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1 Introduction

Let t be a fixed positive integer. Suppose F = Q(
√−p1 · · · pt) is an imaginary quadratic number field

with distinct primes p1, . . . , pt, where pi ≡ 1 (mod 4) (i = 1, . . . , t−1) and pt ≡ 3 (mod 4). We will study

the 8-rank of the class group C of F . Recall that the 2k-rank of C is defined to be

r2k = dimF2
2k−1

C /2kC

for k > 1.

The study of the 2-primary part of class groups or narrow class groups of quadratic number fields can be

traced back to Gauss, who proved that r2 = t− 1. In a series of papers Rédei and Reichardt investigated

r2k (k > 2) and provided an algorithm for r4 by the so-called Rédei matrix [9–13]. Waterhouse [17] found

a method to compute r8, which was further generalized to higher Rédei matrices by Kolster [6]. However,

their algorithms required to determine Hilbert symbols of solutions of Diophantine equations. Yue [18]

gave more explicit solutions to the 8-rank problem for the special case t = 2.

In this paper we study the possible values of r8 for F = Q(
√−p1 · · · pt) for an arbitrary t. We first

compute the Hilbert symbols explicitly (see Theorem 3.4). Generalizing a result of Morton [7], our main

result (see Theorem 4.2) describes the possible values of the 8-rank of C in terms of a quadratic form

over F2 which is defined by quartic symbols. Consequently, the 8-rank is bounded by the isotropy index

(see Definition 4.1) of the quadratic form. The proof of the main theorem is given in Section 6.

This paper is motivated by Tian’s recent work [15,16] on the Birch and Swinnerton-Dyer conjecture, in

which the 2-primary parts of class groups of quadratic number fields are related to the 2-descent method

of elliptic curves.
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2 Rédei matrices revisited

Rédei matrices are tools to study the 2-primary part of class groups of quadratic number fields. Here,

we include a review for the case F = Q(
√−p1 · · · pt), where pi ≡ 1 (mod 4) (i = 1, . . . , t − 1) and

pt ≡ 3 (mod 4). Instead of the matrix form found in the literature, here we express the Rédei matrix for

the 8-rank as a bilinear form. In the next section, we will show that the quadratic form induced from

this bilinear form can be computed from quartic symbols.

For more details about Rédei matrices, one may refer to the survey by Stevenhagen [14], which also

includes some results for ℓ-primary parts, where ℓ is an odd prime.

In the following, let ∆ be the discriminant of F . Then ∆ = −p1 · · · pt.

2.1 The 2-rank of C

Let V = C [2] be the group of elements of order 2 in C .

For i = 1, . . . , t, let pi be the prime ideal of F such that p2i = (pi). Then p1, . . . , pt generate V . The

only nontrivial relation in C among these elements is

p1 · · · pt = 1. (2.1)

We view V as a vector space over F2, the vector addition being the multiplication of ideal classes. It has

a basis {p1, . . . , pt−1}. Then
r2(C ) = dimF2

V = t− 1.

For later use we introduce another vector space V ′ over F2, which consists of all positive divisors of

p1 · · · pt−1. The vector addition is defined to be

q1 · q2 = q1q2/(gcd(q1, q2))
2.

Then

V ′ → V, pi 7→ pi (2.2)

is an isomorphism of vector spaces. We will identify V ′ with V .

2.2 The 4-rank of C

We will use the quadratic characters to study the 4-rank of C . Note that r4(C ) = dimF2
C [2]∩ 2C . The

elements in C [2]∩ 2C are exactly the elements in C [2] which are killed by all quadratic characters of C .

For i = 1, . . . , t, the characters χpi
defined by

χpi
(a) =

(

Na,∆

pi

)

generate (C /2C )∨, the group of quadratic characters on C . Here a is any (fractional) ideal of F , and

(a,b
pi
) is the Hilbert symbol. The only nontrivial relation among these generators is

χp1
· · ·χpt

= 1. (2.3)

We view (C /2C )∨ as a vector space over F2, the vector addition being the multiplication of quadratic

characters. It has a basis {χp1
, . . . , χpt−1

} and there is an isomorphism of vector spaces over F2:

V = C [2]
∼=−→ (C /2C )∨, pi 7→ χpi

.

