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Abstract The discrete logarithm problem is analyzed from the perspective of Tate local duality. Local duality

in the multiplicative case and the case of Jacobians of curves over p-adic local fields are considered. When the

local field contains the necessary roots of unity, the case of curves over local fields is polynomial time reducible to

the multiplicative case, and the multiplicative case is polynomial time equivalent to computing discrete logarithm

in finite fields. When the local field does not contains the necessary roots of unity, similar results can be obtained

at the cost of going to an extension that contains these roots of unity. There was evidence in the analysis that

suggests that the minimal extension where the local duality can be rationally and algorithmically defined must

contain the roots of unity. Therefore, the discrete logarithm problem appears to be well protected against an

attack using local duality. These results are also of independent interest for algorithmic study of arithmetic

duality as they explicitly relate local duality in the case of curves over local fields to the multiplicative case and

Tate-Lichtenbaum pairing (over finite fields).
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1 Introduction

Suppose Ē is an elliptic curve over a finite field Fp, where the group of rational points Ē(Fp) has

prime order � different from p. Let E be an elliptic curve over Qp that reduces to Ē modulo p. Then

E(Qp)/�E(Qp) is isomorphic to Ē(Fp) via the reduction map. Now consider the Tate local duality

H1(Qp, E)[�]× E(Qp)/�E(Qp) → Br(Qp)[�]
inv→ 1

�
Z/Z ∼= Z/�Z.

For a, b ∈ Ē(Fp), let α, β ∈ E(Qp) such that a = α mod p and b = β mod p. If b = ma in Ē(Fp), then

〈χ, β〉 = m〈χ, α〉 for any nontrivial χ ∈ H1(Qp, E)[�], hence solving the discrete-log problem on Ē(Fp)

is reduced to local duality computation. It is therefore interesting to ask how efficiently can the local

duality be computed (see [5]). A related question is what is the minimal extension of Qp over which the

local duality can be rationally and algorithmically defined.

Similar consideration can be made when Ē is replaced by the Jacobian of a curve over a finite field.

For discrete logarithm in the multiplicative group F∗
p/F

∗�
p , one can similarly lift to Q∗

p/Q
�
p and consider

using the local duality

H1(Qp,Z/�Z)×Q∗
p/Q

�
p → Br(Qp)[�] → Z/�Z
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to reduce the discrete logarithm problem.

We will show that local duality for a curve over Qp is polynomial time reducible to local duality in the

multiplicative case when Qp contains the group μ� of the �-th roots of unity, and the multiplicative case

is polynomial time equivalent to computing discrete logarithm in finite fields.

When the local field does not contain the necessary roots of unity, the local duality for curves can

be carried out at the cost of going to the extension field Qp(μ�). In fact, our analysis suggests that

the minimal extension of Qp over which the local duality can be rationally and algorithmically defined is

Qp(μ�). One evidence is that the 1-cocycles representing nontrivial elements in H1(Qp, E)[�] must involve

points that are defined in Qp(μ�) and not anywhere lower. Therefore, the discrete logarithm problem

appears to be well protected against an attack using local duality.

These results are also of independent interest for algorithmic study of arithmetic duality as they

explicitly relate local duality in the case of curves (over local fields) to the multiplicative case, and the

Tate-Lichtenbaum pairing (over finite fields).

The results that are actually proven are for more general finite fields and local fields. For this purpose

the following notation will be fixed throughout the paper. Let k be a p-adic local field with a residue field F,

ks a fixed separable closure of k, and kur the maximal unramified subfield of ks. Let Gk = Gal(ks/k) be

the absolute Galois group over k, I the inertia group Gal(ks/kur), Gab denote the Galois group of the

maximal abelian extension of k, and GF = Gal(kur/k) ∼= Gal(F̄/F) where F̄ denotes an algebraic closure

of F. Let v denote the unique discrete valuation of k and π be a uniformizing element. Let m be a natural

number not divisible by p, the characteristic of F. Let μm(F̄) and μm(ks) denote the group of m-th roots

of unity in F̄ and ks, respectively. Fix a primitive m-th root of unity ζ. We write μm instead of μm(F̄)

or μm(ks) when the context is clear.

2 Local duality in the multiplicative case

Local duality in the multiplicative case (see [9, I, §2] ) is a perfect pairing

〈·〉 : H1(k,Z/mZ)× k∗/k∗m → Br(k)[m]
inv→ 1

m
Z/Z ∼= Z/mZ

that can be defined as follows.

