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Abstract It is proved that the action of the higher-dimensional gravity in Wei-
tzenbdck space reduces to the sum of the action of gravity in four-dimensional space-time
and that of gauge fields. In this sense we conclude that in Weitzenbock space the higher-

dimensional Kaluza-Klein theory holds.
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1 Introduction

It is well known that the Riemann-Cartan space U, has both nonvanishing
curvature and torsion. From U,, setting torsion tensor to be identically vanishing we
get Riemann space ¥, on which the general relativity (GR) was established; setting
curvature tensor to be identically vanishing, we get Weitzenbéck space A4,, based
on which Hayashi"? formulated another theory of gravity, the so-called new gen-
eral relativity (NGR), in 1979.

The Weitzenbsck space-time 1s characterized by the existence of a quadruplet
of linearly independent parallel vector fields b = {ba} = {b7}. By definition the
covariant derivative of parallel fields V&, equals zero. Thus, in coordinate basis,
the affine connection T = {I'},} can be expressed as

r}, =b530,bi. (1.1
Here b* = {b.} is also a quadruplet of vector fields, which is dual to &, It is easily

seen from (1.1) that the curvature tensor R(T') is identically vanishing, and the

torsion tensor I reads
T}, = 63(0,65 — 9,b%). (1.2)

In new general relativity the gravitation fields are completely described by the
parallel vector fields {#} or equivalently by the torsion tensor. New general relativity
is one of the theoriesthat are competitive with general relativity, and it predicts all
the experimental facts that general relativity does. It seems impossible to detect the
quantitative differences between their predictions at present. Besides the torsion T'=
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0 for V, on which the GR is based and the curvature R = 0 for 4, on which the
NGR is based, there is another correspondence between these two models: the GR
can be viewed as a gauge theory of frame rotation and the NGR as that of frame
translation™®, But in Riemann space there exists the Kaluza-Klein theory (K-K
theory) of gravity which offers a possibility for unifying gravity with other inter-
actions of nature®®., This fact motivated us to raise a question as to whether the
Kaluza-Klein theory also holds in Weitzenbock space. In this paper we shall show
that the answer to this question is positive and a higher dimensional K—K theory
of gravity in Weitzenbdck space is established.

In Sec. 2 we review the coset geometry in Weitzenbock space. Sec.3 s
devoted to evaluate the higher dimensional parallel fields and torsion tensor. In

Sec. 4 we show that the action of the higher dimensional gravity reduces to the
sum of the action of gravity in four-dimensional space-time and that of gauge

fields.

2 Coset Space

Let the internal space Y be taken as the coset space G/H of gauge group G,
where H is the maximal subgroup of G, The map ¢:G X Y — Y realizes the left

action from G to Y.

Y'._‘P"(ga y), i=1,2,++-,d, (2.1)
where y° are the local coordinates on Y, d is the dimension of Y, The generators
of this left action are denoted by Ki (y).

ki) =220 o2, (2.2)
og, =
which satisfies
[Ka(y)‘) Kﬂ()’)] = fﬁ,qu(y), (2-3)
with
K.(» = K (2. (2.4)
oy! _

We endow the internal space with a symmetric metric 7;;(y). The symmetry
of internal space is characterized by the existence of a special class of metrices,
the forms of which are invariant under the action of G. The corresponding Killing

equation for them reads
7,0;K) + 7;;0,K. + 0,7;iK: = 0. (2.5)
A solution of Eq. (2.5) is'®
7 (y) = L™Ki (9)Ki (). (2.6)
Here we introduce a length scale L into (2.6) in order to make 7"/ dimensionless.

Now we assume that the internal space is a Weitzenbdck space. By definifion
there exists a system of linearly independent orthogonal parallel vector fields & =

{b,} such that
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bi’rifbi == Jab> a, b= 1921"'9ds : (27)

where i are the components of & in the coordinate basis e¢; = 0/0y’, The compo-
nents of dual vector fields will be denoted by &; and satisfy

b: b = 7. (2.8)

In the case of Weitzenbock space we should also find out a class of parallel
vector fields which are invariant under the action of G.It is easy to getthe Killing
equation for parallel vector fields as follows:

Kt + bf 9pt KL = 0. '(2.9)
This equation will play a key role in formulating K-K theory in 4,,

One may raise a question about whether it is possible to find a system of invar-
iant vector fields which is consistent with the metric satisfying Eq. (2.5), To
answer this question it is useful to split Eq. (2.8), after raising the index j, into
symmetric and antisymmetric parts:

'K, + 0'Ki + KL9vi =0, (2.10a)

OiKi — O°'Ki + KL(b°0,bi — b°*%0,bi). (2.10b)

We see that (2.10a) just coincides with Eq. (2.6). If we have a solution 7 of Eq.
(2.6) and find a system of vector fields # which are consistent with ¥ but may not

satisfy (2.10b), we can get another system of vector fields 4’ through an orthogo-
nal transformation O.

b = 03 5%, (2.11)

such that the vector fields 4" satisfy Eq. (2.10b). Thus we have a solution & of
the Killing equation (2.9) for parallel vector fields.