We restrict the quotient map C → C /2C to C [2] and get

fA : V = C [2] → C /2C ∼= V ∨.

This induces a bilinear form on V :

A : V × V → F2.

Under the basis {p1, . . . , pt−1}, we may write A in the matrix form as follows:
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Definition 2.1 (Rédei matrix). Let ξ : {±1} → F2 be the group isomorphism defined by ξ(1) = 0 and

ξ(−1) = 1. The Rédei matrix (for the 4-rank) is defined to be

M4 =

(

ξ

(

pi,∆

pj

))

16i6t−1, 16j6t−1

(over F2).

We need the following result to compute the Hilbert symbol:

Lemma 2.2 (See [8, Chapter V, Theorem 3.6]). Let p 6= 2 be a prime number. For a, b ∈ Q∗
p, we

write

a = pαa′, b = pβb′,

where a′ and b′ are units in Qp. Then

(

a, b

p

)

= (−1)
p−1

2
αβ

(

a′

p

)β(
b′

p

)α

.

Here (-) is the Jacobi symbol.

Proposition 2.3. Under our assumption, M4 is a symmetric matrix. In other words, A is a symmetric

bilinear form.

Proof. If pi 6= pj , we have
(

pi,∆

pj

)

=

(

pi
pj

)

by Lemma 2.2.

Since pi ≡ 1 (mod 4) for i = 1, . . . , t− 1, we see that

(

pj
pi

)

=

(

pi
pj

)

(−1)
pi−1

2

pj−1

2 =

(

pi
pj

)

for all i 6= j.

Note that ker fA = C [2] ∩ 2C . Therefore we have the following result:

Proposition 2.4 (Rédei). The 4-rank of C is

r4 = dimF2
V − dimF2

fA(V ) = t− 1− rankF2
M4.

2.3 The 8-rank of C

We write V0 = ker fA = C [2] ∩ 2C , where A is the bilinear form defined in Subsection 2.2.

In Subsection 2.2, we have seen that A is a symmetric bilinear form. Therefore, there is a natural

isomorphism of vector spaces over F2:

C /(C [2] + 2C ) = coker fA ∼= V ∨
0 .

We have the following homomorphism of vector spaces over F2:

fB : V0 = C [2] ∩ 2C
÷2−−→ C /C [2] → C /(C [2] + 2C ) ∼= V ∨

0 .

The first map “division-by-2” in 2C means taking square roots of the ideal classes. The second map is

the natural quotient homomorphism. Since ker fB = C [2] ∩ 4C , we have

r8 = dimF2
V0 − dimF2

fB(V0).

We are going to describe fB more explicitly. Let us identify C [2]∩2C and its preimage V ′
0 in V ′ under

the isomorphism in (2.2), and write both of them as V0. Consider a ∈ V0 = kerA = C [2] ∩ 2C . We will

take the square root of a as follows:
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Lemma 2.5 (See [7, Lemma 5]). Assume a is a proper ideal of the ring of integers of F = Q(
√
∆)

such that Na | ∆, and that the class of a in C belongs to 2C . For any positive primitive solution (x, y, z)

of x2 = ∆y2 + 4az2 where a = Na, there exists an ideal b for which the class of b2 in C coincides with

the class of a in C and Nb = z.

The existence of (x, y, z) is ensured by the assumption that the class of a in C belongs to 2C .

Let B : V0 × V0 → F2 be the bilinear form induced from fB, i.e., if a ∈ V0, D ∈ V ′
0
∼= V0, and b is the

square root of a as in Lemma 2.5, then

B(a, D) = ξ(χD(b)) = ξ

((

Nb,∆

D

))

.

Summarizing the above discussions, we obtain the following two propositions:

Proposition 2.6. With the above notation,

B(a, D) = ξ

((

Nb,∆

D

))

= ξ

((

z,∆

D

))

.

Proposition 2.7. The 8-rank r8 = dimF2
V0 − dimF2

fB(V0) = r4 − rankF2
B.

3 The quadratic form QB

Definition 3.1. Let W be a vector space over a field k. Then a map Q : W → k is called a quadratic

form if there exists a bilinear form B such that Q(x) = QB(x) := B(x, x).

