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Abstract It is significant to automatically detect and resolve the incompliance in security policy. Most existing

works in this field focus on compliance verification, and few of them provide approaches to automatically correct

the incompliant security policies. This paper proposes a novel approach to automatically transform a given

security policy into a compliant one. Given security policy Π and delegation policy M declared by logic programs,

the approach automatically rewrites Π into a new one ΠM which is compliant with M and is readable by the

humans. We prove that the algorithm is sound and complete under noninterference assumption. Formally, we

show that the security policy query evaluation algorithm with conflict and unsettlement resolution still works

very well on ΠM . The approach is automatic, so it doesn’t require a administrator with excess abilities. In

this sense, our proposal can help us to save much manpower resource in security management and improves the

security assurance abilities.
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1 Introduction

In practice, in a security policy management system (SPMS), a security manager (i.e., delegator) nor-
mally breaks a complex security policy management task down into several manageable chunks. Then
the manager delegates them to several other administrators (i.e., delegatees), and hopes that the secu-
rity policies submitted by the delegatees should be compliant with a set of delegation restrictions (i.e.,
delegation policy) pre-defined by the delegator. If not so, the delegator hopes that there is a mechanism
that can help him to automatically manage the compliance between the security policies and the pre-
defined delegation policy. Furthermore, when any incompliance is found, the delegator hopes that there
is an approach that can automatically resolve the incompliance and compulsively impose the delegation
restrictions on the submitted security polices. This is called compliance maintenance in this paper. If an
∗Corresponding author (email: yinlihua@software.ict.ac.cn)
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dr1 A can only grant the users designated with administrative role (i.e., the administrators)

to browse the core module.

dr2 A can grant all users to browse the news module.

dr3 The administrators except super ones who are not temporarily suspended from duty can not designate or

revoke the administrative role to or from any users.

Figure 1 Delegation policy 1 (declared in natural language).

pr1 Any users who are trusted by A are allowed to browse core.

pr2 A designates the administrative role to user B.

pr3 A trusts C and D.

Figure 2 Security policy 1 (declared in natural language).

SPMS can support this, its task on security policy management would be more automatic, easier, and
more manageable, and the security policies generated from the SPMS should be more secure.

Informally, given a delegation policy M and a security policy Π , Π is compliant with M , namely, if
Π does not violate the delegation restrictions defined by M. Intuitively, compliance depicts the inherent
constraint relationship between delegation policies and security policies, such as delegation policy 1 shown
in Figure 1 and security policy 1 shown in Figure 2.

Compliance maintenance has an important role in SPMS. For example, there is a information system
SecApp whose partial security policy management task is delegated to an administrator A. Suppose
SecApp is guarded by an RBAC [1] security policy and its delegation policy is shown in Figure 1, where
core and news are two sub-modules of SecApp.

When A writes a security policy shown in Figure 2 and submits it to SecApp, for the sake of security,
SecApp should check whether security policy 1 is compliant with delegation policy 1. We can see that it
is not so, but how an SPMS can “see” or resolve this? Currently, when security policy 1 is submitted to
SecApp, SecApp has two typical alternatives to keep it compliant with delegation policy 1:

Alternative 1: Monitoring the policy management actions [2] under a reference monitor, which is
illustrated in Figure 3(a) and its philosophy is that the delegation policy is treated as an access control
policy which is used to guard the actions that are used to create or modify another security policy.

Alternative 2: Verifying and validating the security policy with its intended delegation policy [3, 4]. If
it is compliant with M, accept it. If not so, reject it. This is illustrated in Figure 3(b) and its philosophy
is that the delegation restricts are treated as security properties of security policy to be verified and
validated.

With Alternative 1, on the one hand, it is so difficult to design and implement a sound and complete
reference monitor [5, 6] that many practical SPMSs based on this framework are the results of the
compromise between their implementations and their soundness and completeness. As a result, when a
security policy is submitted to an information system, as shown in Figure 3(a), it must be verified and
validated before it becomes applicable. On the other hand, the reference monitors only can monitor the
actions to create the security policies, but can not analysis their semantics. Obviously, delegation policy 1
is declared on the semantics of its intended security policies, but not on the actions to create the security
policies. Obviously, Alternative 1 can not be applied in this scenario.

Most of the related works [3,4,7–9] focus on the second alternative and several generalized theories and
approaches have been proposed, such as software verification and validation [10], model checking [11, 12].
However, these approaches have the following shortcomings: (1) Constructing a verifiable security policy
is out of an administrator’s ability. Since policy verification and validation is so difficult that only strictly
trained expertise can use these approaches. (2) These approaches can only be used to verify the security
policies, while they could not automatically resolve the found incompliance. Usually, the administrators
will take lots of time to manually resolve it, which is time-consuming and boring.

There are some scenarios that Alternative 2 can not be enforced. For example, suppose there is an
information system BlpApp which is guarded by BLP security policy [13] with {0, 1, 2, 3} as its security
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Figure 3 Suppose that the administrator wants to create a security policy Π for ρ.

dr1 A is only allowed to label subjects and objects with security levels 0 or 1.

dr2 B is only allowed to label subjects and objects with security levels 2 or 3.

Figure 4 Delegation policy 2 (declared in natural language).

pr1 User u1 is labeled by A with security level 1.

pr2 Object o1 is labeled by A with security level 2.

pr3 If A scores the reputation of a user with X, then A labels him with security level X.

pr4 A scores the reputation of user u2 with 0, u3 with 1 and u4 with 3.

pr5 If a use’s reputation is not scored, A scores the user’s reputation with 0.

pr6 u1, . . . , u5 are the users in the information system.

Figure 5 Security policy 2 (declared in natural language).

levels. BlpApp delegates its security policy maintenance tasks (e.g., labeling the security levels of objects
and subjects) to an administrator A under the delegation policy shown in Figure 4. Suppose A writes
a security policy shown in Figure 5. Obviously, delegation policy 2 is declared through restricting the
security policy management actions. Hence, Alternative 2 can not be applied to this scenario.

Most of the current innovative security policy (management) frameworks [14–19] only focus on security
policy expression or verification. Less works focus on the inadequacies existing in Alternative 1 or 2. In
this paper, we propose the third alternative.

Alternative 3 (A new idea): Automatically rewrite a security policy Π into a new one ΠM which is
inescapably compliant with its intended delegation policy M , and at the same time maximally reserves
the valid part of the semantics of Π . This is illustrated in Figure 3(c) and its philosophy is that every
delegation policy is treated as a special kind of security policy which defines the maximal set of privileges
that the intended delegatees could authorize to the other subjects.

2 Overview of our approach

Security policy defines the security properties for a or a set of information systems. Practically, a security
property are depicted by guarding the actions in an information system [2]. Based on this observation, we
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claim that a security policy is mainly used to define which actions are allowed or denied by an information
system, while a delegation policy defines the set of allowed or denied actions that its intended security
policies should follow. That’s to say, if an action is denied by a delegation policy, it should also be denied
by its intended security policy. Respectively, if an action is allowed by a security policy, it must be
allowed by its intended delegation policy.