For χ ∈ H1(k,Z/mZ) ∼= Hom(Gab,Z/mZ) and α ∈ k∗,

〈χ, α〉 = χ(θ(α)),

where θ : k∗ → Gab is the local Artin map.

From local class field theory we also have that

χ(θ(α)) = inv(α ∪ δχ),

where α ∈ k∗ = H0(k, ks∗), δχ is the image of χ ∈ H1(k,Z/mZ) ∼= H1(k, 1
mZ/Z) ⊂ H1(k,Q/Z) in the

connecting map H1(k,Q/Z)
δ→ H2(k,Z) with respect to

0 → Z → Q → Q/Z → 0

and inv : Br(k) → Q/Z is the invariant map (see [1, VI], [11, XI, §3] and [9, I, §1]).
We discuss how elements in the pairing groups can be represented for purpose of computation.

Since

k∗/k∗m ∼= F∗/F∗m × {πi | i = 0, . . . ,m− 1},
each element of k∗/k∗m can be specified in the form aπi with a ∈ F∗/F∗m and 0 � i � m− 1.

Since H1(k,Z/mZ) ∼= Hom(Gab,Z/mZ), each χ ∈ H1(k,Z/mZ) is determined by the cyclic extension

of degree dividing m fixed by kerχ, and χ(σ) where σ is a generator of Gab/ kerχ. Suppose ζ ∈ k.

Then the field fixed by kerχ is generated by an m-th root of some a ∈ k∗, so χ ∈ H1(k,Z/mZ)
∼= Hom(Gab,Z/mZ) can be specified by a ∈ k∗/k∗m where k(α) is the field fixed by kerχ with αm = a,

and for σ ∈ Gab, χ(σ) = i if σ(α) = ζiα.
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Theorem 2.1. Suppose μm ⊂ k and under the representation of elements in k∗/k∗m and H1(k,Z/mZ)

as described above, the discrete-log problem on the subgroup of order m of F is polynomial time equivalent

to computing the local duality

H1(k,Z/mZ)× k∗/k∗m → Z/mZ.

For a, b ∈ k∗, the (local) norm residue symbol [1] is defined by

(a, b)v =
θ(b)α

α
,

where αm = a.

Let b be an element of k∗/k∗m represented by (b̃, πi) in F∗/F∗m × {πi | i = 0, . . . ,m− 1}. Let χ be an

element of H1(k,Z/mZ) represented by some a ∈ k∗/k∗m.

From the definition of χ and the fact that 〈χ, b〉 = χ(θ(b)) we have

〈χ, b〉 = i ⇔ θ(b)α = ζiα ⇔ (a, b)v = ζi.

So 〈χ, b〉 can be obtained from (a, b)v by taking the discrete logarithm based ζ. Therefore, the theorem

follows if the norm residue symbol (a, b)v is computable in polynomial time. This follows from [11, XIV,

§3, Proposition 8], or a simple derivation which we provide below.

Suppose a is a unit. Then k(α) is an unramified abelian extension over k and θ(b) when restricted to

k(α) is τv(b), where τ ∈ Gal(k(α)/k) is the Frobenius automorphism. Let u be the extension of v to k(α).

Then

τα ≡ αq mod u,

where q = #F and since α is a unit

τα/α ≡ αq−1 ≡ a
q−1
m mod u.

Hence,

(a, b)v = (τα/α)v(b)

and can be represented by ã
q−1
m v(b) ∈ μm(F). So in this case (a, b)v is computable in polynomial time.

Since for a, b ∈ k∗, (a, b)v(b, a)v = 1 (see [1, p. 351]), it follows that (a, b)v is computable in polynomial

time if either a or b is a unit.

Since (a,−a)v = 1 for all a ∈ k∗ (see [1, p. 350]), we have (π,−π) = 1. Since

(−1, π)v = (−1)
q−1
m v(π) = (−1)

q−1
m ,

it follows that (π,−1)v = (−1)
q−1
m , so

(π, π)v = (π,−π)v(π,−1)v = (−1)
q−1
m .

Therefore, in all cases (a, b)v can be computed in polynomial time, and Theorem 2.1 follows.