3 The Parallel Fields and Torsion Tensor in A,

Now we turn to evaluate the parallel vector fields and .torsion tensor in #-
dimensional Weitzenbsck space A,(n=4-d). First of all we present the notation as
follows. The symbols with circumflexes refer to the geometrical objects in higher dimen-
sional space A4,, The Greek letters with circumflexes (&, 5, +-+) denote the space
indices in A4, (4,), while the Latin letters (i, j, -++) refer to the coset space. The
parallel vector fields in A, are labeled by Latin letters with circumflexes (A4,
Beoeons ), while the Latin letters without circumflex (A4, B,--++-+ ) and (a,

,+++) are used to label the parallel vector fields in 4, and in coset space,

respectively. Then we may write _
11'5(!‘,3.)5 p, A=10,1,2,3 (31)
.(;H(A, a), i, ﬂ='536,""ﬂ. ’

The metric ¢ of the higher demensional K-K theory in A4, is postulated to
be the same as in Riemannian space V,*.
b (zm — L7 ()KL (Kb (9) 42 (2) A8 (2)  —rL7™7;;(9) Ki () 4% (%) ) (3.2)
pp = . . .
—rL77;(y)Ki () 4% (%) —7; ()
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In order to make the metric block-diagonal we take the anholonomic basis &;:

= ___@__ —_— =1 gi a i
o= o — ALK DA (33)
0 _ .
é,‘ == - 3.4
2, (3.4)
which satisfies the commutative relations
[y, &) = —xL7F2,(x)K: (”)a%-’ | (3.5)
(6,5 &1 = KL A%(%)0,Ki (y);%, (3.6)
(¢, 41 =0, (3.7)
where
Fo,(x) = 0,45 — P, 4k + cL™'f5, AL A4). (3.8)
In this basis metric £ is block-diagonal
X Zuv(x) 0 )
£po = ( (3.9
[ 0 g;j(?) ’ )

where g;; = —7;;.

The parallel vector fields & = {§;} and their dual &* == {4} in A, can be
expressed in terms of the anholonomic basis é; with components 55 and 4 re-
spectively. The orthogonality and the duality of the parallel vector fields are

5568 = o5, 5364 = o}, (3.10a)
binssb8 = o, 8480088 = 718, ~ (3.10b)

where #48 is the higher-dimensional Minkowski metric: #;3 = diag(+1,—1,—1,-+-,
—1), In the anholonomic basis (3.3) and (3.4), & and 6* can also be block-diag-
onalized:

b5 = ( baCe) b= 0), (3.11a)

b =10 bi(y)

. bAG) b =0
o (b:=0 b;‘(y))’ (3.116)

such that
Eur = b,fTIAabfa Nas = (-']"1 » —1, —1, _"1) (3123)
gii = banabi = —Vijy M= —8u (3.12b)

By definition the covariant derivative of the parallel vector fields vanishes,

namely,
b = V(8425) = Veu(85)és + B5Vanés = 0. (3.13)
Note that ﬁeﬁ(bz) =2 (%) and ﬁeﬁéa = 7} 23, here the 74 are the affine connec-

tion coefficients of 4,, Thus we get from (3.13)
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Pho = —bhs,5 = bl2obi, (3.14)

Using (3.3), (3.4) and (3.10a, b) the connection coefficients can be easily evaluated.
We find that the nonvanishing coefficients are only

P =k, (3.15)
P, = —kASKLTi, (3.16)
i = Ties (317)

where 72, = —b20,b4, 7iy = —bjeybl are the connection coefficients in the four-
dimensional space-time and coset space respectively.

In an anholonomic basis the torsion tensor should be expressed as
Th = 7k — 7ha + Chs, (3.18)

where Cf‘%g are the structure coefficients of the basis &5, Their values in basis (3.3)
and (3.4) can be read readily from (3.5) and (3.6). We evaluate the components
of torsion tensor in A4, by use of (3.15)—(3.17) and find the following results:

P o= T,,,,, (3.19)
T =0, (3.20)
T =0, (3.21)
P4, = —eLTA%O,KL + Kivi) =0, (3.22)
iy = Tigs (3.23)
i, =0C, = —gL7'FE K. (3.24)

In (3.22) the Killing equation (2.9) has been used. It should be noted that
the indices of a higher-dimensional tensor in anholonomic basis can be raised and
lowered by g,,, g*° or g;, g because the metric £ is blockd-iagonal.

