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1 Introduction

An important part of the stringy orbifold theory is the various twistings the theory possesses.

Unfortunately, it is also the part of the stringy orbifold theory that we understand least. For

example, for the untwisted theory, we have a rather complete conjectural answer to its structure

and its relation to the structure of its crepant resolution. On the other hand, both the structure

of the twisted theory and its relation to the desingularization are still mysterious at this moment.

This article fills one piece of the puzzle.

Recall that for any almost complex orbifold X , we can associate the Chen-Ruan orbifold

cohomology ring H∗
CR(X ; C) by [1] as the summation of the ordinary cohomology of all the

sectors with an appropriate degree shifting. There are two important factors of this ring: (i)

there is a K-theoretic counterpart Korb(X) due to Adem-Ruan[2], (ii) a precise relation between

the Chen-Ruan orbifold cohomology ring and the cohomology ring of its crepant resolution has

been proposed[3]. These two key aspects of the theory will always serve as the benchmarks to

our future constructions. Namely, any theory we shall construct should have two properties:

(i) it should be compatible with the K-theory; (ii) it should describe the ring structure of its

crepant resolution or more generally its desingularizations. Here, a desingularization is obtained

by first deforming the equation of a Gorenstein orbifold and then taking a crepant resolution.

The miracle is that the right answer for one is often automatically the right answer for the

other one. This gives us two powerful approaches to the stringy orbifolds.
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Historically, the earliest twisting is due to Vafa[4,5] in the case of a global quotient orbifold

X = Y/G. Vafa’s twisting is a group cohomology class α ∈ H2(G; S1) called the discrete

torsion. The notion of the discrete torsion was generalized to the arbitrary orbifolds as a

class in H2(πorb
1 (X); S1) by [6]. One can construct a twisted orbifold cohomology using the

discrete torsion[5,6]. Its K-theoretic counterpart was constructed by Adem-Ruan[2]. However,

it fails badly in describing the cohomology of the desingularization. To remedy the situation,

a more general twisting was proposed in [6]. This new twisting is a flat line bundle L over the

inertia orbifold satisfying the certain compatibility conditions (see Definition 3.1). L is called

an inner local system. The inner local system works well for the second task, i.e., in describing

the cohomology group of a desingularization. But Adem-Ruan’s construction of the twisted

orbifold K-theory fails to cover the case of an inner local system.
A more important problem is to twist orbifold quantum cohomology, which is unknown even

for the discrete torsion. Recall that the Cohomological Crepant Resolution Conjecture[3] can

be phrased as follows: the cup product of a crepant resolution Y of a Gorenstein orbifold X is

the Chen-Ruan product of X plus the quantum corrections coming from the Gromov-Witten

invariants of the exceptional rational curves. This conjecture was obtained by understanding

the behavior of the quantum cohomology when it was deformed from a crepant resolution to

an orbifold, even though our initial goal was only to understand the cohomology. Therefore,

to even understand the ordinary ring structure of the desingularization, one has to understand

the quantum cohomology and its twisting. This is the main goal of this paper.

However, both the problems seemed to be hopeless. The situation changed when Lupercio-

Uribe introduced the notion of gerbes to orbifolds in [7] (see also [8]). Lupercio-Uribe-Tu-Xu-

Laurent-Gengoux constructed a twisted K-theory over a groupoid using a gerbe on the groupoid,

which is much more general than an orbifold. Their twisted K-theory generalizes Adem-Ruan’s

twisted K-theory on the orbifolds and the twisted K-theory on the smooth manifolds studied by

Witten[9], Bouwknegt-Mathai[10], Freed-Hopkins-Teleman[11] and others. The beauty of gerbes

is that one can easily do differential geometry, which is precisely what we were doing for the

quantum cohomology. In this context, Lupercio-Uribe interpreted an inner local system as

the holonomy line bundle on the inertia groupoid of a gerbe. In this article, we would like

to go one step further to use the gerbe to twist the orbifold quantum cohomology. During

the course of this work, some subtleties arose. In the theory of gerbes, there is a distinction

between flat gerbes and non-flat gerbes. A flat gerbe has a torsion characteristic class and is

often referred as a torsion gerbe. It has a rather long history in classical geometry under the

name of Brauer group. The flat gerbe, or the element of the Brauer group, is precisely the

data we are able to use to twist the orbifold quantum cohomology. On a smooth manifold, our

twisted orbifold quantum cohomology did not give any new information (see Corollary 6.2).

However, the orbifold discrete torsion is a particular case of a flat gerbe. It gives an abundance

of new invariants. Our construction does not work for the non-flat gerbes. In many ways,

the non-flat gerbes seem to fall into the realm of the non-commutative geometry. A further

understanding of the twisted orbifold quantum cohomology may require a full-fledged theory

of the non-commutative quantum cohomology. The on-going development of geometry with

B-field by Hitchin and others may provide another approach to this type of question.

Since a gerbe and its twisted K-theory can be constructed over a singular space much more
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general than an orbifold, a natural question is: Can we construct a (twisted) orbifold (quantum)

cohomology for a general groupoid such that (i) it agrees with the twisted K-theory rationally;

(ii) it describes the cohomology of its desingularization?

The main results of this paper were announced by the second author in 2002 at ICM Satellite

conference on Stringy Orbifolds in Chengdu. For various reasons, we were distracted by other

projects. We apologize for such a long delay. During the preparation of this paper, we received

an article of Lupercio and Uribe where there is some overlap between our Section 4 and their

paper[12].

The paper is organized as follows. In Section 2, we will review the basic definitions of

orbifolds and groupoids. In Sections 3 and 4, we will review the definition of gerbes and their

holonomy. In Section 5, we will show how to use the holonomy of a gerbe to twist the orbifold

GW-invariants. Some examples will be computed in the last section.

2 A review of orbifold Gromov-Witten invariants

We will review the construction of the ordinary orbifold Gromov-Witten invariants due to

[13]. We will only sketch the main construction and refer the detail to [13]. But we take this

opportunity to streamline the definition.

From now on, we will use Xo to denote a connected component of X . We will also assume

that all intersections Ui1,...,ik
= Ui1 ∩ · · · ∩ Uik

are connected. Otherwise, we work component

by component.

An orbifold atlas is defined in the same way.

Definition 2.1 (Orbifold Atlas). An n-dimensional smooth orbifold atlas on a connected open

cover {Ui}i∈I of X is given by the following data:

(1) Each Ui is covered by an uniformizing system (Ũi, GŨi
, πi) in the following sense. Ũi is

smooth. GŨi
is a finite group acting smoothly on Ũi and πi : Ũi → Ui is invariant under GŨi

such that it induces a homeomorphism Ũi/GŨi

∼= Ui. We call Ui an orbifold chart.

Choose a component π−1
i (Uij)o and let Gπ−1

i (Uij)o
⊂ GŨi

be the subgroup fixing π−1
i (Uij)o.

Then (π−1
i (Uij)o, Gπ−1

i (Uij)o
, πi) is a uniformizing system of Uij (called an induced uniformizing

system). Other induced uniformizing systems are of the form (gπ−1
i (Uij)o, gGπ−1

i (Uij)o
g−1, πi)

for g ∈ GŨi
. Namely, GŨi

acts transitively on the collection of the induced uniformizing systems.

In the same way, (Ũj , GŨj
, πj) induces a collection of the uniformizing systems over Uij acting

transitively by GŨj
.

(2) Tran(Ui, Uj) is a collection of the isomorphisms from (π−1
i (Uij)o, Gπ−1

i (Uij)o
, πi) to

(π−1
j (Uij)o, Gπ−1

j (Uij)o
, πj). Here, the isomorphism is an isomorphism λij : Gπ−1

i (Uij)o
→

Gπ−1
j (Uij)o

and an equivariant diffeomorphism φij : π−1
i (Uij)o → π−1

j (Uij)o. Moreover, all

such isomorphisms are generated from a fixed one by the action of GŨi
× GŨj

in an obvious

way. Each isomorphism is called a transition map.

(3) Tran(Ui, Ui) is generated by the identity. Tran(Uj , Ui) = Tran(Ui, Uj)
−1 in the sense

that each transition in Tran(Uj , Ui) is the inverse of some transition of Tran(Ui, Uj).

Over the triple intersection Uijk, each of Ui, Uj, Uk induces a uniformizing system and the

transitions restrict to them as well. Then, we require

(4) There is a multiplication such that (φjk, λjk) ◦ (φij , λij) is the restriction of an element
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of Tran (Ui, Uk).

Note that we do not require Ũi to be connected.

If U ′ is a refinement of U , then there is an induced orbifold atlas over U ′ in an obvious

fashion. Two orbifold atlases are considered to be equivalent if their induced orbifold atlases

are equivalent over a common refinement in an obvious fashion. Such an equivalence class is

called an orbifold structure over X . So we may choose U to be arbitrarily fine.

Let p ∈ X . By choosing a small neighborhood Vp ∈ U , we may assume that its uniformizing

system V(Vp) = (Up, Gp) has the property that Up is an n-ball centered at the origin o and

π−1
p (p) = o where πp : Up → Vp = Up/Gp is the projection map. In particular, the origin o is

fixed by Gp. We called Gp the local group at p. If Gp acts effectively for every p, we call X an

effective orbifold.

