速率计算方法参照文献[10].

实验 2. 按上述实验方法,分别对玄武湖和五里湖采集柱状芯样进行疏浚效果实验,采样点为:玄武湖 1998 年 3 月 7 日 X1(刚疏浚 3 天)和 X2(未疏浚对照点)、1998 年 10 月 8 日 X1(已疏浚 7 个月);五里湖 2001 年 5 月 31 日 X1(巴疏浚 7 个月);五里湖 2001 年 5 月 31 日 X1(尚未疏浚)、2002 年 6 月 29日 X1(刚疏浚 2 天)和 X1(即 X10 X10

2 结果与讨论

2.1 不同疏浚深度对沉积物氮磷释放的短时效影响

图 1 和图 2 分别为在玄武湖(X2)和五里湖(W2) 模拟不同疏浚深度后 PO4-P, NH4-N和DCOD释放 速率随时间的变化. 总体而言, 大多数曲线在 2 天后 趋干平稳, 即此时后释放速率接近实际值, 对玄武湖 和五里湖模拟疏浚实验短时相结果表明, 疏浚对磷 释放的控制效果明显,未疏浚样品释放速率均大于 1.0 mg/m² • d⁻¹, 疏浚后释放速率立即被控制在接近 零甚至处于负值(此时沉积物呈"汇"). 其中在X2点, 磷 释放速率随着疏浚深度的增加而逐步减小, 疏浚 20 cm 以上时,释放速率转为负值.这是因为疏浚后,沉积 物表层被去除, 此时新生表层直接与氧含量较为充 足的上覆水体接触, 使新生表层的氧化还原电位上 升, Fe^{2+} 被转化为 Fe^{3+} , 后者与孔隙水中游离的 PO_4^{3-} 结合, 形成FePO4 沉淀. 由于维持较高的氧化还原电 位, 还可在表层形成一新的氧化层, 初始期该层中有 机质通常含量较低,特别是好氧微生物数量少[2],因 而该氧化层起到了阻止下层孔隙水中磷的释放作用.

疏浚后铵氮(NH_4^+ -N)的释放,玄武湖和五里湖结果则相反: X2 在疏浚后沉积物中铵氮向上覆水的释放明显增加,疏浚后 3 天左右, NH_4^+ -N 释放速率已为未疏浚时的两倍(图 1);而五里湖疏浚后铵氮释放特

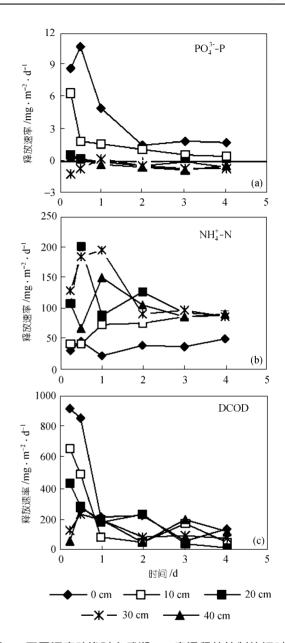


图 1 不同深度疏浚对玄武湖(X2)底泥释放控制的短时效 影响(15)

征与磷大致相似,梯度均在较短时间内产生大幅度下降(图 2). 这种释放差异与湖水和沉积物孔隙水间 NH⁺₄-N的不同浓度梯度有关. 玄武湖沉积物的淤积厚度平均达 70 cm, 总氮含量高达 0.33%~0.69% ^[7], 较五里湖(0.16%~0.28%)高出 1 倍以上,而水体中氮的含量却较一般污染湖泊为低,如 1997 年平均仅为 1.10 mg/L,因此疏浚后仍可保持较高程度的释放速率;但五里湖疏浚前后(2002 年)水体铵氮含量平均高达 3.34 mg/L,最高达 7.90 mg/L. 虽然五里湖 7~40 cm

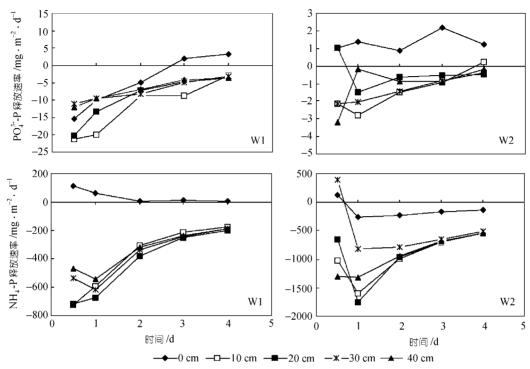


图 2 不同深度疏浚对五里湖(W2)底泥释放控制的短时效影响(15)