Generally, it is difficult to ensure that a security policy follows another delegation policy. Furthermore,
we claim that it is a great challenge to attack Alternative 3, which could not be conquered in a short
time. Hence, in this paper, we only discuss a simplified scenario, where security policy and delegation
policy are declared with logic programs [20], and conflicts and unsettlements are resolved [15] from them,
and both of them are noninterference (noninterference is defined in Definition 9).

Our approach is shown in Figure 3(c). A submitted security policy Π will be automatically disposed by
a rewriting algorithm PolicyRewrite embedded in the SPMS. The rewriting algorithm will try to resolve
any incompliance from Π with M (i.e., soundness), and maximally reserve Π ’s valid semantic to keep
Π serviceable (i.e., completeness). This is the main difference of our approach from the others. Finally,
the rewriting algorithm outputs a new, human readable security policy ΠM which is coded by the same
language as Π . Hence, the administrator has the chances to review ΠM .

As we all know, the core of a delegation policy is to define the management privileges authorized
to the delegatees for managing the security policies. In the narrow sense, many researchers think that
management privileges are only the constraints on the management actions. Hence, they think that the
policy shown in Figure 4 would be delegation policy, but not the one shown in Figure 1. Essentially,
we claim that, whatever the expression is, a delegation policy defines a set of privileges that could be
authorized to some other subjects by the delegatees. From this viewpoint, the policies shown in Figure 1
and Figure 4 are all delegation policies, but they are declared through two different kinds of strategies:

Eager strategy: SPMS directly monitors the whole security policy management process, such as
Figure 3(a) shown. When an action is not allowed by the delegation policy, the reference monitor denies
it. If the reference monitor is sound and complete, the generated security policies should be compliant
with their intended delegation policies. Unfortunately, with this strategy, the delegators cannot abstractly
declare their security goals in a high-level. Eager strategy is intuitive, but it is difficult to be formalized.

Lazy strategy: SPMS does not care about the actual policy management process. However, SPMS
delays all the compliance maintenance task until the security policy is submitted, such as Figure 3(b) and
3(c) shown. Obviously, with this strategy, the delegators can abstractly declare their security goals in a
high-level, and they needn’t care about the implementation details of SPMS. Lazy strategy is simple and
easy to be formalized. Actually, the existing works [14–18] bring us many hints to formalize an SPMS
with lazy strategy. Since the SPMSs with lazy strategy activate the compliance maintenance process at
the last stage, they are more efficient and easier to be used than those with eager strategy.

Eager strategy and lazy strategy have different philosophy. The former ensures its correctness through
the correctness of the process. The latter ensures its correctness through the final disposition. Notice that
the difference between them is a key to understanding the approach proposed in this paper. However,
there are no insurmountable boundaries between them. For example, delegation policy 2, declared in
eager strategy, can be easily re-declared in lazy strategy, shown in Figure 6. The above taxonomy shows
that our approach, which will be discussed in detail in Section 4, is very efficient and easy to be used.

From the above discussions, we can see that our proposal is a new philosophy, and PolicyRewrite is a
mechanism to implement the philosophy. In this new philosophy, the role of delegation policy is changed
from defining the privileges authorized to the administrators to defining the privileges that the admin-
istrators can authorize to the other subjects. This has the following advantages: (1) ΠM is compliant
with M and maximally reserves the serviceability of Π . We can avoid security policy verification, manual
incompliance resolution, and reference monitor implementation; (2) For any administrator, if he is able
to write Π , then he is able to make use of our proposal. Our approach doesn’t require any excess abilities
for the administrators; (3) Our proposal consumes less manpower and processor time than the others
shown in Figure 3(a) and 3(b). In this sense, our proposal improves the security
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dr′1 : The security levels of the subjects and objects labeled by A must be 0 or 1.

dr′2 : The security levels of the subjects and objects labeled by B must be 2 or 3.

Figure 6 Delegation policy 2 (declared in natural language with lazy strategy).

assurance abilities.
As we know, logic program [20] is an excellent tool for constructing policy languages and frameworks

[14–19]. Our proposal is also logic program based and it can be easily integrated into the existed works.
For conveniences, we assume in this paper that M and Π are always two logic programs, where Π is a
security policy with M as its intended delegation policy.

The rest of this paper is organized as follow: In Section 3, we devote to model the policy-based
information system. Based on the model, we introduce a logic program based security policy framework
used in our approach, which includes policy language, policy semantic, conflict detection and resolution,
unsettlement detection and resolution, and policy query evaluation. In Section 4, given M and Π declared
in the above policy framework, we propose an algorithm PolicyRewrite(Π, M, ΠM) to automatically
rewrite Π into a compliant security policy ΠM with M . We prove that the algorithm is sound and
complete under the semantics decided by the query evaluation algorithm introduced in Section 3. This
is our main contribution. In Section 5, we give a simple example to depict how to use our approach. We
conclude this paper in Section 6.

3 Policy-based information system

In this section, we will give a formal model of policy-based information system and introduce some
technical terms. Then we propose a policy framework to formally declare the delegation policy and
security policy. We suppose the readers are familiar with first-order logic. Let p be any n-arity predicate.
Then p(t) is an n-arity atom, where t is a sequential n-tuple of constants (usually denoted by string
beginning with lower-case, such as a, b, c) or variables (usually denoted by string beginning with upper-
case, such as X, Y, Z). If p(t) is an atom, then p(t) and not p(t) are literals, where the former is positive
and the latter is negative. Especially, if every tuple of t is constant, p(t) is ground, and p(t)/not p(t) are
positive/negative ground literal.

3.1 Modeling the information systems

In order to formally show the role of security policy and delegation policy in an information system and
the relationship between them, first, we have to accurately specify what an information system is.

Definition 1 (Information system). Formally, an information system is represented by a 6-tuple ρ(Q, Q0,

E , P, M, Π). ρ is an unique identity of the information system; Q is a set of states; Q0 is a set of initial
states, and Q0 ⊆ Q; E is a set of events which transfer the system from one state to another. Every event
ε ∈ E is a function ε : Q→ Q. Practically, every event ε(q, q′) can be explicitly expressed as ε(c), where
c is a sequence of any input or output constant arguments with fixed arity. Hence each event can be
treated as a special kind of predicate. Each n-arity event ε introduces two new n-arity predicates ε+ and
ε− into E , called event predicates. Event atom ε+(t) (resp. ε−(t)) means that event ε(t) is allowed (resp.
denied) to be executed on argument sequence t. P is a set of predicates used to depict the relationships
among the entities in the system. P is divided into two disjoint sets E and Ω. E is described above. The
predicates in Ω are called characteristic predicates which are used to depict the characteristics of ρ. M

is a delegation policy, which is formally defined in Definition 2. Π is a security policy, which is formally
defined in Definition 3.

Definition 2 (Delegation policy). Let ε(c) be an any given ground event in ρ(Q, Q0, E , P, M, Π). M

is a formal logic system that specifies whether ε+(c) or ε−(c) can be entailed or not in what states and
with what system characteristics in ρ. If ε+(c) (resp. ε−(c)) is entailed by M in the states with the
designated characteristics in ρ, the intended delegatees is allowed to authorize ε+(c) (resp. ε−(c)) to
other subjects in the states with the characteristics in ρ.
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Definition 3 (Security policy). Let ε(c) be any given ground event in ρ(Q, Q0, E , P, M, Π). Π is a
formal logic system that specifies whether ε+(c) or ε−(c) are entailed or not in what states and with
what system characteristics in ρ. If ε+(c) (resp. ε−(c)) is entailed by Π in the states with the designated
characteristics in ρ, ε(c) is allowed (resp. denied) in the states with the characteristics in ρ.