Recall Satake’s definition of an orbifold map. A map f : X → Y is an orbifold map iff

locally f : Ui → Vi can be lifted to an equivariant map f̃i : Ũi → Ṽi with a homomorphism

λi : GŨi
→ GṼi

. Suppose that we want to pull back an orbifold vector bundle from Y . We

can use a local lifting f̃i to construct the local pull-back. But there is no reason why the local

pull-backs can be glued together. In order to glue them together, we have to impose a condition

on the transitions. Then, we obtain the notion of the orbifold morphism. Now it is clear how

we should impose our condition called a compatible system.

Definition 2.2. Fix an underlying map f : X → Y . A compatible system consists of an

orbifold atlas {(Ũi, GŨi
), Tran(Ui, Uj)} of X and an orbifold atlas {(Ṽi, GṼi

), Tran (Vi, Vj)} of

Y with the following additional properties :

(i) f maps a member of one atlas to a member of the other atlas, i.e., f : Ui → Vκ(i);

(ii) The local map in (i) can be lifted to λi : GŨi
→ GṼκ(i)

and an equivariant map f̃i : Ũi →

Ṽκ(i);

(iii) There is a map λij : Tran(Ui, Uj) → Tran(Vκ(i), Vκ(j)) preserving the identity, inverse

and multiplication;

(iv) λij(g) ◦ f̃i = f̃j ◦ g.

Suppose that {Vβ} is a refinement of {Vj}. Then, {f−1(Vβ)} is a refinement of {Ui}. We can

take a further refinement {Uα} of {f−1(Vβ)}. Then we still have property (i). Furthermore,

the original compatible system induces compatible systems over {Uα}, {Vβ}. We call this a

refinement of compatible system.

Definition 2.3 (Isomorphism of compatible systems). Two compatible systems given by (f̃i,

λi, λij), (f̃
′
i , λ

′
i, λ

′
ij) over the same orbifold atlas (Ũi, GŨi

), (Ṽj , GṼj
) are said to be isomorphic if

they differ by an automorphism of the orbifold structure (Ṽj , GṼj
). Namely, there is an element

δi ∈ Tran (Vi, Vi) such that

f̃ ′ = δi ◦ f̃i, λ′
i = δiλiδ

−1
i , λ′

ij = δjλijδ
−1
i .

For two arbitrary compatible systems over isomorphic orbifold atlases, by taking refinements

and components if necessary, we can induce two compatible systems over the same orbifold

atlas. Then the original ones are isomorphic if the induced ones are isomorphic in the above
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sense. An orbifold morphism (good map) is a map with an isomorphism class of compatible

systems.

Chen and Ruan also developed a machinery to classify good maps. The key is an invariant

they called the characteristic. The case we will use is the global quotient orbifold denoted by

the stack notation [X/G]. The characteristic can be interpreted as follows.

Suppose that f : Y → [X/G] is a good map. We can pull back the G-bundle X → X/G to

obtain a G-bundle p : E → Y and a G-map F : E → X . In fact, the equivalence class of a good

map f is equivalent to the pair (p, F ) modulo bundle isomorphisms. Namely, (p, F ) ≃ (p′, F ′)

iff p′ = ph, F ′ = Fh for a bundle isomorphism h : E′ → E.

Since G is a finite group, p : E → Y is an orbifold cover. By the covering space theory, E is

determined by the conjugacy class of a homomorphism ρ : πorb
1 (Y, x0) → G. We call ρ and its

conjugacy class the Chen-Ruan characteristic.

Consider the pairs: ∧X = {(p, (g)Gp
); p ∈ X, g ∈ Gp}, where (g)Gp

is the conjugacy class

of g in Gp. If there is no confusion, we will omit the subscript Gp to simplify the notation.

∧X has a natural orbifold structure (Proposition 2.4) and is called the inertia orbifold. More

generally, we can define the multisector

X̃k = {(p, (g1, . . . , gk)Gp
); p ∈ X, gi ∈ Gp}.

It is clear that ∧X = X̃1. There are two classes of maps between the multisectors. I : X̃k → X̃k

by I(p, (g1, . . . , gk)Gp
) = (p, (g−1

1 , . . . , g−1
k )Gp

), and ei1,...,il
: X̃k → X̃l by

ei1,...,il
(p, (g1, . . . , gk)Gp

) = (p, (gi1 , . . . , gil
)Gp

).

Suppose that X is an orbifold with an orbifold atlas {(Ũi, GŨi
), Tran(Ui, Uj)}.

Proposition 2.4 (Lemma 3.1.1 in [14]). X̃k is naturally an orbifold, with the orbifold atlas

given by (
⊔

g∈Gk

Ũ

Ũg, GŨ ), where Ũg = Ũg1 ∩ Ũg2 ∩ · · · ∩ Ũgk . Here g = (g1, . . . , gk), Ũg stands

for the fixed-point set of g in Ũ . When X is almost complex, X̃k inherits an almost complex

structure from X, and when X is closed, X̃k is a finite disjoint union of closed orbifolds.

Proposition 2.5 (Lemma 3.1.3 in [14]). Both the evaluation maps ei1,...,il
and I are orbifold

morphisms.

Next, we would like to describe the connected components of X̃k. Suppose that p, q are in

the same orbifold chart Ui uniformized by (Ũi, GŨi
, πi). Then Gp and Gq are both subgroups of

GŨi
. We say that (g1)Gp

∼= (g2)Gq
if g1 = hg2h

−1 for some element h ∈ GŨi
. For two arbitrary

points p, q ∈ X , we say (g)Gp
∼= (g′)Gq

if there is a sequence (p0, (g0)Gp0
), . . . , (pk, (gk)Gpk

) such

that (p0, (g0)Gp0
) = (p, (g)Gp

), (pk, (gk)Gpk
) = (q, (g′)Gq

) and pi, pi+1 are in the same orbifold

chart and (gi)Gpi

∼= (gi+1)Gpi+1
for i = 0, . . . , k − 1. This defines an equivalence relation on

{(g)Gp
}. In particular, it is possible that (g)Gp

∼= (g′)Gp
while (g)Gp

6= (g′)Gp
. Let Tk be the

set of equivalence classes. By abuse of the notation, we often use (g) to denote the equivalence

class which (g)Gq
belongs to. It is clear that X̃k decomposes as a disjoint union of connected

components X̃k =
⊔

(g)∈Tk
X(g), where X(g) = {(p, (g′)Gp

); p ∈ X, g′ ∈ Gk
p, (g′)Gp

∈ (g)}. Let

T o
k ⊂ Tk be such that (g1, . . . , gk) ∈ T o

k has the property g1 · · · gk = 1. Mk(X) =
⊔

(g)∈T o
k

X(g).

Definition 2.6. X(g) for g 6= 1 is called a twisted sector. X(g) is called a k-multi-sector or

a k-sector. Furthermore, we call X(1) = X the non-twisted sector.
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Once we define the sectors, we diagonalize the action of g on the normal space of TpX(g) in

TpX for each p ∈ X(g). Let codimCX(g) = k, then the g action can be diagonalized as

diag(1, . . . , 1, e
2πi

m1,g
mg , . . . , e

2πi
mk,g
mg ),

where mg is the order of g in Gp and 0 < mi,g < mg. Then we define the degree shifting

number ι(g) =
∑k

i=1
mi,g

mg
. One can show that ι(g) is independent of p ∈ X(g).

Example 2.7. Suppose that X = Y/G is a global quotient. By the definition, ∧X =

(
⊔

g∈G Y g)/G, where Y g is the fixed-point set of elements g ∈ G. Equivalently, ∧X =⊔
{(g); g∈G} Y g/C(g), here, C(g) is the centralizer of g in G.

Next, we extend the notion of the orbifold morphism to the case in which the domain is a

nodal orbifold Riemann surface.

Recall that a nodal curve with k marked points is a pair (Σ, z) consisting of a connected

topological space Σ =
⋃

πν(Σν), where Σν is a smooth complex curve and πν : Σν → Σ is

a continuous map, and z = (z1, . . . , zk) consists of k distinct points in Σ with the following

properties:

• For each z ∈ Σν , there is a neighborhood of z such that the restriction of πν : Σν → Σ to

this neighborhood is a homeomorphism to its image.

• For each z ∈ Σ, we have
∑

ν ♯π−1
ν (z) 6 2.

•
∑

ν ♯π−1
ν (zi) = 1 for each zi ∈ z.

• The number of complex curves Σν is finite.

• The set of nodal points {z |
∑

ν ♯π−1
ν (z) = 2} is finite.

A point z ∈ Σν is called singular (or a node) if
∑

ω ♯π−1
ω (πν(z)) = 2. A point z ∈ Σν is said

to be a marked point if πν(z) = zi ∈ z. Each Σν is called a component of Σ. Let kν be the

number of points on Σν which are either singular or marked, and gν be the genus of Σν , a nodal

curve (Σ, z) is called stable if kν + 2gν > 3 holds for each component Σν of Σ.

Definition 2.8. A nodal orbicurve is a nodal marked curve (Σ, z) with an orbifold structure

as follows:

• The set zν of orbifold points of each component Σν is contained in the set of marked points

and nodal points.

• A neighborhood of a marked point is uniformized by a branched covering map z → zmi

with mi > 1.

• A neighborhood of a nodal point (viewed as a neighborhood of the origin of {xy = 0} ⊂ C2)

is uniformized by a branched covering map (x, y) → (xnj , ynj ), with nj > 1, and with group

action e2πi/nj (x, y) = (e2πi/nj x, e−2πi/nj y).

Here mi and nj are allowed to be equal to one, i.e., the corresponding orbifold structure is triv-

ial there. We denote the corresponding nodal orbicurve by (Σ, z, m, n) where m = (m1, . . . , mk)

and n = (nj).