3 Local duality computation for Jacobians of curves

Let A be a principally polarized abelian variety over k. For any field K containing k, let A(K) denote

the group of K-rational points on A. Let A[m] = A(ks)[m]. The Tate local duality for abelian varieties

over the local field k (see [9, I, §3] and [12]) is a perfect pairing

H1(k,A)[m]×A(k)/mA(k) → Br(k)[m]
inv→ 1

m
Z/Z ∼= Z/mZ.

This pairing can be described as follows. By taking Galois cohomology from the exact Kummer sequence

of Gk-modules:

0 → A[m] → A(ks)
m→ A(ks) → 0,
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we get the exact sequence

0 → A(k)/mA(k)
δ→ H1(k,A[m]) → H1(k,A)[m] → 0.

For α ∈ H1(K,A)[m] and R ∈ A(k), the pairing between α and R is defined to be inv(δR ∪ β), where

β ∈ H1(k,A[m]) is such that its image is α in H1(k,A[m]) → H1(k,A)[m], and the cup product is

H1(k,A[m])×H1(k,A[m]) → H2(k, μm) = Br(k)[m]

relative to the Weil pairing

A[m]×A[m] → μm,

where A[m] is identified with the m-torsion group of the dual abelian variety of A through a canonical

principal polarization.

Next, we discuss how elements in H1(k,A)[m] and A(k)/mA(k) can be efficiently represented.

Since p does not divide m, and suppose A has good reduction at v, A(k)/mA(k) is isomorphic to

Ã(F)/mÃ(F) through the reduction map, where Ã denote the reduction of A at v. Hence an element of

A(k)/mA(k) can be represented by its reduction in Ã(F)/mÃ(F).

Let kπ,m = k(μm)(π
1
m ). Let τ be a generator of Gal(kπ,m/k(μm)). Let χ be the cyclotomic character

so that σ(ζ) = ζχ(σ) for σ ∈ Gk. For any Gk-module B let Bχ consists of all b ∈ B such that σb = χ(σ)b.

Suppose b ∈ Bχ. For σ ∈ Gk, σ(b) = b if and only if σ(ζ) = ζ. Thus, (A[m])χ contains all elements of

A[m] that are defined in k(ζ) over k but not any proper subextension of k(ζ). If μm ⊂ k, then σ(ζ) = ζ

for σ ∈ Gk, so χ(σ) = 1 for σ ∈ Gk. In this case (A[m])χ = A(k)[m].

Lemma 3.1. Let A be an abelian variety over k with good reduction at v. Then

H1(k,A)[m] ∼= Hom(Gal(kπ,m/k(μm)), (A[m])χ).

To prove the lemma we observe that

H1(Gk, A)[m] ∼= Hom(Gal(kur(π
1
m )/kur), A[m])Gk/I .

(see for example the proof of [4, Lemma 2.2].)

Let ϕ ∈ Hom(Gal(kur(π
1
m )/kur), A[m]). Let Rτ = ϕ(τ). Then for t ∈ Gk, we have

ϕt(τ) = t−1Rτ t ,

Rτ t = ϕ(τ t) = ϕ(τχ(t)) = χ(t)Rτ .

So

t−1Rτ t = Rτ ⇔ tRτ = χ(t)Rτ .

Therefore,

Hom(Gal(kur(π
1
m )/kur), A[m])Gk/I = Hom(Gal(kur(π

1
m )/kur), (A[m])χ).

Finally,

Hom(Gal(kur(π
1
m )/kur), (A[m])χ) ∼= Hom(Gal(kπ,m/k(μm)), (A[m])χ)

and the lemma follows.

Let τ be a generator of Gal(kπ,m/k) such that τ(π1/m)/π1/m = ζ. From the lemma it follows that an

element f ∈ H1(k,A)[m] can be represented by f(τ) ∈ (A[m])χ. An important computational implication

of Lemma 3.1 is also that modulo 1-coboundaries in H1(k,A), 1-cocycle representation of elements of

H1(k,A)[m] must involve points in (A[m])χ. As observed before these are points exactly defined in

k(μm) over k. Hence in such representation the minimal extension of k over which the local duality can

be algorithmically defined must contain k(μm). We argue below that the local duality can indeed be

carried out computationally in k(μm).
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Let L = k(μm). For α ∈ H1(k,A)[m] and R ∈ A(k), the pairing between α and R is defined to be

inv(δR ∪ β) where β ∈ H1(k,A[m]) is such that its image is α in H1(k,A[m]) → H1(k,A)[m]. We have

(α,R)k = invk(δR ∪ β).