沉积物孔隙水中 NH_4^+ - N含量平均在 9 mg/L左右 [13],但疏浚后水体中氧进入新生界面,部分 NH_4^+ 转变为氧化态高的氮化物(如 NO_3^- 等),结果使得湖水中 NH_4^+ - N含量有可能超过孔隙水中含量,造成界面交换通量的矢量方向指向沉积物.实际上五里湖在未疏浚(0 cm)时沉积物中 NH_4^+ - N释放速率就已接近零释放或吸附于沉积物的状态(释放速率为负值,见图 2),表明湖水 NH_4^+ - N含量相对于孔隙水确已存在较大的向下浓度梯度,为疏浚后沉积物吸收氮提供了条件.可见疏浚初期,内源通量的方向和大小主要受上覆水和孔隙水间营养物的浓度梯度的控制,而孔隙水中 NH_4^+ - N的变化还受到界面氧含量的影响.

进一步分析图 2 中 NH⁺₄-N释放曲线,还可发现:模拟疏浚 10 与 40 cm的铵氮含量释放速率差异较小,表明疏浚后上覆水体对原处于厌氧状态下的下层底泥及其孔隙水所产生的环境效应近乎一致.说明疏浚刚完成时,不同疏浚深度的沉积物界面,其物理性质(如孔隙率、氧化还原电位)和生物特征(如厌氧微生物作用)等差别不大,因此有可能造成不同疏浚深度底泥释放速率较为相近的现象.另外图 1 反映,玄武湖在疏浚不同深度对DCOD的释放速率有所控制,但不明

显, 这与沉积物垂向上有机质含量普遍较高⁹¹有关.

2.2 疏浚对沉积物内源控制的长效影响

对五里湖和玄武湖疏浚后底泥释放的较长时间 跟踪研究表明, 不同的湖泊浚后内源释放是否受控 或是否出现回复,结果可能是完全不同的.如图 3 所 示, 疏浚对五里湖沉积物内源磷释放的控制效果较 为明显, 随着时间的延长, 磷释放速率有减缓的趋势, 由疏浚前的 2.3 mg/m^2 · d^{-1} 下降到疏浚后 11 个月的 -0.6 mg/m^2 · d^{-1} ; 而 NH_4^+ - N 的释放则由刚疏浚时的 -202.0 mg/m^2 · d⁻¹上升至 11 个月后 49.6 mg/m²· d⁻¹. 对玄武湖而言, 疏浚对底泥氮磷释放的长效影响与 五里湖相比则几乎相反(图3), NH₄-N释放速率从刚 疏浚时的 168.5 mg/m^2 · d^{-1} 降到疏浚后 7 个月的 49.0 $mg/m^2 \cdot d^{-1}$, 仅相当于疏浚前(375.2 $mg/m^2 \cdot d^{-1}$)的 13%; 磷释放则由刚疏浚时的 1.5 mg/m^2 . d^{-1} 经 7 个 月后迅速上升至 21.0 mg/m²· d⁻¹, 甚至是疏浚前(9.1 mg/m^2 · d^{-1})的 2.3 倍. 这些结果提示: 从长效而言, 疏 浚对五里湖的底泥磷释放和玄武湖的氮释放有一定 的控制作用, 可削减相应污染物的内源负荷, 减低湖 体污染物含量; 而对五里湖的氮释放和玄武湖的磷 释放则控制效果较弱, 释放速率甚至可超过未疏浚 前, 显然这种回复现象将加重内源负荷, 导致疏浚后

水体中污染物含量的增加.