Once we have the definition of nodal orbicurve, we can extend the definition of the compatible

system and the orbifold morphism word by word to the case where the domain is a nodal

orbicurve.

First, recall that for every point p ∈ Σ, an orbifold morphism f : Σ → X induces a homo-

morphism Gp → Gf(p).
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Definition 2.9. Let (X, J) be an almost complex orbifold. An orbifold stable map into (X, J)

is a triple (f, (Σ, z, m, n), ξ) described as follows :

(1) f is a continuous map from the nodal orbicurve (Σ, z, m, n) into X such that each

fν = f ◦ πν is a pseudo-holomorphic map from Σν into X ;

(2) ξ is an isomorphism class of compatible structures ;

(3) let kν be the order of the set zν , namely the number of points on Σν which are special

(i.e. nodal or marked), if fν is a constant map, then 2gν − 2 + kν > 0 ;

(4) at any marked or nodal point p the induced homomorphism on the local group λp : Gp →

Gf(p) is injective.

Finally we observe that each C∞ orbifold morphism from an orbifold nodal Riemann surface

with k marked points into an orbifold X determines a point in the product of inertia orbifolds

(∧X)k as follows: let the underlying continuous map be f and for each marked point zi,

i = 1, . . . , k, let xi be the positive generator of the cyclic local group at zi, and λzi
be the

homomorphism determined by the given compatible system, then the determined point in

(∧X)k is

((f(z1), (λz1(x1))Gf(z1)
), . . . , (f(zk), (λzk

(xk))Gf(zk)
)).

Let x = (X(g1), . . . , X(gk)) be a connected component in (∧X)k. We say that a good map with

a compatible system is of type x if the above point determined in (∧X)k lies in the component

x.

Remark 2.10. If f : Σ → X is a pseudo-holomorphic map whose image intersects the

singular locus of X at only finitely many points, then there is a unique choice of the orbifold

structure on Σ together with a unique (f̃ , ξ), where f̃ is a good map with an isomorphism class

of compatible systems ξ whose underlying continuous map is f . If the image of f lies completely

inside the singular locus, there could be different choices, and they are regarded as different

points in the moduli space.

Definition 2.11. (1) An orbifold X is symplectic if there is a closed 2-form ω on X whose

local liftings are non-degenerate.

(2) A projective orbifold is a complex orbifold which is a projective variety as an analytic

space.

Proposition 2.12 (Proposition 2.3.8 in [13]). Suppose that X is a symplectic or projective

orbifold. Then the moduli space of orbifold stable maps Mg,k(X, J, A, x) is a compact metrizable

space under a natural topology, whose “virtual dimension” is 2d, where

d = c1(TX) · A + (dimC X − 3)(1 − g) + k − ι(x).

Here ι(x) =
∑k

i=1 ι(gi) for x = (X(g1), . . . , X(gk)).

For any component x = (X(g1), . . . , X(gk)), there are k evaluation maps ei : Mg,k(X, J, A, x)

→ X(gi), i = 1, . . . , k. ei has a natural compatible system to make it a good map. For any set of

cohomology classes αi ∈ H∗(X(gi); C) ⊂ H∗
CR(X ; C), i = 1, . . . , k, the orbifold Gromov-Witten

invariant is defined as

ΨX,J
(g,k,A,x)(α

l1
1 , . . . , αlk

k ) =

k∏

i=1

c1(Li)
lie∗i αi[Mg,k(X, J, A, x)]vir,
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where Li is the line bundle generated by the cotangent space of the i-th marked point. The

virtual fundamental cycle [Mg,k(X, J, A, x)]vir is defined as the fundamental cycle of a certain

orbifold X [13].

The inertia orbifold admits another interpretation as the space of constant loops. Then it is

naturally a subset of the free loop space. We shall sketch this construction due to [15] (see [16]

for a groupoid description).

Let LX be the space of orbifold morphisms from S1 with a trivial orbifold structure to X .

LX is the analog of the free loop space of a smooth manifold. We need the following important

Lemma 2.13 (Lemma 3.15 in [15]). Let X = Y/G be a global quotient. Then, LX =

P (Y, G)/G, where

P (Y, G) = {(γ, g); γ : [0, 1] → Y, g ∈ G, γ(1) = gγ(0)}.

Here, G acts on P (Y, G) by h(γ, g) = (h ◦ γ, h−1gh).

We call τ a constant loop if the underlying map is constant. Suppose that the image is

p ∈ X . Let Up/Gp be the orbifold chart at p. By the lemma, L(Up/Gp) = P (Up, Gp)/Gp. In

particular, τ is an equivalence class of a pair (γ, g) where im (γ) = p. Under the action of Gp,

we naturally identify it as (p, (g)Gp
). Therefore, the space of constant loops is precisely the

inertia orbifold ∧X .

Suppose that f : Σ → X is an orbifold stable map. We take a real blow-up of Σ at all the

marked points to obtain a Riemann surface with the boundary Σ†. Σ† can be understood as

follows. We remove the marked point xi. A neighborhood of a puncture point xi is biholo-

morphic to S1 × [0,∞). Hence, we can view Σ† as a manifold with a cylindrical end and xi is

replaced by a circle S∞ attached at ∞. Another way to interpret the evaluation map is that

ei(f) = f(S∞). This description is important later in our construction.

3 Gerbes and their holonomy

After reviewing the construction of the orbifold quantum cohomology in the last section, we

are ready to touch upon the main topic of this article, the twisting. The earliest twisting from

physics is discrete torsion by Vafa[4]. However, the discrete torsion is too restrictive to describe

the interesting examples. Therefore, a more general twisting is needed. For this purpose, the

second author introduced the notion of the inner local system. Roughly speaking, an inner local

system is a flat orbifold line bundle over the inertia orbifold ∧X satisfying certain compatibility

conditions. Later, Lupercio and Uribe introduced the concept of gerbe to orbifolds. The

holonomy line bundle of a gerbe with connection is naturally an inner local system. However,

not all inner local systems are induced in this way[17]. In this section, we will study the relation

between a gerbe and its holonomy in detail.

3.1 Inner local system

Recall that for (g1, . . . , gk) ∈ Tk, there are k +1 evaluation maps ei : X(g1,...,gk) → X(gi), i 6 k,

and ek+1 : X(g1,...,gk) → X(g1···gk).

Now we introduce the notion of the inner local system for an orbifold.

Definition 3.1. Suppose that X is an orbifold (almost complex or not). An inner local system

L = {L(g)}(g)∈T1
is an assignment of a flat complex orbifold line bundle L(g) → X(g) to each
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sector X(g) satisfying the following compatibility conditions :

(1) L(1) is a trivial orbifold line bundle with a fixed trivialization;

(2) There is a non-degenerate pairing L(g) ⊗ I∗L(g−1) → C ∼= L(1);

(3) There is a multiplication e∗1L(g1) ⊗ e∗2L(g2)
θ
→ e∗3L(g1g2) over X(g1,g2) for (g1, g2) ∈ T2;

(4) The multiplication θ is associative in the following sense. For (g1, g2, g3) ∈ T3, the

evaluation maps ei : X(g1,g2,g3) → X(gi) factor through P = (P1, P2) : X(g1,g2,g3) → X(g1,g2) ×

X(g1g2,g3).

Let e12 : X(g1,g2,g3) → X(g1g2). We first use P1 to define θ : e∗1L(g1) ⊗ e∗2L(g2) → e∗12L(g1g2).

Then, we can use P2 to define a product θ : e∗12L(g1g2) ⊗ e∗3L(g3) → e∗4L(g1g2g3). Taking the

composition, we define

θ(θ(e∗1L(g1), e
∗
2L(g2)), e

∗
3L(g3)) : e∗1L(g1) ⊗ e∗2L(g2) ⊗ e∗3L(g3) → e∗4L(g1g2g3).

On the other hand, the evaluation maps ei also factor through P ′ : X(g1,g2,g3) → X(g1,g2g3) ×

X(g2,g3). In the same way, we can define another triple product

θ(e∗1L(g1), θ(e
∗
2L(g2), e

∗
3L(g3))) : e∗1L(g1) ⊗ e∗2L(g2) ⊗ e∗3L(g3) → e∗4L(g1g2g3).

Then, we require the associativity

θ(θ(e∗1L(g1), e
∗
2L(g2)), e

∗
3L(g3)) = θ(e∗1L(g1), θ(e

∗
2L(g2), e

∗
3L(g3))).

If X is a complex orbifold, we assume that L(g) is holomorphic.

Definition 3.2. Given an inner local system L, we define the twisted orbifold cohomology

H∗
CR(X ;L) = ⊕(g)H

∗−2ι(g)(X(g); L(g)).

Definition 3.3. Suppose that X is a closed complex orbifold and L is an inner local system.

We define the Dolbeault cohomology groups Hp,q
CR(X ;L) = ⊕(g)H

p−ι(g),q−ι(g)(X(g); L(g)).

Proposition 3.4. If X is a Kähler orbifold, we have the Hodge decomposition Hk
CR(X ;L) =

⊕k=p+qH
p,q
CR(X ;L).

Proof. Note that each sector X(g) is a Kähler orbifold. The proposition follows by applying

the ordinary Hodge theorem with the twisted coefficients to each sector X(g).

3.2 Basics on gerbes and connections

The original motivation for the introduction of gerbes to orbifolds by Lupercio-Uribe is to

understand the inner local systems conceptually. Let us start from the definition of a gerbe on

a smooth manifold. We follow closely the exposition of [18].