In ρ(Q, Q0, E , P, M, Π), Π should follow the delegation restrictions defined in M , which is called
compliance. Based on Definition 2 and Definition 3, we can easily give its formal definition.

Definition 4 (Compliance). Let ε(c) be any given ground event in ρ(Q, Q0, E , P, M, Π). M and Π

use the same set of inference meta-rules. Suppose (1) if ε+(c) is entailed by Π in the states with the
designated characteristics in ρ, ε+(c) is also entailed by M in the same states with the same characteristics
in ρ, and (2) if ε−(c) is entailed by M in the states with the designated characteristics in ρ, ε−(c) is also
entailed by Π in the same states with the same characteristics in ρ. Then we say Π is compliant with
M , or M-compliant.

Intuitively, compliance depicts the inherent constraint relationship between M and Π . Definition 4
ensure the ground event atoms that are allowed by ρ should also be allowed both by M and Π and must
not be denied by M . That’s to say, M absolutely dominates Π . For first-order logic system, different
inference meta-rules may entail different logic results. So we claim that M and Π use the same set of
inference meta-rules.

3.2 Policy declaration and policy framework

From Definition 3, we claim that a full sense of security policy in an information system should have two
fundamental functions: depicting its characteristics and guarding its behaviors based on the characteris-
tics. In this paper, for the sake of simplicity, the characteristics are abstractly depicted through a set of
rules, and the behaviors are depicted by the events.

With Definition 2 and Definition 3, we claim that delegation policy is a special kind of security policy.
Hence, They can be declared in the same way. There are many proposed policy languages [14–19,21].
However, with the merits of logic program, such as reasoning ability, declarative semantic and simplicity,
the logic program based policy languages are popular [14–18]. Hence, in this paper, we suppose security
policy and delegation policy are declared by logic programs. In the following subsections, we will introduce
the language to declare security policy, the semantic of security policy and the query evaluation algorithm
with conflict and unsettlement resolution against security policy. All of these compose a security policy
framework.

3.2.1 Logic program based policy declaration

In a logic program based policy language, policy is declared by one or several rules as follow

A← L1, . . . , Ln. (F-1)

where A in the rule head is any atom, Li in the rule body is a positive or negative literal, and n � 0.
Formula (F-1) is an equivalent variant of the following logic formula

∀(A← L1 ∧ · · · ∧ Ln) or A← L1 ∧ · · · ∧ Ln. (F-2)

Definition 5 (Security policy). A set of logic formulas of the forms of Formula (F-1).
Obviously, each security policy is a logic program. For simplicity, for any given ρ(Q, Q0, E , P, M, Π),

we only focus on the scenario where Π in ρ can be partitioned into two disjoint subsets as follow:
1. System control rules base (SCB): the predicates appearing in the heads of the rules in SCB must be

event predicates belonging to E , and the predicates in the bodies must be characteristic predicates which
belong to Ω. Essentially, the rules in SCB are used to regulate the events in ρ, such as pr1 and pr2 in
security policy 1 shown in Figure 2, and pr1 − pr3 in security policy 2 shown in Figure 5.

2. System invariant rules base (SIB): the predicates appearing in the rules in SIB must be characteristic
predicates belonging to Ω. Essentially, SIB depicts the invariant properties existing in ρ, such as the
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facts in ρ, the relationships in the entities. So the rules in SIB are also called invariants, such as pr4−pr8

in security policy 2 shown in Figure 5.
As we have pointed out, delegation policy is a special kind of security policy with particular purpose.

For simplicity, we define delegation policy as a set of rules whose head must be event atoms.

Definition 6 (Delegation policy). A set of logic formulas of the form ε+(t) ← L1, . . . , Ln or ε−(t) ←
L1, . . . , Ln, where ε+(t) (resp. ε−(t)) in the rule head is an allowed (resp. denied) event atom.

As we know, the set of rules in M are used to depict the privileges that the intended delegatees can
authorize to other subjects, which is also called SCB of M . Comparing Definition 5 and Definition
6, we can see that delegation policy does not have SIB to depict the characteristics of its intended
information system. This is because that (1) the essence of delegation policy is to specify the set of
ground event atoms that the delegatees can authorize to other subjects, SCB is enough to do so; (2)
the delegators usually declare the delegation policies abstractly, but they need not or have no context
to designate the characteristics of its intended information system; (3) the delegators usually trust their
intended delegatees on the declarations of system characteristics. That’s to say, M and Π share the
same characteristics which will be declared in Π by the intended delegatees. Hence, we claim that it is
reasonable to suppose that the head of each rule in delegation policy is an allowed or denied event atom.

3.2.2 Semantics of security policy and delegation policy

As we have pointed out, a full sense of security policy should have two fundamental functions: depicting
its characteristics and guarding its events. By Definition 5, each security policy is a full sense because it
has both SCB and SIB. Hence, it is easy to define its formal semantic. We stipulate that the semantic
of Π is the semantic of its corresponding logic program. For any given logic program, it suffices to only
research on Herbrand semantics [20] (page 17, proposition 3.2). However, a logic program may have
many types of semantics defined in different scenarios, such as minimal model(of definite logic program),
perfect model (of stratified logic program) [22], stable model [23], well-founded model [24] and so on.

Unfortunately, there are still many different opinions on what is the canonical semantic of a logic
program or how to definite it [24]. Hence, we don’t explicitly designate the semantic of a security policy.
Instead, we suppose there exists a complete and sound query evaluation algorithm LpQuery(P , Q) which
implicitly defines its formal semantic, where P is a security policy, and Q is a query goal. For example, if
we think stable model is canonical, we can designated LpQuery(P , Q) as Smodels(P , Q), where Smodels
[25] is a sound and complete query evaluation algorithm under the stable model semantics.

Let S be a Herbrand semantic of P . S is supported if for any ground atom a ∈ S, there exists a ground
rule a ← a1, . . . , an instantiated from a rule in P and all ai ∈ S. Most of the Herbrand semantics are
supported, such as those mentioned above. LpQuery(P , Q) returns a set of all the ground substitutions
that make Q a logic result of P . If Q is a ground atom a, then LpQuery(P , a) returns true (when a is a
logic result of P) or false (when a is not a logic result of P).

However, delegation policy isn’t full-fledged because it has no SIB to depict the characteristics of its
intended information systems. Hence, its Herbrand semantic could not show its real intention. We claim
that the characteristics of an information system are not only the context of its security policy, but also
the context of its delegation policy. That’s to say, for any given ρ(Q, Q0, E , P, M, Π), the real sense
delegation policy is MΠ = M ∪ SIB(Π). Obviously, MΠ is full-fledged. Since MΠ can be constituted
uniquely by M and Π , we still use M to denote MΠ without making any confusion.

In the following sections, Let the semantics of Π and M be SΠ and SM , and their query evaluation
algorithm be LpQuery. Let Γ denote Π or M , and ε(c) be an ground event atom.