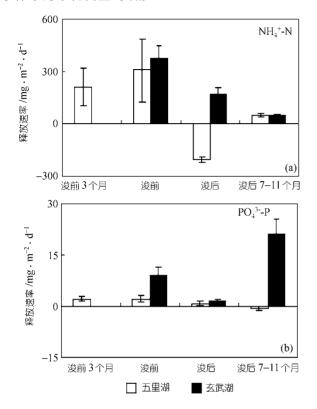


图 3 五里湖 W1 和玄武湖 X1 底泥疏浚前后氮磷释放速率 的变化

2.3 造成疏浚效果的差异的原因分析

() 疏浚方式的影响. 五里湖采用的是绞吸式 疏浚, 即用专用挖泥船的绞吸头将表层淤泥绞松后 立即吸走, 浚后沉积物表层残留淤泥少, 刚疏浚后现 场采集的沉积物表层较为平整和密实. 因此表层孔 隙率较低, 有机质含量少, 微生物含量水平低, 不利 于物质释放, 故可将释放速率控制在较低甚至负值 (汇)水平,显然这种疏浚方式一定程度上考虑了生态 效应[8]. 玄武湖则采用的是排干法疏浚[14], 即将湖水 基本排干后用高压水枪将表层沉积物推填到低洼区, 再用输送泵将集中的泥水抽走, 其工程目标是疏浚 深度平均达 30 cm. 这种疏浚方式在我国的湖泊内源 控制工程中已较多采用, 该法往往不能保证实际疏 浚深度的准确性, 而且也无法保证表层污泥的残留 率处于较低水平, 因此疏浚后仍有较多的淤泥覆盖 在湖底, 疏浚质量难以保证, 据研究, 疏浚前玄武湖 底泥总氮含量高达 0.33%~0.69%[7], 较五里湖(0.16%~ 0.28%)高出1倍以上,而且这些残留的淤泥仍可形成 缺氧或厌氧环境,使表层沉积物和孔隙水中的形态 氮转化为氨,有利于氨释放强度增加,因此疏浚后仍可保持一定强度的释放.由于疏浚质量欠缺造成的淤泥覆盖,玄武湖疏浚后难以出现如五里湖那样的氧化层,又由于疏浚时表层多受到过强烈的机械扰动,一部分带有活性淤泥生态特征的原表层淤泥与下层沉积物交混在一起,为下层沉积物的活化提供接种作用和微生物物种保留,这样,残留的底泥将使疏浚后的表层底泥很快地转变为与原来底泥性质接近的状态.

() 新生表层界面过程的影响. 疏浚后的新生表 层底泥的组成往往有几种来源: (1) 曾埋藏在水底几 十乃至上千年的沉积物, 为新生表层的主体; (2) 疏浚 的残留污泥或回淤物; (3) 来自上覆水体悬浮颗粒物 的沉降, 其数量随时间增加. 因此研究新生表层内源 负荷的变化趋势, 就不可避免地归结到在新生表层和 上覆水界面过程上, 包括 3 种来源的底泥复合物的物 理、化学和生物特征与新界面的物质交换与循环. 疏 浚后, 新生沉积物界面将直接面对上覆水体, 不断接 收来自上覆水体沉降下来的易悬浮颗粒. 通常这些颗 粒中有机物含量较高, 附生着大量微生物, 这些微生 物随颗粒物沉降到新生界面,将通过对有机质分解、 细菌的繁殖而逐渐将沉积物表层的生物活性加强,使 营养物再生[2,16]。对于浅水湖泊、风浪作用将能量带 入水底,对湖底进行扰动,造成再悬浮[17,18],使疏浚 后新生界面频繁与氧含量高的介质充分接触, 结果可 能在沉积物界面上形成一较致密的氧化层[19], 阻碍孔 隙水中物质的释放. 对用peeper法采集的五里湖孔隙 水分析表明(图 4), 刚疏浚不久时, 新生表层的氧化还 原电位处较高水平(270 mV), 属中度氧化环境(200 mV < Eh < 400 mV), 虽然底部沉积物孔隙水中物质 (PO₄³⁻-P, NH₄⁺-N和Fe²⁺)含量较未疏浚区域沉积物还 高, 界面附近的浓度梯度还要大, 但因为疏浚初期这 种氧化层的存在, 实际疏浚底泥的氮磷释放速率比未 疏浚区的释放速率要小. 因此, 在强行外力产生的新生 表层上使用Fick定律计算物质的释放速率。有可能产生 较大误差, 甚至得出错误的结论, 五里湖是一相对封闭 的湖湾, 疏浚后水深增加 0.6 m, 达 3.5 m以上, 因此有 可能在沉积物表层形成阻碍层, 从而疏浚后出现释放 速率下降的现象. 逐月进行的湖面水体跟踪监测反映. 五里湖实施疏浚后, 在近半年的时间内湖水中溶解性 总磷(DTP)的含量平均下降了约 40%(图 5).