Let us suppose X is a smooth manifold and U = {Uα} an open cover. Recall the definition

of the line bundle. It can be described by transition functions gαβ : Uαβ = Uα ∩ Uβ → S1

satisfying the conditions gαα = 1, gβα = g−1
αβ , (δg)αβγ = gαβgβγgγα = 1. In terms of cohomo-

logical language, gαβ is a Čech 1-cocycle of the sheaf of S1-valued functions C∞(S1). Two

sets of transition functions induce isomorphic line bundles iff they induce the same class in

H1(X ; C∞(S1)).

A gerbe is a generalization of a line bundle. It is defined as a Čech 2-cocycle of the sheaf of

S1-valued function C∞(S1) over some open cover U . Two gerbes are equivalent if they induce
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the same cocycle over a common refinement. They are isomorphic if they induce the same

cohomology class in H2(X, C∞(S1)). In terms of local data, they are the functions gαβγ :

Uα ∩Uβ ∩Uγ → S1 defined on the threefold intersections satisfying gαβγ = g−1
αγβ = g−1

βαγ = g−1
γβα

and the cocycle condition

(δg)αβγη = gβγηg−1
αγηgαβηg−1

αβγ = 1

on the four-fold intersections Uα ∩ Uβ ∩ Uγ ∩ Uη. It also defines a class in H3(X ; Z). Consider

the long exact sequence of cohomology

· · · → Hi(X ; C∞(R)) → Hi(X ; C∞(S1))
τi→ Hi+1(X ; Z) → · · ·

derived from the exact sequence of sheaves 0 → Z → C∞(R) → C∞(S1) → 1. Recall that

τ1([gαβ ]) ∈ H2(X ; Z) is the first Chern class of the corresponding line bundle. In the same

way, the characteristic class of a gerbe is τ2([gαβγ ]). As the sheaf C∞(R) is a fine sheaf, we get

that H2(X ; C∞(S1)) ∼= H3(X ; Z). We might say that a gerbe is determined topologically by

its characteristic class. Furthermore, we can tensor them using the product of cocycles.

We call a gerbe g = {g
αβγ

} a trivial gerbe if g = δf is a coboundary for some 1-cochain

f . f is called a trivialization of g. In terms of local data, f is defined by the functions

fαβ = f−1
βα : Uα ∩ Uβ → S1 on the twofold intersections such that gαβγ = fαβfβγfγα. Hence, g

is represented as a coboundary δf = g.

Suppose that f1, f2 are two different trivializations of g. Then δ(f1f
−1
2 ) = 1. Hence h =

f1f
−1
2 is a 1-cocycle and hence defines a line bundle.

A connection will consist of a pair (Aαβ , Fα) where Aαβ are 1-forms over the double intersec-

tions Uα ∩Uβ, such that iAαβ + iAβγ + iAγα = g−1
αβγdgαβγ and the 2-forms Fα are defined over

Uα such that Fβ − Fα = dAαβ . Note that we define a global 3-form G such that G|Uα
= dFα.

This 3-form G is called the curvature of the gerbe connection.

When the curvature G vanishes we say that the connection on the gerbe is flat. Therefore,

dFα = 0. Since Uα is contractible, we can find Bα such that Fα = dBα. Then, on Uα ∩ Uβ,

Fβ − Fα = dAαβ = d(Bβ − Bα). This implies that Aαβ − Bβ + Bα = dfαβ . From the definition

of connection iAαβ + iAβγ + iAγα = g−1
αβγdgαβγ , hence, d(ifαβ + ifβγ + ifγα − log gαβγ) = 0.

Let cαβγ = eifαβ eifβγ eifγαgαβγ . cαβγ is constant. It is clear that cαβγ is a 2-cocycle differing

from gαβγ by a coboundary eifαβ eifβγ eifγα . Since it is constant, cαβγ represents a Čech class

in H2(X ; S1) which we call the holonomy of the connection.

Next, we check that {cαβγ} is independent of the choice of Bα and fαβ as a Čech cohomology

class. This is the analogue of the fact that one can use a flat connection on a line bundle to

change the transition function to be a constant. If we have different B′
α, then d(Bα − B′

α) = 0

and hence we can write Bα − B′
α = dfα. Let

f ′
αβ = fαβ − fα + fβ,

df ′
αβ = Aαβ − Bβ + Bα − Bα + B′

α + Bβ − B′
β = Aαβ − B′

β + B′
α.

Then c′αβγ = eif ′
αβ eif ′

βγ eif ′
γαgαβγ = cαβγ . If we have a different choice Aαβ − Bβ + Bα = df̃αβ ,

f̃αβ = fαβ + λαβ , where λαβ is a constant function. Then,

c̃αβγ = eif̃αβeif̃βγ eif̃γαgαβγ = cαβγeiλαβeiλβγ eiλγα .

Namely, it differs by a coboundary in the constant sheaf S1.
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For a line bundle, when the holonomy is trivial we get a covariant constant trivialization of

the bundle. If the holonomy of a gerbe is trivial, then cαβγ is a coboundary, so that there are

constants kαβ ∈ S1 such that cαβγ = kαβkβγkγα. Let hαβ = kαβe−ifαβ , then hαβhβγhγα = gαβγ

and so we have a trivialization of the gerbe, which we call a flat trivialization.

Suppose that the line bundle is given by a Čech cocycle gαβ . Recall that a connection is

a 1-form Aα on Uα such that iAβ − iAα = g−1
αβdgαβ . A section is fα : Uα → S1 such that

fα = gαβfβ . It is covariant constant iff it satisfies the equation dfα = iAαfα. If we write

fα = eipα , then dpα = Aα. Therefore, a necessary condition is Fα = dAα = 0, i.e., the

connection is flat. In the case of a gerbe, dAαβ 6= 0 in general. We have to allow the freedom to

choose Bα such that d(Aαβ − Bβ + Bα) = 0. Hence, the trivialization hαβ satisfies a modified

equation dhαβ = i(Aαβ − Bβ + Bα)hαβ .

Suppose that we have a second flat trivialization h′
αβ , then gαβ = h′

αβ/hαβ defines a line

bundle L. Moreover,

iBβ − iBα − iAαβ = d log hαβ , iB′
β − iB′

α − iAαβ = d log h′
αβ .

Hence, i(B′ − B)β − i(B′ − B)α = d log gαβ and Aα = (B′ − B)α defines a connection on L.

By the definition of Bα and B′
α, Fα = dBα = dB′

α. Hence the curvature dAα = 0. Thus, the

difference of two flat trivializations of a gerbe is a flat line bundle. One can show that the

converse is also true.

3.3 String connection

Recall that a connection on a line bundle induces a holonomy map Hol : LX → S1. The

holonomy of a connection on a gerbe has a similar property. One way to understand this is via

its analogy to topological quantum field theory. Recall that topological quantum field theory

can be described as follows. For any oriented d-dimensional manifold D, we associate a Hilbert

space HD. For any cobordism W such that ∂W = D1 ∪ D̄2, where D̄2 denotes D2 with the

opposite orientation, we associate a homomorphism θW : HD1 → HD2 . The map θW satisfies

the gluing axiom. Suppose that ∂W12 = D1 ∪ D̄2, ∂W23 = D2 ∪ D̄3. We can glue W12, W23

along D2 to obtain W13. Then the gluing axiom is θ13 = θ23 ◦ θ12. The analogy for a gerbe is

called a string connection. It contains the following ingredients:

(i) Let l : S1 → X be a smooth map. Since S1 is one-dimensional, the pull-back of a gerbe

with connection to the circle is flat and has trivial holonomy. Thus we have flat trivializations.

For each l, we associate the moduli space of flat trivializations Ll (Ll is analogous to HD). Recall

that we identify flat trivializations if they differ by a flat line bundle with trivial holonomy.

Then, for each loop we have a space which is acted on freely and transitively by the moduli

space of flat line bundles H1(S1; S1) ∼= S1. Hence, Ll is isomorphic to S1. In other words we

have a principal S1 bundle L over the free loop space LX .

We will pay special attention to the space of constant loops. Since X is embedded in LX as

the space of constant loops, it is interesting to compute the restriction of L over X . Suppose

that f : S1 → X is a constant map. Then f is the composition of p : S1 → pt and if : pt → X .

The pull-back gerbe i∗fgαβγ is obviously trivial. Furthermore, i∗fFα = 0, i∗fAαβ = 0. Any

trivialization of i∗fgαβγ is a flat trivialization. A key observation is that the flat line bundle

over a point is trivial as well. Therefore, the pull-back gerbe with connection by if fixes a
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unique flat trivialization. Its pull-back by the projection map p : S1 → pt defines a canonical

element sf ∈ Lf and hence a canonical section of L|X . Hence, L|X is trivial with a canonical

trivialization. Therefore, we obtain

Lemma 3.5. L|X is independent of the connection of the gerbe. Furthermore, it is trivial

with a canonical trivialization.

(ii) Suppose that f : Σ → X , where Σ is a closed Riemann surface. Then the pull-back

connection of the gerbe (f∗Fα, f∗Aαβ) is flat. Its holonomy Hol f = {cαβγ} is a cohomology

class in H2(Σ; S1). Since H2(Σ; S1) = Hom (H2(Σ; Z), S1), its evaluation on the fundamental

class of Σ naturally identifies it as a complex number.