Remark 3.2. (1) Note that if chark 6= 2, there is always a symmetric bilinear form B satisfying the

condition above. When char k = 2, this is no longer true.

(2) By [2, Paragraphe 3, No. 4, Proposition 2], Definition 3.1 is equivalent to [2, Paragraphe 3, No. 4,

Définition 2]: A quadratic form on W is a map Q : W → k such that

(i) Q(ax) = a2Q(x) for all a ∈ k and x ∈ W , and

(ii) the map (x, y) 7→ Q(x+ y)−Q(x)−Q(y) is a bilinear form.

Definition 3.3 (Quartic symbol). Let p ≡ 1 (mod 4) be a prime number. If a ∈ Z is a quadratic

residue (mod p) and (a, p) = 1, we define the (rational) quartic residue symbol as

(

a

p

)

4

= ±1 ≡ a
p−1

4 (mod p).

For D = p1 · · · ps where pi ≡ 1 (mod 4) (i = 1, . . . , s) are distinct primes, and a ∈ Z satisfying (a,D) = 1

and ( a
pi
) = 1, we define

(

a

D

)

4

=
s
∏

i=1

(

a

pi

)

4

.

Then ( a
D
)4 = 1 if a is congruent to the fourth power of an integer (mod D).

Theorem 3.4. Let QB be the quadratic form on V0 defined by QB(D) = B(D,D) (see Subsection 2.3).

Then

QB(D) = ξ

((

∆/D

D

)

4

)

.

Remark 3.5. This generalizes [7, Lemma 7]. Note that unlike [7], we do not assume ( pi

pj
) = 1 for

1 6 i 6= j < t.

Proof. When D = 1, this is trivial. So we may assume D 6= 1.

If Na = D, let (x, y, z) be a primitive solution of the equation

x2 = ∆y2 + 4Dz2.
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Then z = Nb by Lemma 2.5. We also have D | x. Suppose ∆ = D ·D′, x = Dx′. Then

Dx′2 = D′y2 + 4z2. (3.1)

If p | D, then p ∤ D′ and hence p ∤ z. We have

χD(a) =

(

Nb,∆

D

)

=
∏

p|D

(

Nb,∆

p

)

=
∏

p|D

(

z

p

)

=

(

z

D

)

, (3.2)

by Lemma 2.2.

(3.1) implies

D′y2 + 4z2 ≡ 0 (mod p).

Therefore,
(

D′

p

)

4

(

y

p

)

=

(

z

p

)(−4

p

)

4

.

We are going to compute ( y
D
) and (−4

p
)4.

Write y = 2ky′ where 2 ∤ y′. Then
(

y′

D

)

=
∏

q|y′

(

q

D

)

=
∏

q|y′

∏

p|D

(

q

p

)

=
∏

q|y′

∏

p|D

(

p

q

)

(−1)
p−1

2

q−1

2 =
∏

q|y′

(

D

q

)

.

(3.1) implies Dx′2 ≡ 4z2 (mod q) for all prime factors q of y′. Hence, (D
q
) = 1 and (y

′

D
) = 1.

Now let us consider the possible values of k.

(i) If k = 0, we have
(

y

D

)

=

(

y′

D

)

= 1.

(ii) Now assume k > 0. We have D ≡ 1 (mod 4) and D′ ≡ 1 (mod 4). From Dx′2 = D′22ky′2 + 4z2,

we see that if k > 0, then 2 | x′. Since gcd(x, y, z) = 1, we know 2 ∤ z. Hence z2 ≡ 1 (mod 8). Write

y = 2ỹ and x′ = 2x̃. Then

Dx̃2 = D′ỹ2 + z2. (3.3)

(a) If k = 1, i.e., 2 ∤ ỹ, then (3.3) implies

x̃2 ≡ 1 + 1 (mod 4),

which is impossible.

(b) If k = 2, we have
(

y

D

)

=

(

2

D

)2(
y′

D

)

=

(

y′

D

)

= 1.

(c) If k > 3, then 4 | ỹ. It follows from (3.3) that 2 ∤ x̃ and hence x̃2 ≡ 1 (mod 8). Then (3.3) implies

D ≡ 1 (mod 8). In other words, D has an even number of prime factors p with p ≡ 5 (mod 8). Note that

( 2
p
) is 1 if p ≡ 1 (mod 8) and is −1 if p ≡ 5 (mod 8). Therefore,

(

y

D

)

=

(

y

D′

)

·
∏

p|D

(

2

p

)

=

(

y′

D

)

= 1.