Definition 7 (Conflict). Γ is ε(c) conflicted if ε+(c) ∈ SΓ and ε−(c) ∈ SΓ . Γ is ε conflict-free if there
is no ε(c) conflict for any c. Γ is conflict-free if Γ is ε conflict-free for any ε.

Definition 8 (Unsettlement). Γ is ε(c) unsettled if neither ε+(c) ∈ SΓ nor ε−(c) ∈ SΓ . Γ is ε

unsettlement-free if there is no ε(c) unsettlement for any c. Γ is unsettlement-free if Γ is ε unsettlement-
free for any ε.
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Unfortunately, it is difficult in practice to construct a conflict-free or unsettlement-free delegation
policy and security policy when both allowed and denied event atoms could appear in them. Usually,
they are resolved with some default conflict and unsettlement resolution rules.

Conflict resolution: Generally, conflicts are resolved by two conventional classes of default rules
[15]: denial taking precedence (DTP) and permission taking precedence (PTP). In our approach, they
are declared as Formula (F-3), and stipulate that ε(c) is allowed if ε++(c) ∈ SΓ , and ε(c) is denied if
ε−−(c) ∈ SΓ .

PTP : ε++(X)← ε+(X), ε−(X),

DTP : ε−−(X)← ε+(X), ε−(X), (F-3)

OWA : ε++(X)← not ε−(X),

CWA : ε−−(X)← not ε+(X). (F-4)

Unsettlement resolution: Generally, unsettlements are also resolved by two conventional classes of
default rules [15]: close world assumption (CWA) and open world assumption (OWA). CWA means that
everything that is true is explicitly stated in the program or can be derived from the program. On the
contrary, OWA means that everything that is false is explicitly stated in the program or can be derived
from the program. In our approach, they can be declared as Formula (F-4).

Conflict and unsettlement resolution is essential to keeping secure. For simplicity, we claim that, for
any given event ε, there is one and only one default conflict resolution rule which is either PTP or DTP
and one and only one default unsettlement resolution rule which is either OWA or CWA in M or Π . The
set of all default conflict resolution rules in a policy is called conflict resolution base (CRB); and the set
of all default unsettlement resolution rules in a policy is called unsettlement resolution base (URB). Note
that CRB and URB may be implicit in a policy.

3.2.3 Query evaluation with conflict and unsettlement resolution

Before ρ(Q, Q0, E , P, M, Π) executes a ground event ε(c), it should queries against Π with goal “← ε+(c)”.
The query evaluation algorithm is illustrated in Algorithm 1. If the algorithm returns true, ε(c) is allowed,
else ε(c) is denied. At the same time, it can decide whether there is ε(c) conflict (if bConflicted is true)
or unsettlement (if bUnsettled is true) in SCB(Π) ∪ SIB(Π).

Algorithm 1 bool PolicyQuery (ε(c), Π, bConflicted, bUnsettled).

1: bConflicted := false; bUnsettled:=false;

2: let b1 =LpQuery(SCB(Π) ∪ SIB(Π), ε+(c));

3: let b2 =LpQuery(SCB(Π) ∪ SIB(Π), ε−(c));

4: if b1 =true and b2=true then

5: bConflicted:=true, and

6: select out the one and the only one conflict resolution rule cr from CRB(Π),

which is ε++(x)← ε+(x), ε−(x) or ε−−(x)← ε+(x), ε−(x);

7: if cr is ε++(x)← ε+(x), ε−(x), then PolicyQuery returns true, else PolicyQuery returns false;

8: end if

9: if b1 = false and b2 =false then

10: bUnsettled := true, and

11: select out the one and the only one unsettlement resolution rule ur from URB(Π),

which is ε++(x)← not ε−(x) or ε−−(x)← not ε+(x).

12: if ur is ε++(x)← not ε−(x), then PolicyQuery returns true, else PolicyQuery returns false.

13: end if

14: if b1 =true and b2 =false, then PolicyQuery returns true;

15: if b1 =false and b2 =true, then PolicyQuery returns false

Obviously, PolicyQuery always terminates and returns true or false if the underlying logic program
query evaluation algorithm LpQuery always terminates. Suppose the computational complexity of Lp-
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Query is δ. Then the computational complexity of Algorithm 1 is 2δ+sizeof(CRB(Π))+sizeof(URB(Π)))
≈ 2δ.

Theorem 1. For any given ground event atom ε(c), suppose the algorithm LpQuery in Algorithm 1
is sound, complete and terminated. Then the security policy Π , which guards ε, will allow or deny ε(c)
explicitly. That’s to say, Algorithm 1 is conflict resolved and unsettlement resolved.

Proof. Straight forward.
Let Πr = Π ∪ {ε++(X) ← ε+(X), not ε−(X); ε−−(X) ← ε−(X), not ε+(X). |ε ∈ E}. Then we

have

Theorem 2. Let SΠr be the semantic of Πr. For any ground event atom ε(c), either ε++(c) or ε−−(c)
does come into existence in SΠr , but not both.

Proof. The union of the definitions of ε++ and ε−− in Πr must be one of the following four sets.
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε++(X)← ε+(X), not ε−(X);

ε−−(X)← ε−(X), not ε+(X);

ε++(X)← ε+(X), ε−(X);

ε++(X)← not ε−(X).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε++(X)← ε+(X), not ε−(X);

ε−−(X)← ε−(X), not ε+(X);

ε++(X)← ε+(X), ε−(X);

ε−−(X)← not ε+(X).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε++(X)← ε+(X), not ε−(X);

ε−−(X)← ε−(X), not ε+(X);

ε−−(X)← ε+(X), ε−(X);

ε++(X)← not ε−(X).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε++(X)← ε+(X), not ε−(X);

ε−−(X)← ε−(X), not ε+(X);

ε−−(X)← ε+(X), ε−(X);

ε−−(X)← not ε+(X).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

For any ground event atom ε(c), there is one and only one ground rule instantiated from one of the
above sets, whose truth value is true. That’s to say, ε++(c) or ε−−(c) must be in SΠ′ , but not both.

Theorem 3. Let b = PolicyQuery(Π, ε(c),−,−), b′ = LpQuery(Πr, ε++(c)). Then b ≡ b′.