A more interesting case is the case of a Riemann surface with boundaries. Suppose that

f : Σ → X , where Σ is a Riemann surface with boundary ti with a fixed orientation-preserving

parameterization δi : S1 → ti. Let li = f ◦ δi. Since H2(Σ; S1) = H3(Σ; Z) = 0, the pull-

back gerbe is trivial and its holonomy is trivial as well. A flat trivialization restricts to a flat

trivialization on each ti. Namely, it induces an element σ in
∏

i Lli . A different flat trivialization

of Σ differs by a flat line bundle τ of Σ. It restricts to a flat line bundle τi over each boundary

circle viewed as a standard S1 via δi. Recall that

π1(Σ) =

{
λ1, . . . , λ2g, l1, . . . , lk

∣∣∣∣
g∏

i=1

[λ2i−1, λ2i]l1 · · · lk = 1

}
.

Hence, τ1 · · · τk = 1. Therefore, different flat trivializations induce elements differing by a

multiplication of (τ1, . . . , τk) of τi ∈ S1 with τ1 · · · τk = 1. Suppose that L1, . . . , Lk are k-many

circle bundles. Then L1 ⊗ · · · ⊗ Lk can be constructed as follows. Let H be the (S1)k-bundle

with fiber
∏

i(Li)x. Then ⊗iLi = H × S1/(S1)k via the product homomorphism (S1)k → S1.

From the previous construction, we have

Lemma 3.6 (Theorem 6.2.4 in [19]). The pull-back gerbe on Σ induces a canonical element

θΣ ∈ ⊗Lli , or a trivialization θΣ : ⊗Lli → S1.

Note that if we reverse the orientation of a boundary circle li to obtain l̄i, then Ll̄i = L∗
li
.

(iii) θ has a decomposition property as follows. We decompose Σ along a circle Σ = Σ1∪S1 Σ2

where Σ1, Σ2 are glued along boundary circles l, l̄. Let ll, ll̄ be the corresponding loops. Then

ll̄ = l̄l and there is a canonical isomorphism Lll ⊗ Lll̄
∼= S1. Hence ⊗iLli

∼= ⊗iLli ⊗ Lll ⊗ Lll̄ .

Under this identification, it is clear that

Gluing axiom: θΣ = θΣ1 ⊗ θΣ2 .

θ admits another interpretation closely analogous to the topological quantum field theory.

We can view Σ as a cobordism between incoming circles li (with an opposite orientation from

the boundary orientation) and outgoing circles lj. Then, θΣ can also be interpreted as an

element of Hom (⊗iLli ,⊗jLlj ). Then the gluing axiom corresponds to the usual gluing.

One application of θΣ is to define a connection on L → LX . Take a path in the loop space

F : [0, 1]×S1 → X. Applying the above discussion, we obtain a canonical isomorphism between

L{0}×S1 and L{1}×S1 . This defines the notion of the parallel transport over L, and hence a

connection on the line bundle L over LX . Recall that a section generated by the parallel

transport from a point is precisely a covariant constant section. From our construction, the

restriction of a flat trivialization on [0, 1]×S1 to each {t}×S1 gives a covariant constant section.
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Lemma 3.7. The canonical section s of L|X is a covariant constant section.

Proof. Suppose that F : [0, 1]×S1 → X is a path of constant loops. Then F is the composition

of the projection to the first factor p1 : [0, 1]×S1 → [0, 1] and a path of X , iF : [0, 1] → X . We

first use iF to pull back a gerbe with its connection to [0, 1]. Such a pull-back is flat with trivial

holonomy. Then, we construct a flat trivialization on [0, 1]. Now, we pull it back to [0, 1] × S1

to obtain a flat trivialization sF over [0, 1]×S1. It is clear that the restriction of sF to {t}×S1

is slt for lt = F (t, ·). By the definition, st = slt is a covariant constant section along the path.

4 Gerbes on orbifolds

The previous construction has been generalized to the orbifolds by [7, 16]. It is amazing that

L → X starts to become nontrivial on an orbifold! Therefore, it is more interesting to study

the gerbes on orbifolds than on smooth manifolds!

4.1 Basics

Lupercio-Uribe’s construction is carried out for an arbitrary groupoid. The precise definition

of the gerbe over an orbifold is not important for us. Therefore, instead of giving a long

technically correct definition, let us motivate the definition of a groupoid from an orbifold. We

first start from a smooth manifold where one can view a groupoid as a language to formalize

the construction of an open cover. Consider the open cover {Uα} of a manifold and let G0 =

⊔αUα, G1 = ⊔α,βUαβ. In the language of groupoids, G0 is called the space of objects and G1 is

called the space of arrows. There are two maps s : Uαβ → Uα, t : Uαβ → Uβ . s, t are called the

source map and the target map. Consider the fiber product

G2 = G1 t ×s G1 = {(x, y); t(x) = s(y)}.

Using an open cover, it is not hard to see that G2 = ⊔α,β,γUαβγ . There is an additional

multiplication map m : G2 → G1 corresponding to the inclusion Uαβγ → Uαγ . To complete the

definition of groupoid, we also need an identity e : G0 → G1 and an inverse I : G1 → G1. In our

set-up, e : Uα → Uαα, I : Uαβ → Uβα are identity maps. These structure maps satisfy several

obvious compatibilility conditions for which we refer to [7]. We often use G = {G1

s,t

⇉ G0} to

denote the groupoid. The process of taking a refinement of an open cover is called the Morita

equivalence in groupoid language.

One can go on to construct Gn = Gn−1 t ×s G1. It corresponds to the disjoint union of

(n + 1)-fold intersections.

With the above correspondence, we can state Lupercio-Uribe’s definition of the gerbes over

a groupoid as a function g : G2 → S1 satisfying the obvious cocycle condition generalizing

the condition on smooth manifolds. If two gerbes g1, g2 differ by a coboundary, we call them

equivalent. By a result due to Moerdijk[20], if G is an étale groupoid then the cohomology of the

chain complex is the Čech cohomology for the sheaf C∞(S1) over the so-called classifying space

BG of the groupoid. It is clear that an equivalence class of the gerbes is a Čech cohomology

class of the sheaf C∞(S1) over BG. Furthermore, we have a long exact sequence

· · · → H2(BG; C∞(R)) → H2(BG; C∞(S1))
τ
→ H3(BG; Z) → · · · .

It is different from the smooth case that the characteristic class τ([g]) is an integral cohomology

class of the classifying space BG instead of its space of orbits |G|. For an orbifold, we can
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always choose its groupoid representative G with the property that the components of G0 are

contractible. Such a kind of groupoids is called a fine groupoid. Over a fine groupoid, C∞(R) is

a fine sheaf. In this case, the equivalence class of the gerbes is still classified by its characteristic

class.

Over a groupoid a connection on a gerbe is a pair (A, F ) where A is a one-form on G1 and

F is a two-form on G0 satisfying the condition:

t∗F − s∗F = dA, iπ∗
1A + iπ∗

2A + im∗I∗A = g−1dg.

Now, to extend the definition of a gerbe to an orbifold, we just have to associate a groupoid

to an orbifold, this was done by Moerdijk-Pronk[21]. To this purpose, we just have to construct

G0, G1 and s, t.

Let X be an orbifold and {(Ũi, GŨi
), Tran(Ui, Uj)} be an orbifold atlas. We simply define

G0 =
⊔

iŨi, G1 =
⊔

i,j Tran(Ui, Uj). s, t are the natural projections s : Tran(Ui, Uj) → Ũi, t :

Tran(Ui, Uj) → Ũj. We call the above groupoid an orbifold groupoid.

An orbifold morphism corresponds to a Morita equivalence of morphisms between orbifold

groupoids. An obvious and important fact is

Remark 4.1. An orbifold morphism between the orbifolds pulls back a gerbe with connection

to a gerbe with connection.

In particular, if f : Y → X is a smooth orbifold morphism from a smooth manifold Y

(viewed with a trivial orbifold structure) and g is a gerbe with connection (A, F ) on X , then

(f∗g, f∗A, f∗F ) is a gerbe with connection on a smooth manifold Y even though we start

from an orbifold X . Therefore, the previous construction on the holonomy line bundle L goes

through trivially. However, its restriction to the inertia orbifold is no longer trivial.

We first look at the case of the discrete torsion for a global quotient orbifold. The inner local

system has been constructed in [6]. We would like to show that it agrees with the holonomy line

bundle from the gerbe induced by the discrete torsion. Recall that discrete torsion is a 2-cocycle

α : G × G → S1. Being a cocyle means αg,1 = α1,g = 1, (δα)g,h,k = αh,kα−1
gh,kαg,hkα−1

g,h = 1.

The groupoid presentation of the global quotient orbifold X/G is a translation groupoid with

G0 = X, G1 = X × G and s(x, g) = x, t(x, g) = gx. We will use the stack notation [X/G] to

denote this groupoid structure. One can check that G2 = X×G×G. And the map α induces a

gerbe on G in an obvious way. Furthermore, we can choose a flat connection with F = 0, A = 0.

Recall that the inertia orbifold is [(
⊔

g∈G Xg)/G] and let γg,h = αg,hα−1
ghg−1,g. Recall from [6]

that we can define an inner local system on [X/G] as follows. Consider the trivial bundle⊔
g Xg × Cg where we use Cg to denote the fiber C associated to Xg and 1g to denote the

element 1 in Cg. Then, we define an action of g : Ch → Cghg−1 by g(1h) = γg,h1ghg−1 . Using

the fact that α is a 2-cocycle, we can get γg2,g1hg−1
1

γg1,h = γg2g1,h. Let Lα be the quotient of

the trivial bundle under the above action.