Since cup product commutes with restriction and invL ◦ Resk/L = [L : k] invk (see [1, p. 131]), it follows

that

invk(δR ∪ β) = φ(m)−1(α,R)L.

With this reduction it is enough to show that the local duality can be algorithmically defined over k in

the case where μm ⊂ k.

We now focus on the case where A is the Jacobian of a curve. In this case, a variant of the Tate pairing

defined by Lichtenbaum [4, 7] renders the local duality more accessible algorithmically. Though defined

differently, it is identical to the Tate pairing up to a sign [7].

Let C be a smooth projective irreducible curve over k of genus greater than 0, with a k-rational point.

We assume that C has good reduction at v, denoted by C̃. Let Div0(C) denote the group of divisors

of C of degree 0 over ks, P(C) the group of principal divisors of C over ks, and Pic0(C) the factor group

Div0(C)/P(C), which is isomorphic to J(ks) where J is the Jacobian variety of C over k. More generally

for a field k′ with k ⊂ k′ ⊂ ks, let Div0k′ (C) denote the group of divisors of C of degree 0 over k′, Pk′(C)

the group of principal divisors of C over k′, and Pic0k′(C) the factor group Div0k′(C)/Pk′(C), which is

isomorphic to J(k′) where J is the Jacobian variety of C over k. These groups are naturally Gk-modules.

Lichtenbaum’s pairing can be described as follows. By taking Galois cohomology from the exact sequence

0 → P(C) → Div0(C) → Pic0(C) → 0,

we get

0 = H1(k,Div0(C)) → H1(k,Pic0(C))
δ→ H2(k,P(C)).

For α ∈ H1(k,Pic0(C)) and D̄ ∈ Pic0k(C), the pairing of α and D̄ is

(α, D̄) = inv[(fσ,τ (D))σ,τ∈Gk
],

where δα = [(fσ,τ )σ,τ∈Gk
] with fσ,τ ∈ ks(C) and D ∈ D̄ such that D is prime to the principal divisors

(fσ,τ ) for all σ, τ ∈ Gk.

From now on, suppose μm ⊂ k. As before let kπ,m = k(μm)(π
1
m ) = k(π

1
m ), and let τ be a generator

of Gal(kπ,m/k) such that τ(π1/m)/π1/m = ζ. Let χ ∈ H1(Gk,Q/Z) be the composition of the natural

homomorphism from Gk to Gal(kπ,m/k) and the homomorphism from Gal(kπ,m/k) to Q/Z that sends τ

to 1
m . By Lemma 3.1, H1(k,Pic0(C))[m] can be identified with Hom(〈τ〉,Pic0k(C)[m]), thus an element

α ∈ H1(k,Pic0(C))[m] can be represented by α(τ) ∈ Pic0k(C)[m]).

Theorem 3.2. Let α ∈ H1(k,Pic0(C))[m] be represented by S̄ = α(τ). Let D̄ ∈ Pic0k(C). Then

(α, D̄) = 〈χ, FS(D)〉,

where FS is a function in k(C) such that (FS) = mS with S ∈ S̄, and D ∈ D̄ is such that D is prime

to S.

For computation FS(D) is represented by F̃S̃(D̃), where S̃, D̃ and F̃S̃ are the reductions at v of S, D

and FS . In fact, F̃S̃(D̃) is the value of the Tate-Lichtenbaum pairing

Pic0
F
(C̃)[m]× Pic0

F
(C̃)/mPic0

F
(C̃) → F∗/F∗m

defined in [4]. This pairing is well known in cryptography [2,3,6,8], and it can be computed in polynomially

many group operations in Pic0
F
(C̃). From this and the proof of Theorem 2.1, we have the following

theorem.



1426 Huang M D Sci China Math July 2013 Vol. 56 No. 7

Theorem 3.3. Suppose μm ⊂ k. Then the local duality

H1(k,Pic0(C))× PicOk (C)/mPic0k(C) → Z/mZ

is computable with polynomially many group operations in Pic0
F
(C̃) and solving one discrete logarithm

problem in the subgroup of order m of F.

The above theorems show that when μm ⊂ k, local duality in the multiplicative case and the case

of Jacobians of curves over local fields can both be computed in polynomially many group operations

over F, together with solving a discrete logarithm problem in F.