4 Lagrangian and Action

The gravitational fields in higher-dimensional Weitzenbéck space - 4, is de-
scribed by the parallel vector fields 55 or equivalently by the torsion tensor. The
physical law of A4, should be invariant under general coordinate transformation and
global higher-dimensional Lorentz transformation. Hence we will construct the
Lagrangian density for higher-dimensional gravity in this space in the quadratic
form of irreducible parts of the torsion tensor with respect to the global s-dimensional
Lorentz transformation™:

53" = A%6%, (4.1)

where A% is the element of proper orthochronous Lorentz transformation /i(/ﬁl'r;/i—
i, det A=1, A’>1), The torsion tensor T,ao (more precisely, the tensor 4=
Bi645%1%s) is reducible with respect to the global Lorentz transformation. It could
be decomposed into irreducible parts as

Tine = % (tipp — tinp) — L I (Giats — 81992)

n —
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1

- —r 3 .a%t 4.2
=31 sgngéinsaps..o (4.2)
where
fipp = 1 (Pipo + f'nia) + —1 (Lo30n + £0003) — 1 Lindo, (4.3)
2 2(n—1) ' n—1
05 = T, (4.4)
280 L Aavaprp, (4.5)
31
and
éipp... = | g|V?03 5, (g = det (€m)), (4.6)
4 = sgn (&)1 gV, sgn(8) = ¢g/lgl (4.7)

denote the extended Levi-Civita tensors in m-dimensional space, and 8. is the ex-
tended Kronecker delta symbol. Moreover, the tensor {#iz¢} has the following prop-
erties derived from its definition (4.3):

Pip0 = 2805 (4.8)
o= =0, (4.9)
Zipo + Z2poi + Zpia =0, (4.10)

Now we write the Lagrangian density for higher-dimensional gravity up to a
constant factor as
L = ay + 0,880 + 0,0°00 + 00" 24ps..., (4.11)

where @y, a,, a, and a; are free parameters. From the definitions (4.3)—(4.7) and
the properties of #140(4.8) and (4.9), the terms in (4.11) can be espressed in terms
of Tiﬂgf‘im, f'imfﬁg, and 0p0p:

P00gy g m L (PIROP g PIBOP LY — 3 g, (4.12)
2 2n—1)
2% 849, = sgn(£)]>2 (3 )2 L s (Page — 27uss). (4.13)
Further using expressions (3.19)—(3.25) we evaluate these terms as follows:
BE051 00 = vy ik, 4 2 (-1— —~1 ) vhy
e e "\ =1
+ -3—( 1 _ 1 ) viv; + ~ BLTKLKu F°FP,,  (4.14)
d—1 n—1 2

280, = v*v, + viv;, (4.15)
)Q—L 8;j...
(d — 3)1

-+ Sgn(é)’gn(3;!)3zM KZL_ZK:; Klg,' F“me:,, (4.16)

433%.3&,39... = §gn (g;w)(” - 3)1“‘“0;& + sgn(g,,
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where
at = - geoTeT (4.17)
31
@i = L glmmiioT, (4.18)
31

With the help of (4.14)—(4.16) we see that the Lagrangian density L splits into
three terms corresponding to the Lagrangian densities of gravity in 4-dimensional
space-time, in coset space G/H and in gauge field, respectively

I. = L,+ Lgy + a?L7*Ki Ky, F**FF, (4.19)
with
L, = a, + ait**t,,, + aw*v, + aa*a,, (4.20)
Ley = at"t;;; + av'v; + ¢fa’"a;;.., (4.21)
where
(n—3)1
a=ga, + Sgn(é) W— a3, (4.22)
’ ’ - 4 ’
a, = a,, a; = (-%—: — a, + az), a; = sgn(£)sgn(g,,)(n — 3)1a;, (4.23)
V= "==-i[( 1 ___1 )a +a] ay = sgn (£)sgn (g;; *M—s!a
a, a,, a; 5 7 —1 J— 1 2| @3 g ()g (Eu)(d_.S)I 3
(4.24)
If we set @ = — - as usual, then two of the three parameters a,, g, and a; are
still free. Now the action of gravity in 4, can be written as
1 o
I = S dv,dy L,+ Ly — —#*L7*Ki K;;F*°F?#, 4,25
162GV 4dv6u( Ly o 8 D> (4.25)

where G is the Newtonian gravitational constant. dv, and dvgy are the invariant
volume elements of 4-dimensional space-time and coset space G/H respectively, and
V is the volume of G/H. Performing the integral over coset space and setting:

K = 162G (%‘i), (4.26)
(dg = dimension of the gauge group) we get™
gauge group
1 aup I a
1 = =5 5 du,(L4—2A)—-;-jdv4F wpe.. (4.27)

Here A = a, + jdvG,HLg,H may be regarded as the cosmological constant. From

(4.27) we see that the action of higher dimensional gravity in Weitzenbsck space
reduces to the sum of the action of gravity in four -dimensional space-time and that
of gauge field. In this sense we conclude that the Kaluza-Klein theory also holds
in higher-dimensional Weitzenbsck space.
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