To summarize, ( y
D
) = 1 in all cases.

Note that
(−4

p

)

4

=

(−1

p

)

4

(

2

p

)

.

We have (−1
p
)4 ≡ (−1)

p−1

4 (mod p) and ( 2
p
) = (−1)

p2−1

8 . No matter whether p ≡ 1 or 5 (mod 8), we

always have (−4
p
)4 = 1.

By (3.2), we have ( z
D
) = (D

′

D
)4.
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4 Statement of the main theorem

Definition 4.1. The isotropy index of a quadratic form Q on a vector space W is defined to be the

maximal dimension of W ′, where W ′ is a subspace of W and Q|W ′ = 0. We denote the isotropy index

of Q by ρ(Q).

For a quadratic form Q, we write

N (Q) = {null(B) | B : W ×W → k is a bilinear form such that QB = Q} .

Here null(B) = dimW − rank(B) is the nullity of B.

Theorem 4.2. (1) Let QB be the quadratic form on V0 defined by

QB(D) = ξ

((

∆/D

D

)

4

)

as in Section 3. Let r8 be the 8-rank of the class group of F = Q(
√
∆). Then

r8 ∈ N (QB).

(2) Let Q be a quadratic form on an r-dimensional vector space over F2 with isotropy index ρ. Then

N (Q) = S(ρ, r) :=















a

∣

∣

∣

∣

∣

∣

∣

∣

0 6 a 6 ρ,

a ≡ r (mod 2) if ρ = r,

a = 1 if r = 2 and Q ∼= X















, (1)

where X is the quadratic form on F2
2 defined by X(x1e1 + x2e2) = x1x2 for the standard basis {e1, e2} of

F2
2.

In particular, for the quadratic form QB in (1), we have N (QB) = S(ρ, r4), where r4 = dimF2
V0 is

the 4-rank of the class group of F = Q(
√
∆).

The proof will be given in Section 6.

Corollary 4.3. r8 6 ρ(QB).

An immediate consequence of Corollary 4.3 is

r8 6 log2 #Q−1
B

(0). (4.1)

For an analogue of (4.1) for certain real quadratic fields, see Fouvry and Klüners [5, Theorem 3(ii)].

Corollary 4.4. If QB = 0, then r8 ≡ r4 (mod 2).

Indeed, Corollaries 4.3 and 4.4 follow from Theorem 4.2(1) and the easy part of (2), i.e.,

N (Q) ⊂ S(ρ, r).

5 Interlude: Quadratic forms over F2

In this section, we will review the classification of quadratic forms over F2 which will be used in the proof

of Theorem 4.2, and calculate the isotropy index (Definition 4.1) in each case. Some of the material (in

more general form) can be found in [4, Chapitre 1, Paragraphe 16].

In this section, Q is a quadratic form on a finite-dimensional vector space W over F2. It induces an

alternating bilinear form

∇Q(x, y) := Q(x+ y)−Q(x)−Q(y).

If W ′ is a subspace of W , we define

W ′⊥ = {x ∈ W | ∇Q(x, y) = 0 for all y ∈ W ′} .
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∇Q induces a nondegenerate alternating bilinear form ∇Q on W/W⊥. Therefore, there exists a basis

{e1, . . . , ek, ek+1, . . . , e2k} of W/W⊥ so that ∇Q can be written as

(

0 I

I 0

)

.

The restriction of Q to W⊥ is linear.

Definition 5.1. The defect of Q is defined to be d = dimF2
Q(W⊥).

By definition, d equals 0 or 1.

Definition 5.2. The rank of Q is defined to be rk(Q) = 2k + d, where 2k = dimW/W⊥ as before.

It follows that the isotropy index ρ(Q) = ρ(Q0) + (n − rk(Q)), where Q0 is the (nondegenerate)

quadratic form on W0 := W/ ker(Q|W⊥) induced from Q.

Classification of quadratic forms over F2. Let {e1, . . . , en} be a basis of Fn
2 . As a shorthand, we

introduce the following quadratic forms:

• On F1
2, let I(x1e1) = x2

1.