Proof. We prove the theorem in following two cases:
(1) Suppose b =true, according to Algorithm 1.
a) if b1 =true and b2 =true, then there is ε(c) conflict in Π and the one and the only one resolution

rule must be PTP: ε++(X) ← ε+(X), ε−(X). Hence, the definition of ε++ in Πr includes ε++(X) ←
ε+(X), ε−(X). Since b1 =true and b2 =true, i.e., SCB(Π) ∪ SIB(Π) |= ε+(c) and SCB(Π) ∪ SIB(Π) |=
ε−(c), we can easily get Πr |= ε+(c) and Πr |= ε−(c). Hence, Π ′ |= ε++(c), i.e., b′ =true;

b) if b1 =false and b2 =false, then ε(c) is unsettled in Π and the one and the only one resolution rule
must be OWA: ε++(X)← notε−(X). Hence, the definition of ε++ in Πr includes ε++(X)← notε−(X).
Since b1 =false and b2 =false, i.e., SCB(Π) ∪ SIB(Π) 
|= ε+(c) and SCB(Π) ∪ SIB(Π) 
|= ε−(c), we can
easily get Πr |= ε+(c). Hence, Πr |= ε++(c), i.e., b′ =true;

c) if b1 =true and b2 =false, then there is no ε(c)-conflict and no ε(c)-unsettlement. However, the
definition of ε++ in Πr includes ε++(X) ← ε+(X), not ε−(X). Since b1 =true and b2 =false, i.e.,
SCB(Π) ∪ SIB(Π) |= ε+(c) and SCB(Π) ∪ SIB(Π) 
|= ε−(c), we can easily get Πr |= ε+(c) and Πr 
|=
ε−(c). Hence, Πr |= ε++(c), i.e., b′ =true;

d) since b=true, it is impossible that b1 =false and b2 =true. Hence b′ =true.
(2) Suppose b =false, according to Algorithm 1, if b1=true and b2 =true, then there is ε(c)-conflict

in Π and the one and the only one resolution rule is PTP : ε−−(X) ← ε+(X), ε−(X). Hence, the
definition of ε−− in Πr includes ε−−(X)← ε+(X), ε−(X). Since b1 =true and b2 =true, i.e., SCB(Π)∪
SIB(Π) |= ε+(c) and SCB(Π)∪SIB(Π) |= ε−(c), we can easily get Πr |= ε+(c) and Πr |= ε−(c). Hence,
Πr |= ε−−(c). According Theorem 2, Πr |= ε++(c) i.e., b′ = false. In the other cases, the proving
procedures are similar, we omit them here.

Vice versa, the proving procedure is similar, due to space limitations, we omit it here.
With Theorem 3, we can know that PolicyQuery is logically equivalent to LpQuery if we don’t care

about the conflict and unsettlement detection. Ultimately, we construct the logic framework for security
policy declaration, query evaluation, and conflict and unsettlement resolution.
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4 Constructing compliant security polity

Firstly, we propose a logic program equivalent transformation algorithm. Based on this algorithm, we
discuss the security policy rewriting algorithm in accordance with the principle from special to general.

4.1 Logic program equivalent transformation

Let DefP (p) be the set of all k rules in logic program P with predicate symbol p in their heads, called the
definition of p in P . Let p(t1, . . . , tn) ← l1, . . . , lm be any rule in DefP (p). We require a new predicate
symbol =, not appearing in P , whose intended interpretation is the identity relation under equality theory
[20] (page 78, 79). We transform every rule in DefP (p) into the form

p(X1, . . . , Xn)← ∃Y ((X1 = t1) ∧ · · · ∧ (Xn = tn) ∧ l1 ∧ · · · ∧ lk),

where X1, . . . , Xn are the variables not appearing in the original rule, Y is the sequence of all the free
variables in the original rule. Then we obtain a formula of the form

p(X1, . . . , Xn)← ∃Y1(X1 = t1,1 ∧ · · · ∧Xn = t1, n ∧ l1, 1 ∧ · · · ∧ l1,k1)

∨ · · ·
∨∃Yk

(X1 = tk,1 ∧ · · · ∧Xn = tk,n ∧ lk,1 ∧ · · · ∧ lk,kk
).

(F-5)

This is denoted by DefFP (p). With Theorem 4, we also call DefFP (p) the definition of p in P .

Theorem 4. S is a supported Herbrand semantic of P if and only if S is a supported Herbrand semantic
of (P − DefP (p)) ∪ {DefFP (p)}. That’s to say, P is logically equivalent to (P − DefP (p)) ∪ {DefFP (p)}
under any supported Herbrand semantic.

Proof. (Reductio ad absurdum)
(⇒): Suppose S is not a supported Herbrand semantic of (P − DefP (p)) ∪ {DefFP (p)}. Then there is

at least one formula p(c) ← F which is an instantiation of DefFP (p), such that p(c) /∈ S, but there is a
conjunctive sub-formula l1 ∧ · · · ∧ lk of F with truth value true under S. Hence, the truth of formula
p(c) ← l1 ∧ · · · ∧ lk is false in S. However, the formula is an instantiation of some rule in P . That’s to
say, S is not a supported Herbrand semantic of P . Contradiction.

(⇐): Suppose S is not a supported Herbrand semantic of P . Then there is at least one ground rule
p(c)← l1∧· · ·∧lk which is an instantiation of some rule in P , such that p(c) /∈ S, but the truth of l1∧· · ·∧lk
is true. Since p(c) /∈ S, the truth of all the ground rules instantiated from DefP (p) with p(c) as their heads
is false. Hence, the truth of p(X1, . . . , Xn)← ∃Y1(c = t1∧l1, 1∧· · ·∧l1, k1)∨· · ·∨∃Yk

(c = tk∧lk,1∧· · ·∧lk,kk
)

is false, which is instantiated from DefFP (p). That’s to say, S is not a supported Herbrand semantic of
(P −DefP (p)) ∪ {DefFP (p)}. It is a contradiction.

4.2 Rewriting algorithm

Let ρ(Q, Q0, E , P, M, Π) be an information system. In this section, we will propose the security policy
rewriting algorithm which automatically rewrite Π into a compliant security policy ΠM with M . We will
introduce the rewriting algorithm in five cases.

Case 1: For any given event ε, both Π and M have no rules with event atom ε−(t) but some rules with
event atom ε+(t) appearing in their heads. In this case, there is one and only one implicit ε-unsettlement
resolution rule ε−(X)← not ε+(X) in both Π and M . Obviously, there are no ε conflicts in Π and M .
Hence, Π and M do not need ε conflict resolution rule. With Theorem 4, the definitions of ε+ and ε− in Π

can be denoted by DefFΠ(ε+) = ε+(X)← F+
Π and DefFΠ(ε−) = ε−(X)← not ε+(X), and the definitions

of ε+ and ε− in M can be denoted by DefFM (ε+) = ε+(X)← F+
M and DefFM (ε−) = ε−(X)← not ε+(X),

where F+
Π and F+

M are formulas of the form shown on the right-hand side of formula (F-5).
Based on those, let DefFΠM

(ε+) = ε+(X) ← F+
Π ∧ F+

M and DefFΠM
(ε−) = ε−(X) ← not ε+(X) ∨

not ε+(X), i.e., DefFΠM
(ε−) = ε−(X) ← not ε+(X). Then we construct the definitions of ε+ and ε− in

ΠM . Obviously, ΠM is ε conflict and unsettlement-free under all the supported Herbrand semantics.
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Case 2: For any given event ε, both Π and M have no rules with event atom ε+(t) but some rules
with event atom ε−(t) appeared in their heads. This case is similar to Case 1. We skip it.