Theorem 4.2. L|∧[X/G] = Lα.

Proof. We start with some algebraic preliminaries. If a 2-cocycle α can be expressed as a

coboundary αg,h = ρgρhρ−1
gh , we call ρ a flat trivialization of α.

A 2-cocycle α corresponds to an equivalence class of group extensions 1 → S1 → G̃α → G →

1. The group G̃α can be given the structure of a compact Lie group, where S1 → G̃α is the
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inclusion of a closed subgroup. The elements in the extension group can be represented by the

pairs {(g, a); g ∈ G, a ∈ S1} with the product (g1, a1)(g2, a2) = (g1g2, αg1,g2a1a2).

Lemma 4.3. There is a 1-1 correspondence between the set of characters of G̃α restricted to

the scalar multiplication on the central S1 and the set of flat trivializations of α.

Proof. If φ : G̃α → S1 is such a character then we define an associated trivialization of

α via ρ(g) = φ(g, 1). Note that ρ(gh) = φ(gh, 1) = α−1
g,hφ(gh, αg,h) = α−1

g,hφ((g, 1)(h, 1)) =

α−1
g,hρ(g)ρ(h). Conversely, given a flat trivialization ρ : G → S1, we simply define φ(g, a) =

aρ(g). Note that

φ((g, a)(h, b)) = φ(gh, αg,hab) = abρ(g)ρ(h) = aρ(g)bρ(h) = φ(g, a)φ(h, b).

We have proved the lemma.

Now, we come back to the proof of Theorem 4.2. Any element g ∈ G generates an abelian

subgroup 〈g〉. It pulls back the 2-cocycle α and we can define the corresponding group extension

〈̃g〉α. It is well known that any 2-cocycle of a finite cyclic abelian group is a coboundary. Hence,

we have a nontrivial set of flat trivializations and hence a set of characters of 〈̃g〉α. For any

h ∈ G, h sends 〈g〉 to 〈hgh−1〉. We would like to calculate the action of h on the set of characters

(hence flat trivializations). Given a character φ for 〈̃g〉α and a lifting (h, a) of h, the action is

defined by the formula

(h, a)φ(k, b) = φ((h, a)(k, b)(h, a)−1).

(h, a)(k, b)(h, a)−1 = (hk, αh,kab)(h−1, α−1
h,h−1a

−1) = (hkh−1, αh,kαhk,h−1α−1
h,h−1b)

= (hkh−1, αh,kα−1
hkh−1,hb) = (hkh−1, γh,kb).

Recall that ∧[X/G] = (
⊔

g Xg × {g})/G. It can be interpreted as follows. Let f : S1 → [X/G]

be a constant good map with the Chen-Ruan characteristic (g). Then, it factors through the

constant morphism to [X/〈g〉] which is represented by (x, g) for x ∈ Xg. One can also factor

through the abelian orbifold [X/〈hgh−1〉] which is equivalent to the previous one. This is the

action of G on
⊔

g Xg × {g}. Now we consider the space of constant morphisms to [X/〈g〉],

which is parameterized by Xg × {g}. It admits a flat gerbe from G through the embedding

〈g〉 → G (denoted by α〈g〉), since 〈g〉 is a cyclic abelian group and such a gerbe is trivial. Pick

a flat trivialization ρ of α〈g〉. ρ defines a section sρ of LXg×{g}. We can use the same argument

as in the smooth case to show that sρ is covariant constant. Therefore, LXg×{g} is trivial as a

flat line bundle. However, it does not have a canonical flat trivialization since a different flat

trivialization of α〈g〉 will define a different flat trivialization of LXg×{g}. Using the calculation

above, we conclude that the action of G on LXg×{g} is via the character γh,g. We have proved

the theorem.

Theorem 4.4 (Lupercio-Uribe). L|∧X is flat.

Proof. Lupercio-Uribe proved their theorem using a generalization of Brylinski’s relevant

formula in the smooth case. Here, we use our previous analysis to give a direct, geometric

proof. The question is local. Therefore, we can assume that our orbifold is a global quotient

[Rn/G] with the gerbe and the connection given by (α0, F, A). It follows that α0 = αβ where α :

G×G → S1 is a 2-cocyle and β is a coboundary over [Rn/G] and (α0, F, A) = (α, 0, 0)+(β, F, A).
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Let L0, L and L′ represent the holonomy line bundles of (α0, F, A) , (α, 0, 0) and (β, F, A)

restricted to the inertia orbifoid respectively. It is clear that L0 = L ⊗ L′ and, fixing any path

in the inertia orbifold, the parallel transport on L0 is the tensor product of those on L and L′.

Since β is a coboundary , there is a flat trivialization of L′. The fact that L is flat implies that

L0 is flat by Theorem 4.2.

4.2 Holonomy on an orbifold Riemann surface

If we only consider the maps from a smooth Riemann surface, the construction in the smooth

case can be readily generalized to the case of orbifolds. A more interesting case is the case

when f : Σ → X is a good map from an orbifold Riemann surface Σ. In orbifold quantum

cohomology, we have to consider its generalization where Σ is a nodal orbifold Riemann surface.

Unfortunately, many things go wrong and we do not have a straightforward generalization

of a string connection. One of the critical facts for an oriented smooth Riemann surface is

that H2(Σ; Z) = Z is generated by its fundamental class σ. We use this fact to interpret the

holonomy of a gerbe with a connection as a number in S1. We start our discussion from the

following computation of H2(BΣ; Z) for an orbifold Riemann surface. Indeed, a certain subtlety

arises.

Let Σ be an orientable orbifold Riemann surface, with marked points {z1, . . . , zk} and cor-

responding multiplicities {m1, . . . , mk}. Note that the underlying topological space |Σ| of the

orbifold Σ is a topological surface. Let BΣ be the corresponding classifying space of the orbifold.

Given an action of the group G on a space X , let EG be a free G space which is contractible.

One can utilize the Borel construction XG = EG×G X to define HG
∗ (X ; Z) = H∗(EG×G X ; Z).

It is well known (see [22, Corollary 1.24]) that there is an action of S1 on a 3-manifold M such

that [M/S1] is the given orbifold Σ. It is well-known that up to a weak homotopy equivalence

BΣ ∼= MS1 . Hence, H2(BΣ; Z) = HS1

2 (M ; Z).

There is a canonical map πX : XG → X/G and thus a homomorphism πX∗ : HG
∗ (X ; Z) →

H∗(X/G; Z) which is known to be an isomorphism if the action of G on X is free.

Theorem 4.5. Let Σ be an oriented orbifold Riemann surface, then H2(BΣ; Z) = Z.

Proof. Choose small open discs Di centered around xi such that their closures Bi are disjoint.

Let Vi = f−1(Bi), V =
⋃

i Vi, V ∗
i = f−1(Di), V ∗ =

⋃
i V ∗

i and U = M − V ∗, here f : M → Σ

is the quotient map. Note that the actions of S1 on U and U ∩ V are free.

Now HS1

2 (U ; Z) ∼= H2(U/S1; Z) = 0 since the action is free and U/S1 is a smooth surface

with boundary. Hj(V/S1; Z) = 0 for j > 0 since V/S1 is the disjoint union of closed discs.

It is well known that the local model of a marked point of an orbifold Riemann surface is the

quotient of a disc by the action of a cyclic group. It follows that HS1

j (V ; Z) =
⊕

i Hj(BZmi
; Z)

and HS1

2 (V ; Z) = 0, HS1

1 (V ; Z) =
⊕

i Zmi
since H2(BZm; Z) = 0 for all positive integers.

One has the following Mayer-Vietoris sequence:

0 → HS1

2 (M ; Z) → HS1

1 (U ∩ V ; Z) → HS1

1 (U ; Z) ⊕ HS1

1 (V ; Z) → .

Now HS1

1 (U∩V ; Z) = Zk, thus HS1

2 (M ; Z) is free. On the other hand, H2(BΣ; Q) = H2(|Σ|; Q)

= Q. Therefore, we get HS1

2 (M ; Z) = Z.

It is clear that any gerbe connection (F, A) on an orbifold Riemann surface is flat for di-

mension reasons. Therefore, we can define its holonomy Hol (F, A) as a class in H2(BΣ; S1)
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where S1 means the constant sheaf. Since H2(BΣ; S1) = S1, one can evaluate Hol (F, A) on

the generator e ∈ H2(BΣ; Z) to obtain a number Hol (F, A)(e) ∈ S1. However, if we view this

from the point of trivializations, there associate more than one numbers in S1. Consider the

gerbe connection over the local 2-dimensional orbifold disc [D/Zm]. The connection as well as

its holonomy is trivial. A choice of flat trivialization is restricted to a flat trivialization on the

boundary circle ∂(D/Zm). Namely, we obtain an element of L∂(D/Zm). However, the space of

flat line bundles on [D/Zm] is non-trivial. In fact, it is parameterized by Zm. They induce a

set of Zm-points on L∂(D/Zm). Now, we go back to the closed orbifold Riemann surface Σ with

orbifold points at (x1, . . . , xk) of multiplicity m1, . . . , mk and f : Σ → X . We decompose Σ as

the disjoint union of orbifold discs [Di/Zmi
] and V = Σ−

⊔
i[Di/Zmi

]. Then the flat trivializa-

tion at V specifies an element on Lli of each boundary circle li. The gluing law indicates that

we should associate a set of m1 · · ·mk-numbers in S1.

Remark 4.6. On an orbifold Riemann surface, the numbers given by the trivializations are

not unique, hence they cannot be interpreted as the holonomy of a gerbe with a connection.