• On F2
2, let X(x1e1 + x2e2) = x1x2 and Y (x1e1 + x2e2) = x2

1 + x1x2 + x2
2.

• On Fn
2 , let On(

∑n

i=1 xiei) = 0.

Type 1. The rank of Q is odd (rk(Q) = 2k + 1).

There exists a basis {e1, . . . , e2k+1, . . . , en} such that

Q

( n
∑

i=1

xiei

)

=

k
∑

i=1

xixk+i + x2
2k+1. (Q ∼= X⊕k ⊕ I ⊕On−2k−1.) (2)

Then

ρ(Q0) = k and ρ(Q) = k + (n− rk(Q)).

Type 2. The rank of Q is even (rk(Q) = 2k).

There exists a basis {e1, . . . , e2k, . . . , en} such that either

(Type 2.1) Q

( n
∑

i=1

xiei

)

=

k
∑

i=1

xixk+i (Q ∼= X⊕k ⊕On−2k) (3)

or

(Type 2.2) Q

( n
∑

i=1

xiei

)

=
k−1
∑

i=1

xixk+i + x2
k + xkx2k + x2

2k. (Q ∼= X⊕(k−1) ⊕ Y ⊕On−2k.) (4)

Then

ρ(Q0) =

{

k (Type 2.1)

k − 1 (Type 2.2)
and ρ(Q) = ρ(Q0) + (n− rk(Q)).

For the proof of the classification (and generalization to finite fields of characteristic 2), one may refer

to [3, Chapter VIII, Section 199].

In both Types 1 and 2, we have 2ρ(Q) > n− 2.

How to determine the type of Q? There is an easy way to determine the type of Q. It can be

checked that the cardinality of the preimage of 0 is

#Q−1(0) =















2n−1 (Type 1),

2n−1 + 2ρ−1 (Type 2.1),

2n−1 − 2ρ (Type 2.2).
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Therefore, the type of Q can be determined by “vote”:

Q is of















Type 1, if #Q−1(0) = #Q−1(1),

Type 2.1, if #Q−1(0) > #Q−1(1),

Type 2.2, if #Q−1(0) < #Q−1(1).

The Arf invariant of Q is 0 if Q is of Type 2.1 and is 1 if Q is of Type 2.2 (see [1]).

Moreover, the isotropy index ρ of Q can be determined from #Q−1(0) if Q is of Type 2.

6 Proof of the main theorem

For Part (1) of Theorem 4.2: From Subsection 2.3 and the definition of Q we see r8 ∈ N (QB).

For Part (2) of Theorem 4.2: We first show N (Q) ⊂ S(ρ, r). Suppose B is a bilinear form which

induces the quadratic form QB = Q. Then null(B) 6 ρ(Q) by definition.

If ρ = r, i.e., Q = 0, then B is an alternating bilinear form. Therefore rank(B) ≡ 0 (mod 2) and

null(B) ≡ r (mod 2).

If r = 2 and Q ∼= X , we have null(B) = 1.

Now we show N ⊃ S(ρ, r). Suppose a ∈ S(ρ, r). We are going to show that there is a bilinear form B

such that QB = Q and null(B) = a.

We will adopt the following notation: If S1, S2 ⊂ Z, we write

S1 + S2 = {s1 + s2 | s1 ∈ S1, s2 ∈ S2} .

We define

B(Q) = {B | B is a bilinear form such that QB = Q} .

Lemma 6.1. Let Q1 and Q2 be two quadratic forms. Then

N (Q1) + N (Q2) ⊂ N (Q1 ⊕Q2).

According to the classification of quadratic forms over F2, it suffices to prove that N ⊃ S(ρ, r) for the

following cases:

(I) X⊕k ⊕Om for k > 0, m > 0.

(II) X⊕k ⊕Om ⊕ Y for k > 0, m > 0.

(III) X⊕k ⊕Om ⊕ I for k > 0, m > 0.

In all cases, the isotropy index ρ is equal to k +m.

Now we will check the theorem by exhausting all the cases.