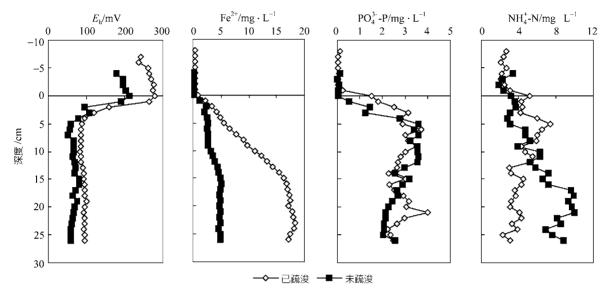


图 4 五里湖疏浚区和未疏浚区沉积物孔隙水主要物化性质比较

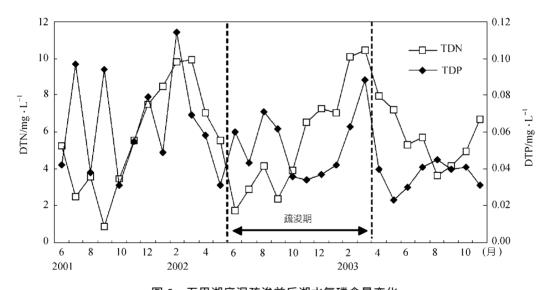


图 5 五里湖底泥疏浚前后湖水氮磷含量变化

随着沉降作用、动力扰动和生物转化等对界面作用的积累与增强,沉降物对新生表层的覆盖将达到一定厚度. 有机颗粒将在表层发生一定程度的堆积,表层沉积物的含水量、孔隙率等物理性质将发生很大变化^[17],覆盖层中微生物分解有机物使氧含量下降,氧化还原电位降低,将逐步削弱和破坏了上述氧化层的营造条件^[19]. 在Fick第一定律支配下,下层高含量的磷组分将得以穿过新生界面而发生释放. 因此如图 3 所示的疏浚对磷释放的抑制效果可能会随着上覆水中沉降物的继续增加而发生变化,即由对内

源释放受控状态转变为内源释放回复状态.

沉积物中较高的营养物和有机物含量可能对底泥界面过程起促进作用,加速其向疏浚前的界面状况转化.玄武湖沉积物有机质含量极高,其烧失重平均达 11.9%, TP含量亦介于 0.12%~0.43% ^[9],其中无机磷占总磷 76%,铁磷又占无机磷的 40%.随着疏浚后时间的增加,微生物群落将不断滋生,沉积物中的好氧、兼性厌氧和厌氧微生物在不同层位上对沉积磷(主要是有机磷)进行转化,而铁磷在还原环境中因Fe³⁺向Fe²⁺的转化也不断将 PO³⁻溶入孔隙水中,从而

使孔隙水与上覆水之间磷含量的浓度梯度逐渐加大,加速PO₄³⁻的扩散^[20],构成以内源释放为主导的动态平衡.此外,营养物含量较高的底泥往往易被污染的环境所活化,如东五里湖自 2002 年 8 月疏浚后 11 个月,湖水中磷浓度含量基本控制在较低水平(图 5),而玄武湖水体污染程度较五里湖高得多,在 1998 年 3 月疏浚后仅 7 个月,水体磷含量却逐步增加,严重影响了疏浚效果.

3 结语

污染湖泊的表泥疏浚,其初期对内源负荷的控制效果一般均较明显,可使湖体目标污染物含量有较大降低;但随着时间的延长,无论采用一般疏浚和精确疏浚技术,都有可能在湖泊内源污染负荷出现跳跃式降低后,出现某些污染组分又回复现象,发生回复的组分可因湖泊表层沉积物性质不同而变化.疏浚方法和疏浚质量的差异对内源控制效果可产生很大影响,具体反映在疏浚后原上层底泥在新生界面上的残留量和疏浚深度的准确性,残留底泥将使新生表层底泥在较短时间内如"接种式"地得到生物活化.另外,界面生物地球化学过程中的沉降作用、动力扰动和生物转化也将对疏浚后内源负荷的变化产生重要影响.

目前我国东部和云贵地区湖泊以及绝大多数城郊湖泊,都面临着水体或(和)沉积物污染问题,底泥疏浚计划正在计划或实施,诸如太湖北部、巢湖大型湖泊等,采取何种疏浚方式、弄清湖泊底泥物化性质等,对预测这些湖泊疏浚工程后的环境效果是十分必要的,具有重要实践意义.