Case 3: For any given event ε, Π has no rules with event atom ε−(t) but some rules with event atom
ε+(t) appearing in their heads, and M has no rules with event atom ε+(t) but some rules with event
atom ε−(t) appearing in their heads. In this case, there is one and only one implicit ε-unsettlement
resolution rule ε−(X) ← not ε+(X) in Π and ε+(X) ← not ε−(X) in M . Obviously, there are
no ε-conflicts in Π and M . With Theorem 4, the definitions of ε+ and ε− in Π can be denoted by
DefFΠ(ε+) = ε+(X)← F+

Π and DefFΠ(ε−) = ε−(X)← not ε+(X), and the definitions of ε+ and ε− in M

can be denoted by DefFM (ε+) = ε+(X) ← not ε−(X) and DefFM (ε−) = ε−(X) ← F−
M , where F+

Π , F+
M ,

F−
Π and F−

M are formulas of the form shown on the right-hand side of formula (F-5).
Based on those, let DefFΠM

(ε+) = ε+(X) ← F+
Π ∧ not ε−(X) and DefFΠM

(ε−) = ε−(X) ← F−
M ∨

not ε+(X). Then we construct the definitions of ε+ and ε− in ΠM . In this case, Π is ε-conflict free and
ε-unsettlement free (after unsettlement resolution). We replace the definitions of ε+ and ε− in Π with
DefFΠM

(ε+) and DefFΠM
(ε−), which transform Π into Π ′. Then we have following results.

Theorem 5. In case 3, Π ′ is ε-conflict/unsettlement free under all the supported Herbrand semantics.

Proof. (Reduction ad absurdum) Let S be a supported Herbrand semantic of Π ′.
Suppose there are ε-conflicts in Π ′, whose definition should be

DefFΠ′ (ε∓) = ε∓(X)← (F+
Π ∧ not ε−(X)) ∧ (F−

Mnot ε+(X)).

Let ε∓(c) ← (F+
Π |c ∧ not ε−(c)) ∧ (F−

M |cnot ε+(c)) be any instantiated formula from DefFΠ′(ε∓).
Supposing (F+

Π |c ∧ not ε−(c)) ∧ (F−
M |c ∨ not ε+(c)) is true in S, F+

Π |c, not ε−(c) and (F−
M |c ∨ not ε+(c))

must be true in S. Since not ε−(c) is true in S, we can get ε−(c) /∈ S. Hence, (F−
M |c ∨ not ε+(c)) is false

in S because formula ε−(c)← F−
M |c ∨ not ε+(c), which is instantiated from DefFΠM

(ε−), is true in S. We
get a contradiction. Hence, (F+

Π |c ∧not ε−(c))∧ (F−
M |c ∨not ε+(c)) is false in S. So there is no ε-conflict

in Π ′.
Suppose there are ε-unsettlements in Π ′, whose definition is

DefFΠ′(ε?) = ε?(X)← ¬((F+
Π ∧ not ε−(X)) ∨ (F−

M ∨ not ε+(X))).

Let ε?(c)← ¬((F+
Π |c ∧ not ε−(c)) ∨ (F−

M |c ∨ not ε+(c))) be any instantiated formula from DefFΠ′ (ε?).
Suppose (F+

Π |c ∧ not ε−(c)) ∨ (F−
M |c ∨ not ε+(c)) be false in S. Then (F+

Π |c ∧ not ε−(c)), F−
M |c and

not ε+(c) must be false in S. However, Since not ε+(c) is false in S, we can get ε+(c) ∈ S. Hence
(F+

Π |c ∧ not ε−(c)) is true in S because formula ε+(c) ← F+
Π |c ∧ not ε−(c), which is instantiated from

DefFΠM
(ε+), is true in S. We get a contradiction. Hence, (F+

Π |c ∧ not ε−(c)) ∧ (F−
M |c ∨ not ε+(c)) is true

in S. So there is no ε-unsettlement in Π ′.

Case 4: Π has no rules with event atom ε+(t) but some rules with event atom ε−(t) appearing in
their heads, and M has no rules with event atom ε−(t) but some rules with event atom ε+(t) appearing
in their heads. This case is similar to Case 3. We skip it.

Case 5: Both Π and M have some rules with event atom ε+(t) and some other rules with event
atom ε−(t) appearing in their heads. Obviously, Case 1 to Case 4 are special kind of this case. In this
case, obviously, it is possible that there exist ε-conflicts or ε-unsettlements in Π and M , which must be
resolved. Let Π and M be conflict and unsettlement resolved with CRB and URB under PolicyQuery
algorithm illustrated in Algorithm 1. Hence, there is one and only one default ε-conflict resolution rule
which must be ε++(X) ← ε+(X), ε−(X) or ε−−(X) ← ε+(X), ε−(X), and one and only one default
ε-unsettlement resolution rule which must be ε++(X) ← not ε−(X) or ε−−(X) ← not ε+(X). Note
that these rules do explicitly bind to Π and M , and Π and M have the same CRB and URB.

With Theorem 4, suppose the definitions of ε+ and ε− in Π can be denoted by DefFΠ(ε+) = ε+(X)←
F+

Π and DefFΠ(ε−) = ε−(X)← F−
Π , and the definitions of ε+ and ε− in M can be denoted by DefFM (ε+) =

ε+(X)← F+
M and DefFM (ε−) = ε−(X)← F−

M . Let DefFΠM
(ε+) = ε+(X)← F+

M ∧F+
Π and DefFΠM

(ε−) =
ε−(X)← F−

M ∨ F−
Π . Then we construct the definitions of ε+ and ε− in ΠM .
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The definition of ε-conflict in ΠM should be DefFΠM
(ε∓) = ε∓(X)← (F+

M ∧F+
Π )∧ (F−

M ∨F−
Π ) which is

equivalent to DefFΠM
(ε∓) = ε∓(X)← (F+

M ∧ F−
M ∧ F+

Π ) ∨ (F+
M ∧F+

Π ∧ F−
Π ). If there is no ε conflict in Π

and M , the truths of F+
M ∧F−

M and F+
Π ∧F−

Π are always false. Hence, ΠM is ε conflict-free. Similarly, the
definition of ε-unsettlement in ΠM should be DefFΠM

(ε?) = ε?(X)← ¬((F+
M ∧F+

Π )∨(F−
M ∨F−

Π )) which is
equivalent to DefFΠM

(ε?) = ε?(X)← ¬((F−
M ∨F+

Π ∨F−
Π )∧(F+

M ∨F−
M ∨F−

Π )). If there is no ε unsettlement
in Π and M , the truths of F+

M ∨ F−
M and F+

Π ∨ F−
Π are always true. Hence, ΠM is ε unsettlement-free.

However, if there is ε conflicts/unsettlements in Π or M , there could be ε conflicts/unsettlements in ΠM .
This is why we require that Π and M are conflict and unsettlement resolved.

To ensure that the final output is correct, our approach requires that:
(1) Π and M embed the same CRB and URB; and
(2) for every event ε, there is one and only one default PTP or DTP conflict resolution rule in CRB

and one and only one default CWA or OWA unsettlement resolution rule in URB; and
(3) the predicates appearing in the bodies of the rules in SCB(Π) and SCB(M) must also appear in

SIB(Π); the predicates appearing in SIB(Π) may not appear in SCB(Π) or SCB(M).

Definition 9 (Noninterference). If a policy satisfies above three conditions, it is noninterference.
For any given ε ∈ E we can get DefFΠM

(ε+) and DefFΠM
(ε+) according to its definitions in Π and M

with above approach. Then, we transform DefFΠM
(ε+) and DefFΠM

(ε−) with the algorithm introduced in
Chapter 4 of [20] into two set of logic program rules.