5 Orbifold quantum cohomology twisted by a flat gerbe

5.1 String connection on an orbifold and orbifold stable maps

Recall the compatibility condition of an inner local system over each X(g1,g2); θ(g1,g2) : e∗1L(g1)⊗

e∗2L(g2) ⊗ e∗3L((g1g2)−1)
∼= 1. The purpose of this condition is as follows. X(g1,g2) = X(g1,g2,g3)

with g3 = (g1g2)
−1 can be identified as the moduli space of degree zero genus zero maps

with three marked points—M0,3(X, J, 0, x). The evaluation maps at the marked points are ei.

Let αi ∈ H∗(X(gi); L(gi)). The trivialization θ(g1,g2) maps e∗1α1 ∧ e∗2α2 ∧ e∗3α3 to an ordinary

cohomology class of X(g1,g2,g3) and hence can be integrated. The latter property allows us to

define the twisted orbifold product. To carry out the same construction for orbifold quantum

cohomology, we have to construct the trivialization θ over Mg,k(X, J, A, x) for general g, k, A.

This can be accomplished by Theorem 5.1.

Suppose that f : Σ → X is an orbifold morphism. We take a real blow-up at the marked

points to obtain a Riemann surface with boundary Σ†. Let li∞ be the corresponding boundary

circle. It is clear that each f : Σ → X induces a morphism f † : Σ† → X . It is clear that

fi∞ = f †(li∞) is a constant loop. Moreover, we have an identification fi∞ = ei(f). Next, the

holonomy θΣ = θΣ† is interpreted as θΣ† : ⊗ie
∗
iL → S1.

Next, we extend the above discussion to orbifold stable maps. Suppose that f : Σ → X is

an orbifold stable map where Σ is a marked orbifold nodal Riemann surface. For simplicity, we

assume that Σ = Σ1 ∧ Σ2 joined at the point p ∈ Σ1, q ∈ Σ2. We observe that fp∞ is the same

as fq∞ with the reversed orientation. Hence, Lfp∞
= L∗

fq∞
. Suppose that the marked points

on Σ1 are x1, . . . , xl and the marked points on Σ2 are xl+1, . . . , xk. We have

θΣ1 : ⊗16i6le
∗
iL⊗ e∗pL → S1; θΣ2 : ⊗l+16j6ke∗jL⊗ e∗qL → S1.

Using the canonical isomorphism e∗pL ⊗ e∗qL → S1, we obtain θΣ : ⊗16i6ke∗iL → S1. The

analogue of the gluing law is the following

Theorem 5.1 (Gluing law). The map θΣ† is continuous with respect to the degeneration of

orbifold stable maps, i.e., it induces a continuous trivialization of ⊗ie
∗
iL over Mg,k(X, J, A, x).
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Proof. The map θ is clearly continuous over each stratum of Mg,k(X, J, A, x). We only have

to check that it is continuous with respect to the degeneration of orbifold stable maps. It is

enough to discuss the case of creation of a new nodal point. Suppose that (fn, (Σn, zn), ξn)

converges to (f0, (Σ0, z0), ξ0) and z0 ∈ Σ0 is the nodal point. It is instructive to see the

degeneration of ξn to ξ0. Recall the construction in [13].

Locally, fn : Wtn
→ (Vp − {p})/Gp, where Wt = {xy = t; |x|, |y| < ǫ} and (Vp, Gp, πp) is a

uniformizing system of p = f0(z0) ∈ X . The key is to construct the lifting f̃n mapping into Vp.

By Lemma 2.2.4 of [13], ξn determines a characteristic θn : π1(Wtn
) → Gp. Suppose that g is

the image of a generator and m is the order of g. Then θn determines a covering W̃m
tn

→ Wtn
.

The argument of Lemma 2.2.6 in [13] constructs a lifting f̃n : W̃m
tn

→ Vp. Then the convergence

of fn as a good map is interpreted as the convergence of ordinary maps f̃n to f̃0 : W̃m
0 → Vp,

which gives a natural compatible system ξ0 at p. Note that Σ0 acquires a natural orbifold

structure at the nodal point z0, whose uniformizing system is given by (W̃m
0 , Zm), where the

action of Zm on W̃m
0 is the limit of the action on W̃m

tn
.

Let S1
n ⊂ Wtn

be the circle given by |x| = |tn|
2ǫ with a complex orientation of x. S1

n converges

to a constant loop supported at p. On the other hand, the same S1 with the opposite orientation

can be expressed as |y| = |tn|
2ǫ (denoted by S1∗

n ). S1∗
n converges to the constant loop supported at

q. We decompose Σn along S1
n as Σn = Σ1

n∪S1
n

Σ2
n. Then Σ1

n converges to Σ1 and Σ2
n converges

to Σ2. The above construction implies that fn|S1
n

converges to (f0)p∞. Moreover, fn|S1∗
n

as a

good map converges to (f0)q∞. By the gluing axiom, θΣn
: ⊗ie

∗
iL → S1 can be decomposed as

the product of θΣ1
n

: ⊗16i6le
∗
iL ⊗ Lfn|S1

n

→ S1 and θΣ2
n

: ⊗l+16j6ke∗jL ⊗ Lfn|S1∗
n

→ S1 using

canonical trivialization Lfn|S1
n

⊗ Lfn|S1∗
n

∼= S1. It is clear that θΣn
converges to θΣ0 .

5.2 Twisted orbifold Gromov-Witten invariants

So far, we have not yet brought in the flatness condition. Recall that ⊗ie
∗
iL in our construction

is used as the coefficient system or the flat line bundle. Therefore, we also need to construct a

flat trivialization. This requires the assumption of flatness of the gerbe.

Theorem 5.2. For a flat gerbe, θΣ† is a flat trivialization.

Proof. A flat bundle is completely determined by its holonomy around a loop. Even though

Mg,k(X, J, A, x) is not a smooth manifold in general, we can still discuss the flat trivialization

of a flat bundle. Namely, it is enough to determine if the trivialization is flat around each

loop. Since the flatness is a local condition, it is enough to prove that it is flat along a curve

f : [0, 1] → Mg,k(X, J, A, x).

Recall that there is a universal family Ug,k(X, J, A, x) → Mg,k(X, J, A, x) as an orbifold

fiber bundle whose fiber is the domain of orbifold stable maps modulo automorphisms. The

pullback π : f∗Ug,k(X, J, A, x) → [0, 1] is an orbifold Riemann surface bundle. The total space

f∗Ug,k(X, J, A, x) is an orbifold 3-manifold with boundary. Each marked point defines a section

si. For simplicity, we first assume that there is no nodal point. Now, we take a real blow-up

along the image of si to obtain π† : f∗Ug,k(X, J, A, x)† → [0, 1]. Then we replace each si by

S1× [0, 1] (denoted by S1
i × [0, 1]). It is clear that π−1

† (t) is the real blow-up of π−1(t) along the

marked points, where S1
i ×{t} is precisely the infinity circle associated to the i-th marked point

of Σt = π−1(t). A moment of thought tells that f∗Ug,k(X, J, A, x)† is an oriented 3-manifold
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with the boundary given by

∂f∗Ug,k(X, J, A, x)† = π−1
† (0)

⋃
∪iS

1
i × [0, 1]

⋃
π−1
† (1).

Furthermore, the identification happens precisely at the infinity circles corresponding to the

marked points on π−1
† (0), π−1

† (1). Furthermore, there is an evaluation e : Ug,k(X, J, A, x) →

X whose restriction to the i-th marked point defines ei. It induces an evaluation map e† :

f∗Ug,k(X, J, A, x)† → X whose restriction to each infinity circle defines the corresponding eva-

luation map ei† = fi∞. Since the gerbe is flat, the holonomy around the boundary ∂f∗Ug,k(X, J,

A, x)† is zero. Recall that the restriction of a flat trivialization of S1
i × [0, 1] to its boundary

defines parallel transport from Lfi∞0 to Lfi∞1 . By our definition, the restriction of the flat

trivialization to the boundary of π−1
† (0), π−1

† (1) defines elements θ0 ∈ ⊗Lfi∞0 , θ1 ∈ ⊗Lfi∞1

respectively. The property that the total holonomy around ∂f∗Ug,k(X, J, A, x)† is zero can be

interpreted as the statement that the parallel transport maps θ0 to θ1. Then we prove that θ

is flat.

If we have the nodal points, we do a real blow-up along the nodal point. It creates an

additional boundary component. However, it is clear that the total holonomy of the additional

components cancel each other. The above argument still applies.

Remark 5.3. The proof of the above theorem depends critically on the flatness of the gerbe.

Now, we are ready to construct the twisted orbifold GW-invariants. Using ei, we can pull back

L (now as an orbifold vector bundle) to define the tensor product ⊗ie
∗
iL. Then θ provides a flat

trivialization θ : ⊗ie
∗
iL → C, continuous with respect to the topology of Mg,k(X, J, A, x). Sup-

pose that x =
∏

i X(gi). It induces a homomorphism ⊗iH
∗(X(gi);L(gi)) → H∗(Mg,k(X, J, A, x);

C) by (α1, . . . , αk) → θ∗(∧ie
∗
i αi), where

θ∗ : H∗(Mg,k(X, J, A, x);⊗e∗iL(gi)) → H∗(Mg,k(X, J, A, x); C)

is the isomorphism induced by θ and L(gi) = L|X(gi)
.