(i) ρ(O1) = 1. We have N (O1) = {1}.
(ii) ρ(O2) = 2. Since

B(O2) =

{(

0 0

0 0

)

,

(

0 1

1 0

)}

,

we get N (O2) = {0, 2}.
(iii) We will show that

N (Om) = {a | 0 6 a 6 m, a ≡ m (mod 2)}

for m > 2 by induction. In fact,

N (Om) ⊃ N (Om−2) + N (O2)

= {a | 0 6 a 6 m− 2, a ≡ m (mod 2)}+ {0, 2}
= {a | 0 6 a 6 m, a ≡ m (mod 2)} .
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(iv) ρ(X) = 1. We have

B(X) =

{(

0 1

0 0

)

,

(

0 0

1 0

)}

.

Therefore, N (X) = {1}.
(v) ρ(X ⊕O1) = 2. We have

N (X ⊕O1) ⊃ N (X) + N (O1) = {2} .

Since








0 1 1

0 0 1

1 1 0









,









0 1 1

0 0 0

1 0 0









∈ B(X ⊕O1)

and they have nullity 0 and 1 respectively, we have N (X ⊕O1) = {0, 1, 2}.
(vi) ρ(X ⊕O2) = 3. On the other hand,

N (X ⊕O2) = N ((X ⊕O1)⊕O1)

⊃ N (X ⊕O1) + N (O1)

= {0, 1, 2}+ {1} = {1, 2, 3} .

It can be checked that












0 1 1 1

0 0 0 1

1 0 0 0

1 1 0 0













∈ B(X ⊕O2)

and has nullity 0. Therefore, N (X ⊕O2) = {0, 1, 2, 3}.
(vii) We will show that

N (X ⊕Om) = {0, 1, 2, . . . ,m+ 1}
for m > 3 by induction. In fact,

N (X ⊕Om) = N ((X ⊕Om−2)⊕O2)

⊃ N (X ⊕Om−2) + N (O2)

= {0, 1, . . . ,m− 1}+ {0, 2}
= {0, 1, . . . ,m+ 1} .

(viii) ρ(X ⊕X) = 2. We have

N (X ⊕X) ⊃ N (X) + N (X) = {2} .

Since












0 1 1 1

0 0 0 1

1 0 0 1

1 1 0 0













,













0 1 0 1

0 0 0 0

0 0 0 1

1 0 0 0













∈ B(X ⊕X)

and they have nullity 0 and 1, respectively, we have

N (X ⊕X) = {0, 1, 2} .

(ix) ρ(X ⊕X ⊕O1) = 3. On the other hand,

N (X ⊕X ⊕O1) ⊃ N (X ⊕X) + N (O1) = {0, 1, 2}+ {1} = {1, 2, 3} .
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Note that


















0 1 0 1 1

0 0 0 0 1

0 0 0 1 0

1 0 0 0 1

1 1 0 1 0



















∈ B(X ⊕X ⊕O1)

and it has nullity 0. It follows that

N (X ⊕X ⊕O1) = {0, 1, 2, 3} .

(x) We will show that the theorem holds for all X ⊕X ⊕Om for m > 2 by induction. In fact, we have

N (X ⊕X ⊕Om) ⊃ N (X ⊕X ⊕Om−2) + N (O2) = {0, 1, 2, . . . ,m}+ {0, 2} = {0, 1, 2, . . . ,m+ 2} ,

for m > 2.

(xi) ρ(X ⊕X ⊕X) = 3. We have

N (X ⊕X ⊕X) ⊃ N (X ⊕X) + N (X) = {0, 1, 2}+ {1} = {1, 2, 3} .

Besides,
























0 1 1 0 0 0

0 0 1 1 0 0

1 1 0 1 0 1

0 1 0 0 1 0

0 0 0 1 0 1

0 0 1 0 0 0

























∈ B(X ⊕X ⊕X)

and it has nullity 0. Therefore,

N (X ⊕X ⊕X) = {0, 1, 2, 3} .

(xii) The theorem holds for all X⊕k ⊕Om by induction for k > 3 and k +m > 4, because

N (X⊕k ⊕Om) ⊃ N (X⊕(k−2) ⊕Om) + N (X ⊕X)

= {0, 1, 2, . . . , k − 2 +m}+ {0, 1, 2}
= {0, 1, 2, . . . , k +m} .