本研究采用的室内柱状芯样方法,虽可对疏浚进行模拟控制条件实验,但因体系的体积通常不大,易产生壁效应.另外采用的静态方法,还不能较好的反映疏浚后浅水湖沉积物-水界面有扰动的实际情况和生物的作用等,因此实验精度将受一定的影响,这些问题需要进一步的深入研究.

致谢 太湖湖泊生态系统研究站提供了部分湖面例行监测数据,在此表示谢意.本工作受国家自然科学基金(批准号:40171083)、中国科学院知识创新工程重大项目(KZCX1-SW-12)和国家"八六三"高技术研究发展计划(2002AA601013)资助.

参 考 文 献

- 1 Ogawa H. Water-purification measures within Lakes. Proceedings of 6th International Conference on the Conservation & Management of Lakes-Kasumigaura' 95, 1995. 859 ~ 863
- 2 Desprez M. Physical and biological impact of marine aggregate extraction along the French coast of the Eastern English Channel: short and long-term post-dredging restoration. ICES Journal of Marine Science, 2000, 57: 1428 ~ 1438[DOI]
- 3 Sebetich M J, Ferriero N. Lake restoration by sediment dredging. Verh-Int Ver Theor Angew Limnol, 1997, 26(2): 776 ~ 781
- 4 Ogiwara K, Morgi K. The purification of Lake Suwa (dredging). Proceedings of 6th International Conference on the Conservation & Management of Lakes-Kasumigaura'95, 1995. 438 ~ 441
- 5 Ruley J E, Rusch K A. An assessment of long-term post-restoration water quality trends in a shallow, subtropical, urban hypereutrophic lake. Ecological Engineering, 2002, 19: 265 ~ 280[DOI]
- 6 濮培民, 王国祥, 胡维平, 等. 底泥疏浚能控制湖泊富营养化吗? 湖泊科学, 2000, 12(3): 269~279
- 7 金相灿, 刘树坤, 章宗涉, 等. 中国湖泊环境(第二册). 北京:海 洋出版社, 1995. 620~621
- 8 罗清吉, 石浚哲. 五里湖淤泥现状及生态清淤. 环境监测管理与技术, 2003, 15(1): 27~29
- 9 王庭建, 苏睿, 金相灿, 等. 城市富营养湖泊磷负荷及其释放对水质的影响. 环境科学研究, 1994, 7(1): 12~19
- 10 范成新,秦伯强,孙越.梅梁湖和五里湖水——沉积物界面物质交换.湖泊科学,1998,10(1):53~58
- 11 Webster I T, Teasdale P R, Grigg, N J. Theoretical and experimental analysis of peeper equilibration dynamics. Environ Sci Technol, 1998, 32: 1727 ~ 1733[DOI]
- 12 黄祥飞. 湖泊生态调查观测与分析. 北京: 中国标准出版社, 1999 47~61
- 13 范成新, 杨龙元, 张路. 太湖底泥及其间隙水中氮磷垂直分布及相互关系分析. 湖泊科学, 2000, 12(4): 359~366
- 14 李源. 玄武湖历史上的疏浚工程. 南京史志, 1998, (2): 27~29
- 15 Fan C, Aizaki M, Kohata K. Simulation of sludge dredging effects in controlling nutrient release of Lake Kasumigaura with large size core samples. J Environ Sci, 1996, 8(4): 385 ~ 399
- 16 Lourey M J, Alongi D M, Ryan D A J, et al. Variability of nutrient regeneration rates and nutrient concentrations in surface sediments of the northern Great Barrier Reef shelf. Continental Shelf Research, 2001, 21: 145 ~ 155[DOI]
- 17 Jennings A A. Modeling sedimentation and scour in small urban lakes. Environmental Modeling & Software, 2003, 18: 281 ~ 291[DOI]
- 18 秦伯强, 胡维平, 高光, 等. 太湖沉积物悬浮的动力学机制及内源 释放的概念性模式. 科学通报, 2003, 48(17): 1822~1831 [摘要] [PDF]
- 19 李文朝,陈开宁,吴庆龙,等.东太湖表层沉积物的磷饱和度初步研究.湖泊科学,1998,10(3):49~54
- 20 Petticrew E L, Arocena J M. Evaluation of iron-phosphate as a source of internal lake phosphorus loadings. The Science of the Total Environment, 2001, 266: 87 ~ 93[DOI]

(2004-02-19 收稿, 2004-05-18 收修改稿)