After all DefΠ(ε+) and DefΠ(ε−) in Π are transformed into sets of logic program rules, Π is trans-
formed into a new security policy ΠM . With Theorem 3, we can know that PolicyQuery(ΠM , ε(c),−,−)
is logically equivalent to LpQuery(ΠMr , ε++(c)) if LpQuery is sound and complete, where ΠMr =
ΠM ∪ {ε++(X) ← ε+(X), not ε−(X).ε−−(X) ← ε−(X), not ε+(X).|ε ∈ E}. With Theorem 1, we can
know that ΠMr is conflict and unsettlement resolved if its semantic decided by LpQuery is supported.

According to above discussions, we propose the following Algorithm 2. Given conflicts and unsettle-
ments resolved security policy Π and delegation policy M , Algorithm 2 can generate a security policy ΠM

which is compliant with M and maximally reserves Π ’s valid semantic. Obviously, since the algorithm
introduced in Chapter 4 of [20] is terminal, Algorithm 2 is also terminal. From Algorithm 2 we can know
that M , Π and ΠM have the same SIB, CRB and URB, but they have different SCB. That’s to say,
a delegator and its intended delegatees share the same facts, the principle of conflict and unsettlement
resolution, but they may have differently actual requirement on how to control a real information system.

Algorithm 2 PolicyRewrite ([in] M , [in] Π, [out] ΠM ).

1: P := ∅; ΠM := ∅;
2: if M or Π are not noninterference, then return.

3: for each event predicate ε+ and ε− defined in M or Π:

4: with the approach introduced in subsection 4.1, we can get

DefFΠ(ε+) = ε+(X)← F+
Π ; DefFΠ(ε−) = ε−(X)← F−

Π ;

DefMF (ε+) = ε+(X)← F+
M ; DefMF (ε−) = ε−(X)← F−

M .

5: add formula ε+(X)← F+
M ∧ F+

Π and ε−(X)← F−
M ∨ F−

Π to P ;

6: add formula ε++(X)← ε+(X), not ε−(X) and ε−−(X)← ε−(X), not ε+(X) to P ;

7: remove all rules with ε+ or ε− in their heads from Π;

8: end for

9: transform P into a logic program ΠM (Chapter 4 of ref. [20]).

10: copy Π into ΠM .

Lemma 1. For any given ground event atom ε(c), let S be a supported Herbrand semantics of ΠM .
Then either ε++(c) ∈ S or ε−−(c) ∈ S, but not both.

Proof. straight forward from Theorem 2.

Theorem 6. Given security policy Π and its intended delegation policy M declared in our framework,
if they are noninterference, the security policy ΠM generated by Algorithm 2 is M -compliant, conflict
resolved and unsettlement resolved under LpQuery.
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Proof. With Lemma 1, we can get that ΠM is conflict resolved and unsettlement resolved under LpQuery.
Suppose b = LpQuery(ΠM , ε+(c)) and DefFΠM

(ε+) = ε+(X) ← F+
M ∧ F+

Π . If b =true, we can get
F+

M |X=c and F+
Π |X=c are both true under the semantic of ΠM decided by LpQuery. Since the predicates

appeared in F+
M are all appear in SIB(Π), F+

M |X=c is true under the semantic of SIB(Π) decided by
LpQuery. Hence, F+

M |X=c is true under the semantic SM of M decided by LpQuery. Since SM is supported
and [ε+(X)← F+

M ] ∈M , we can conclude that ε+(c) ∈ SM , that’s to say, true = LpQuery(M, ε+(c)).
Suppose b = LpQuery(M, ε−(c)) and DefFM (ε−) = ε−(X) ← F−

M . If b =true, F−
M |X=c is true under

the semantic of M decided by LpQuery. Since the predicates appearing in F−
M all appear in SIB(Π),

F−
M |X=c is true under the semantic of SIB(Π) decided by LpQuery. With M and ΠM sharing SIB(Π),

we can conclude that F−
M |X=c is true under the semantic SΠM of ΠM decided by LpQuery.

With Definition 4, we can say that ΠM is M -compliant.
Note that, if Π or M is not noninterference, Theorem 6 may not be correct.

4.3 Soundness and completeness

If we only care about compliance, we would be led into a blind alley. For example, the empty se-
curity policy ∅ is compliant with any delegation policy, but it is senseless. This section we will prove
PolicyRewrite(Π, M, ΠM) not only resolves all incompliance in Π , but also reserves all the valid semantic
of Π with M . The former is called soundness, and the latter is called completeness.

Let SΠ , SM and SΠM be the semantics of Π , M , and ΠM defined by LpQuery, and they are all
supported. Note that, M is an alias of the actual delegation policy M ∪ SIB(Π) under the context of
Π , so SM is an alias of the semantic of M ∪ SIB(Π). Then, Soundness and completeness are formally
defined as follows.

Definition 10 (Soundness). For any give ground event atom ε(c),
(1) if LpQuery(ΠM , ε+(c)) =true, then LpQuery(Π, ε+(c)) =true and LpQuery(M, ε+(c)) =true, and
(2) if LpQuery(ΠM , ε−(c)) =true, then LpQuery(Π, ε−(c)) =true or LpQuery(M, ε−(c)) =true. Then

PolicyRewrite(Π, M, ΠM) is sound.

Definition 11 (Completeness). For any give ground event atom ε(c),
(1) if LpQuery(Π, ε+(c))= true and LpQuery(M, ε+(c)) =true, then LpQuery(ΠM , ε+(c)) =true, and
(2) if LpQuery(Π, ε−(c)) =true or LpQuery(M, ε−(c)) =true, then LpQuery(ΠM , ε−(c)) =true. Then

PolicyRewrite(Π, M, ΠM) is complete.
Definition 10 and 11 depict that SM absolutely dominates the valid part of the semantic of SΠ . Next,

we prove that PolicyRewrite is sound and complete under PolicyQuery.

Theorem 7. PolicyRewrite is sound and complete under the algorithm PolicyQuery.

Proof. Soundness is straight forward from Theorem 6.
(1) Suppose LpQuery(Π, ε+(c)) =true and LpQuery(M, ε+(c)) =true. Since DefΠ(ε+) = ε+(X) ←

F+
Π , and the semantic SΠ of Π decided by LpQuery is supported, F+

Π |X=c is true under SΠ . With ΠM

as noninterference, we can know that F+
Π |X=c is true under SΠM . Similarly, F+

M |X=c is also true under
SΠM . Hence, LpQuery(SΠM , ε+(c)) =true since DefFΠM

(ε+) = ε+(X)← F+
M ∧ F+

Π .
(2) Suppose LpQuery(Π, ε−(c)) =true. Since DefΠ(ε−) = ε−(X) ← F−

Π , and the semantic SΠ of Π

decided by LpQuery is supported, then F−
Π |X=c is true under SΠ . With ΠM is noninterference, we can

know that F−
Π |X=c is true under SΠM . Hence, LpQuery(SΠM , ε−(c)) =true since DefFΠM

(ε+) = ε−(X)←
F−

M ∨ F−
Π . Similarly, if LpQuery(M, ε−(c)) =true, we also can get LpQuery(SΠM , ε−(c)) =true.