(xiii) ρ(Y ) = 0. On the other hand,

B(Y ) =

{(

1 1

0 1

)

,

(

1 0

1 1

)}

,

and N (Y ) = {0}.
(xiv) ρ(Y ⊕O1) = 1. Since









1 1 0

0 1 0

0 0 0









,









1 1 1

0 1 0

1 0 0









∈ B(Y ⊕O1)

and they have nullity 1 and 0 respectively, we get N (Y ⊕O1) = {0, 1}.
(xv) ρ(Y ⊕O2) = 2. On the other hand,

N (Y ⊕O2) ⊃ N (Y ) + N (O2) = {0}+ {0, 2} = {0, 2}
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and

N (Y ⊕O2) ⊃ N (Y ⊕O1) + N (O1) = {0, 1}+ {1} = {1, 2} .

Therefore, N (Y ⊕O2) = {0, 1, 2}.
(xvi) We prove for all Y ⊕Om (m > 3) by induction

N (Y ⊕ Om) ⊃ N (Y ⊕Om−2) + N (O2)

= {0, 1, . . . ,m− 2}+ {0, 2} = {0, 1, . . . ,m} .

(xvii) ρ(X ⊕ Y ) = 1. Since













0 1 0 0

0 0 0 0

0 0 1 1

0 0 0 1













,













0 1 1 1

0 0 1 0

1 1 1 1

1 0 0 1













∈ B(X ⊕ Y )

and they have nullity 0 and 1, respectively, we know that N (X ⊕ Y ) = {0, 1}.
(xviii) ρ(X⊕k ⊕ Y ⊕Om) = k +m. For k > 1 and k +m > 2, we have

N (X⊕k ⊕ Y ⊕Om) ⊃ N (X⊕k ⊕Om) + N (Y ) = {0, 1, . . . , k +m} .

(xix) ρ(I) = 0. We also have B(I) = {(1)} and hence N (I) = {0}.
(xx) ρ(I ⊕O1) = 1. In this case, r4 = 2. We see that

B(I ⊕O1) =

{(

1 0

0 0

)

,

(

1 1

1 0

)}

.

Therefore, N (I ⊕O1) = {0, 1}.
(xxi) ρ(I ⊕O2) = 2. We have

N (I ⊕O2) ⊃ N (I) + N (O2) = {0}+ {0, 2}

and

N (I ⊕O2) ⊃ N (I ⊕O1) + N (O1) = {0, 1}+ {1} = {1, 2} .

Therefore, N (I ⊕O2) = {0, 1, 2}.
(xxii) ρ(I ⊕Om) = m. We will show that N (I ⊕Om) = {0, 1, . . . ,m} for m > 2 by induction. In fact,

N (I ⊕Om) ⊃ N (I ⊕Om−2) + N (O2)

= {0, 1, . . . ,m− 2}+ {0, 2} = {0, . . . ,m} .

(xxiii) ρ(X ⊕ I) = 1. We also have N (X ⊕ I) ⊃ N (X) + N (I) = {1}. Since








0 1 1

0 0 1

1 1 1









∈ B(X ⊕ I)

and it has nullity 0, we get N (X ⊕ I) = {0, 1}.
(xxiv) ρ(X⊕k ⊕ I ⊕Om) = k +m. For k > 1 and k +m > 2, we have

N (X⊕k ⊕ I ⊕Om) ⊃ N (X⊕k ⊕Om) + N (I) = {0, 1, . . . , k +m} .

With all cases exhausted, we conclude that Theorem 4.2 is true.
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Remark 6.2. Theorem 4.2 states that the 8-rank r8 ∈ N (QB). If r4 = 1, we have QB
∼= O1 or I.

Since N (O1) = {1} and N (I) = {0}, r8 is determined by QB. However, in general r8 may not be

determined by QB. For example, if r4 = 2, QB
∼= X or Y or O2 or I ⊕O1. We know from Theorem 4.2

that N (X) = {1}, N (Y ) = {0}, N (O2) = {0, 2} and N (I ⊕ O1) = {0, 1}. In the latter two cases, we

have #N (QB) > 1. In all cases, all values in N (QB) actually appear as the 8-ranks of the class groups

of infinitely many imaginary quadratic number fields (see the proof of [7, Theorem 2]).
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