Definition 5.4. The orbifold GW-invariants twisted by a flat gerbe are defined as

ΨX,J
(g,k,A,x,(A,F ))(α

l1
1 , . . . , αlk

k ) = θ∗

( k∏

i=1

c1(Li)
lie∗i αi

)
[Mg,k(X, J, A, x)]vir,

where Li is the line bundle generated by the cotangent space of the i-th marked point and

[Mg,k(X, J, A, x)]vir is the virtual fundamental cycle constructed in [13].

A standard argument in the Gromov-Witten theory will show that our twisted orbifold GW-

invariants satisfy the standard axioms[13]. In particular, it implies that there is an associative

quantum multiplication on H∗
CR(X ;L).

6 Computations

The current treatment of the gerbes in literature is usually abstract. One of the authors’ goals

for this article is to be as concrete as possible. In this section, we will try to figure out how far

we can go to compute the holonomy inner local system explicitly. We will divide this section

into the smooth versus orbifold cases.
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6.1 Smooth case

When X is a smooth manifold, the holonomy line bundle L|X is canonically trivial. Hence

⊗ie
∗
iL|X is canonically trivial. Recall that for a stable map f : Σ → X , θf is another trivializa-

tion ⊗ie
∗
iL|X

∼= S1. Therefore, the difference of two trivializations is a number in S1. By abuse

of notation, we still denote it by θf . On the other hand, we can also associate the holonomy

Holf ∈ S1. The key theorem in the smooth case is

Theorem 6.1. Suppose that X is a smooth manifold and L|X is trivialized by its canonical

trivialization. Then θf = Holf .

Proof. Let g be the cocycle representing the gerbe. First, we assume that the stable map

f : Σ → X has domain Σ as an irreducible Riemann surface. We take a real blow-up to obtain

Σ†.There is an obvious map π : Σ† → Σ by contracting li∞ to xi. Let f † = f ◦ π. f∗g with

its connection is flat on Σ. We can define its holonomy Holf ∈ H2(Σ; S1). Since H2(Σ; S1) =

S1. We use Holf to denote its Čech cocycle or the number through the above isomorphism

without any confusion. From the construction of Holf , f∗g = Holfδr. Namely, they differ by

a coboundary. Furthermore, we are allowed to change r by a constant cochain. Therefore, we

can choose r in such fashion that r|z is a flat trivialization of f∗g|z. Therefore, sfi∞
= π∗r|xi

,

where fi∞ is the restriction of f † to the boundary circle li∞. We use f † to pull back the gerbe

represented by the cocycle g. Since H2(Σ†; S1) = 0, π∗Holf is trivial. Choose a trivialization

π∗Holf = δh where h is constant. A flat trivialization of (f †)∗g is of the form δ(hπ∗r). Then

θf is the image of ((hπ∗r)|l1∞ , . . . , (hπ∗r)|lk∞
) in ⊗iLfi∞

and θf =
∏

i hli∞sfi∞
. We claim

that
∏

i hli∞ is Holf through the canonical isomorphism P : H2(Σ; S1) ∼= S1. This canonical

isomorphism is defined by the evaluation on the fundamental class of Σ. Let us consider the

isomorphism induced by π, π∗ : H2(Σ, z; S1) → H2(Σ†, ∂Σ†; S1) and the isomorphism induced

by the inclusion (Σ, ∅) ⊆ (Σ, z), H2(Σ, z; S1) → H2(Σ; S1). Note that Holf |z = 1 and hence

can be viewed as an element of H2(Σ, z; S1) as well as H2(Σ†, ∂Σ†; S1) as its pull-back by π.

Therefore, the image of Holf under P can also be obtained by the evaluation of π∗Holf on the

relative fundamental class of (Σ†, ∂Σ†) which is precisely
∏

i hli∞ since 〈π∗Holf , [Σ†, ∂Σ†]〉 =

〈δh, [Σ†, ∂Σ†]〉 = 〈h, [∂Σ†]〉 =
∏

i hli∞ .

Now, we consider the general case in which Σ may have more than one component. Then,

we apply the previous argument for each component. By the gluing axiom, θf is multiplicative.

Holf is obviously multiplicative. Hence, the theorem is true for multi-components Σ as well.

Suppose that we have a flat connection (A, F ). Then we have the global holonomy Hol ∈

H2(X ; S1). It is clear that Holf = Hol(f∗[Σ]). Then we have proved

Corollary 6.2. Suppose that (g, F, A) is a flat gerbe. Under the canonical trivialization

of L|X , the twisted GW-invariant ΨX,J
(g,k,A,x,(A,F ))(α

l1
1 , . . . , αlk

k ) = Hol(A)ΨX,J
(g,k,A,x)(α

l1
1 , . . . , αlk

k ).

6.2 Discrete torsion

Suppose that we have a global quotient orbifold [X/G] and a discrete torsion α : G × G → S1.

Recall that we can express the inertia orbifold as a global quotient ∧[X/G] = [(
⊔

g Xg×{g})/G].

Furthermore, the holonomy line bundle L|∧[X/G] = (
⊔

g Xg×{g})×γC. We would like to express

the moduli space of orbifold stable maps as a G-global quotient as well. This has already been

done in [23]. Let us briefly review their construction. As we mentioned previously, by pulling
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back via the G-bundle X → X/G, an orbifold stable map is equivalent to a G-orbifold cover

E → Σ and a G-map φ : E → X . A G-stable map has additional data z̃i—a lifting of the

marked point zi ∈ Σ. Consider the isotropy subgroup Gz̃i
⊂ G. For dimensional reasons

Gz̃i
∼= Zm for some m, z̃i uniquely determines an element gi as the generator of Gz̃i

. gi has a

geometric interpretation as the monodromy of a small loop around zi. It is independent of the

lifting of small loop because a different lifting will conjugate gi by an element of Gz̃i
, which is

abelian. Now, the evaluation map ei is lifted to ẽi(E → Σ, φ, z̃1, . . . , z̃k) = (φ(z̃i), gi). G acts

on G-stable maps by its action on z̃i and ẽi is G-equivariant. Let M
G

g,k(X, J, A) be the moduli

space of G-stable maps. We can apply virtual fundamental cycle techniques for M
G

g,k(X, J, A)

to obtain a G-orbifold GW-invariant. The orbifold GW-invariant is the invariant part of the

G-orbifold GW-invariant.

We can use ẽi to pull back L|∧[X/G] to form a flat line bundle M
G

g,k(X, J, A)×γg1 ···γgk
(⊗iCgi

).

By our construction the holonomy of Σ should give a flat trivialization of this flat line bundle

and we would like to write it down explicitly.

Without loss of generality, we assume that Σ is irreducible. We take a real blow-up Σ† at

all the marked points. There results a real blow-up E† of E at all the preimage points of zi.

G acts on E† freely and Σ† = E†/G. Using the translation groupoid representation [E†/G]

of Σ†, we can pull back α to a flat gerbe on Σ†. The general theory tells us that this flat

gerbe is trivial. Furthermore, a flat trivialization is restricted to a flat trivialization on each

boundary circle. Let us study the induced gerbe on Σ† from the point of view of the Chen-Ruan

characteristic. Fix a base point x0 in the interior of Σ† and choose a lifting x̃0 ∈ E†. It defines

the CR-characteristic ρ : π1(Σ
†, x0) → G. In fact, E† = Euniv×ρ G where Euniv is the universal

cover. We can use ρ to pull back α to a 2-cocycle α̃ of π1(Σ
†, x0). The induced gerbe on Σ† is

given by α̃. Since Euniv is contractible,

H2(π1(Σ
†, x0); S

1) ∼= H2(Σ†; S1) = 0.

Therefore, α̃ is a coboundary. Choose a cobundary α̃ = δh.

Let us go back to the local monodromy gi at z̃i. Indeed, it is the monodromy along the bound-

ary circle associated with zi. We would like to embed 〈gi〉 in π1(Σ
†, x0) as a subgroup. This

can be done as follows. Choose a path di from x̃0 to the boundary circle associated with z̃i with

the end point xi, then go around the boundary circle to gixi and go back to gix̃0 along gid
−1
i .

Its projection li on Σ† is a loop at x0 whose lifting defines ρ(li) = gi. Then, we map gi to li. It

can be shown that a different path d′i conjugates li by an element of the image of π1(E
†, x̃0).

The image of π1(E
†, x̃0) is precisely the kernel of ρ. It is clear that α̃〈gi〉 = α〈gi〉 = δh〈gi〉.

Therefore, we can use h〈gi〉 to trivialize LXgi×{gi}. Hence, the trivialization given by holonomy

on Σ† corresponds to the pull-back of the trivial bundle LXgi×{gi}. We still have to show that

γg1 · · ·γgk
= 1 in order to descend to a trivial bundle over Mg,k([X/A], J, A). This follows di-

rectly from the CR-characteristic ρ. Recall that π1(Σ
†, x0) has generators l1, . . . , lk, µ1, . . . , µ2g

with relation
∏

j [µ2j−1, µ2j ] l1 · · · lk = 1, then ρ(li) = gi. Therefore,

1 = γρ(
∏

j [µ2j−1,µ2j ]l1···lk) =
∏

j

[γρ(µ2j−1), γρ(µ2j)]γg1 · · · γgk
= γg1 · · · γgk

.

Then we can apply the previous construction to the G-orbifold Gromov-Witten invariants con-

structed in [23]. Thus, we proved
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Theorem 6.3. The twisted orbifold Gromov-Witten invariant of a discrete torsion is the

G-invariant part of the G-orbifold Gromov-Witten invariant, under the action twisted by the

discrete torsion.
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