With (1), (2) and Definition 11, we can say that PolicyRewrite(Π, M, ΠM) is complete.
Note that PolicyRewrite is not only sound and complete, but also conflict and unsettlement-resolved

under LpQuery(ΠM , ε++(c)), which is depicted by Theorem 8.

Theorem 8. (1) LpQuery(Π, ε++(c)) =true and LpQuery(M, ε++(c)) =true iff LpQuery(ΠM , ε++(c))
=true; (2) LpQuery(ΠM , ε−−(c)) =true iff LpQuery(Π, ε−−(c)) =true or LpQuery(M, ε−−(c)) =true.
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CRB cr0 : label−−(Xe, Xl, Xm)← label+(Xe, Xl, Xm), label−(Xe, Xl, Xm).

SCB

dr1 : label+(Xe, Xl, A)← Xl = 0.

dr2 : label+(Xe, Xl, A)← Xl = 1.

dr3 : label+(Xe, Xl, B)← Xl = 2.

dr4 : label+(Xe, Xl, B)← Xl = 3.

URB ur0 : label−−(Xe, Xl, Xm)← not label+(Xe, Xl, Xm).

Figure 7 BLP-DP (a BLP delegation policy).

CRB cr0 : label−−(Xe, Xl, Xm)← label+(Xe, Xl, Xm), label−(Xe, Xl, Xm).

SCB pr1 : label+(u1, 1, A). pr3 : label+(X, Y, A)← Trusted(X, Y, A).

pr2 : label+(o1, 2, A).

SIB

pr4 :

pr5 :

pr6 :

pr7 :

Trusted(u2, 0, A).

Trusted(u3, 1, A).

Trusted(u4, 3, A).

Trusted(X, 0, A)← not Trusted(X, Y, Z).

pr8 :

...

pr12 :

User(u1).

...

User(u5).

URB ur0 : label−−(Xe, Xl, Xm)← not label+(Xe, Xl, Xm).

Figure 8 BLP-SP (a BLP security policy).

Proof. Since Π , M and ΠM have the same CRB and URB, the definitions of ε++ are the same in them.
Suppose DefΠ(ε++) = ε++(X)← F++; DefΠ(ε−−) = ε−−(X)← F−−; DefM (ε++) = ε++(X)← F++;
DefM (ε−−) = ε−−(X) ← F−−; DefΠM (ε++) = ε++(X) ← F++ ∧ F++, DefΠM (ε−−) = ε−−(X) ←
F−− ∨ F−−. Since Π , M and ΠM are noninterference, the truths of F++ and F−− are decided by SIB.
Hence, for any c, F++|X=c is true in SΠM if and only if F++|X=c is true in SΠ and SM . With SΠ , SM

and SΠM are supported, ε++(c) ∈ SΠM if and only if ε++(c) ∈ SM and ε++(c) ∈ SΠ . We get the proof
of (1). Similarly, we can get the proof of (2).

5 A complete example

Formally, delegation policy 2 shown in Figure 6 can be declared as in Figure 7 in our framework, where
label+(Xe, Xl, Xm) denotes that administrator Xm labels subject/object Xe with security level Xl. We
can see that delegation policy 2 defines the maximal set of privileges (i.e., labels) that can be authorized
to other subject by the intended delegatees (Essentially, labeling a subject or object is an authorization).

Respectively, security policy 2 is formally declared as in Figure 8, where Trusted(X, Y, Z) denotes that
administrator Z scores the reputation of user X with number Y . Obviously, in security policy BLP-SP,
A labels u4 with 3 and labels o1 with 2. This violates BLP-SP’s intended delegation policy BLP-DP.
That’s to say, there is incompliance in BLP-SP.

In the follow, we illustrate how to resolve the incompliance between BLP-SP and BLP-DP by our
approach in detail. With BLP-SP, we can obtain DefBLP-SP(label+) of the form

label+(Xe, Xl, Xm)← (Xe = u1 ∧Xl = 1 ∧Xm = A) ∨ (Xe = o1 ∧Xl = 2 ∧Xm = A)∨
∃X,Y (Xe = X ∧Xl = Y ∧Xm = A ∧ Trusted(X, Y, A)).

With BLP-DP, we can obtain DefBLP-DP(label+) of the form

label+(Xe, Xl, Xm)← (Xl = 0∧Xm = A)∨(Xl = 1∧Xm = A)∨(Xl = 2∧Xm = B)∨(Xl = 3∧Xm = B).

With DefBLP-SP(label+) and DefBLP-DP(label+), we can obtain DefBLP-SPBLP-DP(label+) of the form

label+(Xe, Xl, Xm)← (Xl = 0 ∧Xm = A ∧ Trusted(Xe, Xl, A)) ∨ (Xl = 1 ∧Xm = A ∧Xe = u1)

∨ (Xl = 1 ∧Xm = A ∧ Trusted(Xe, Xl, A)).

 https://engine.scichina.com/doi/10.1007/s11432-011-4426-1



Bao Y B, et al. Sci China Inf Sci January 2012 Vol. 55 No. 1 163

Finally, we simplify the last formula and transform it into a set of logic program rules of the form

{label+(Xe, 0, A)← Trusted(Xe, 0, A). label+(u1, 1, A). label+(Xe, 1, A)← Trusted(Xe, 1, A).} ,

Hence, we can get

BLP-SPBLP-DP =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

label+(Xe, 0, A)← Trusted(Xe, 0, A), Trusted(u2, A).

label+(Xe, 1, A)← Trusted(Xe, 1, A), Trusted(u3, A).

label+(u1, 1, A), Trusted(u4, A).

Trusted(X, 0, A)← not Trusted(X, Y, Z), User(u1), . . . , User(u5).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

We can see that BLP-SPBLP-DP resolves all the invalid part but reserves all the valid part of the
semantic of BLP-SP with its intended delegation policy BLP-DP. BLP-SPBLP-DP is readable because it
expressed by the same security policy language as BLP-SP and BLP-DP have done.

6 Conclusion

As we know, the core of a delegation policy is to constraint its intended security policies. In order to do
so, we propose a new approach which automatically rewrites a given security policy into a new one which
is compliant with its intended delegation policy. To our best acknowledge, this is a novel idea which is
never proposed in any other works in security policy research fields.

Firstly, we formally define a logic program based security policy language framework, which can resolve
all the conflicts and the unsettlements in a security policy (Algorithm 1, Theorem 1 and Theorem 2), and
which is sound and complete if the underling logic program query evaluation algorithm is also (Theorem
3).

Then, based on the framework, we propose the rewriting algorithm PolicyRewrite shown in Algorithm
2. Given security policy Π and delegation policy M , PolicyRewrite can transform Π into a new one ΠM

which is compliant with M (Theorem 6). Π , M and ΠM are declared in the same style. PolicyRewrite is
complete and sound if Π and M are noninterference, and have the same SIB, CRB and URB (Theorem
7). That’s to say, ΠM not only resolves all compliance in Π with M but also reserves all the valid part
of the semantic of Π with M . Furthermore, Algorithm 1 still works well on ΠM (Theorem 8).

As the first step in compliance maintenance through rewriting approach, in this paper, we require Π

and M should be noninterference. This is a strong condition. In future, it is worthwhile to find whether
there exist other weak conditions under which we could propose more versatile rewriting algorithms.
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