The proof of the theorem involves cohomological computations. Recall that in defining Galois coho-

mology over G-modules we can take the resolution P of Z:

· · · → P1 → P0 → Z → 0,

where Pi = Z[Gi+1], and form the complex K(A) = HomG(P,A) for a G-module A. Then Hi(G,A) is

the i-th cohomology group of this complex. An element of Ki(A) = HomG(Pi, A) is determined by a

function from Gi to A. Let d denote the boundary maps

· · ·Ki(A)
d→ Ki+1(A) · · ·

For an exact sequence of G-modules

0 → A → B → C → 0,

the induced

0 → Ki(A) → Ki(B) → Ki(C) → 0

is also exact, and we let δ denote the connecting homomorphisms

δ : Hi(G,C) → Hi+1(G,A).

Let τ ∈ Gal(k(π
1
m )/k) be such that τπ

1
m = π

1
m ζ. Let χ ∈ H1(Gk,Q/Z) be the composition of the

natural homomorphism from Gk to Gal(kπ,m/k) and χ̄ ∈ Hom(Gal(kπ,m/k), 1
mZ/Z) with χ̄(τ) = 1/m.

Let α ∈ H1(k,Pic0(C))[m] and suppose when identifying H1(k,Pic0(C))[m] with Hom(〈τ〉,Pic0k(C)[m]),

we have S̄ = α(τ). Let D̄ ∈ Pic0k(C). We would like to show that

(α, D̄) = 〈χ, FS(D)〉,

where FS is a function in k(C) such that (FS) = mS with S ∈ S̄ and D ∈ D̄ such that D is prime to S.

Let λ̄ : 1
mZ/Z → Z/mZ S̄ be the homomorphism sending 1/m to S̄. Then ϕα = λ̄ ◦ χ is a function

from Gk to Pic0(C) that represents α.

We will relate δα in

H1(Gk,Pic
0(C))

δ→ H2(Gk,P(C))

with respect to the exact sequence

0 → P(C) → Div0(C) → Pic0(C) → 0

to δχ in

H1(Gk,Q/Z)
δ→ H2(Gk,Z)

with respect to the exact sequence

0 → Z → Q → Q/Z → 0.

In fact, a 2-cocycle that represents δα can be directly derived and expressed in terms of FS (see [10,

(10.18)]). However, comparing δα to δχ will allow us to explicitly relate the pairing of (α, D̄) to the

pairing 〈χ, FS(D)〉.
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Let χ̂ ∈ Hom(Gk,Q) be a natural lift of χ so that χ̂ composed with the map Q → Q/Z is χ. Thus, χ̂

maps to χ in K1(Q) → K1(Q/Z).

Let S ∈ S̄ and λ : 1
mZ → ZS ⊂ Div0k(C) ⊂ Div0(C) be the isomorphism sending 1/m to S. Then

ϕ̂α = λ ◦ χ̂ maps to ϕα in K1(Div0(C)) → K1(Pic0(C)) (See diagram below):

Gk → 1
mZ → 1

mZ/Z

↓ ↓
ZS → Z

mZ
S̄.

By construction we have for all σ, σ′ ∈ Gk,

dϕ̂α(σ, σ
′) = iS ⇔ (dχ̂)(σ, σ′) =

i

m
,

hence

dϕ̂α(σ, σ
′) = m(dχ̂)(σ, σ′)S.

From the general property of connecting homomorphism, we know that there is a 2-cocycleGk×Gk → Z

that when composed with the inclusion map Z → Q is identical to dχ̂. Therefore, it is the case that

(dχ̂)(σ, σ′) ∈ Z for all σ, σ′ ∈ Gk. Let aσ,σ′ = (dχ̂)(σ, σ′) ∈ Z for all σ, σ′ ∈ Gk. Then (aσ,σ′)σ,σ′∈Gk
is a

2-cocycle that represents δχ. And we have

dϕ̂α(σ, σ
′) = m(dχ̂)(σ, σ′)S = maσ,σ′S = (F

aσ,σ′
S ).

This shows that δα can be represented by the 2-cocycle ((F
aσ,σ′
S ))σ,σ′∈Gk

.

So,

(α,D) = inv[(FS(D)aσ,σ′ )σ,σ′∈Gk
] = inv[δχ ∪ FS(D)] = 〈χ, FS(D)〉.

Theorem 3.2 follows.
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