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Abstract Simpira v2 is a family of cryptographic permutations proposed at ASIACRYPT 2016, and can

be used to construct high throughput block ciphers by using the Even-Mansour construction, permutation-

based hashing, and wide-block authenticated encryption. This paper shows a 9-round impossible differential

of Simpira-4. To the best of our knowledge, this is the first 9-round impossible differential. To determine

some efficient key recovery attacks on its block cipher mode (Even-Mansour construction with Simpira-4),

we use some 6/7-round shrunken impossible differentials. Based on eight 6-round impossible differentials, we

propose a series of 7-round key recovery attacks on the block cipher mode; each 6-round impossible differential

helps recover 32 bits of the master key (512 bits), and in total, half of the master key bits are recovered.

The attacks require 257 chosen plaintexts and 257 7-round encryptions. Furthermore, based on ten 7-round

impossible differentials, we add one round on the top or at the bottom to mount ten 8-round key recovery

attacks on the block cipher mode. This helps recover the full key space (512 bits) with a data complexity of

2170 chosen plaintexts and time complexity of 2170 8-round encryptions. Those are the first attacks on the

round-reduced Simpira v2 and do not threaten the Even-Mansour mode with the full 15-round Simpira-4.
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1 Introduction

Since the selection of the block cipher Rijndael [1] designed by Daemen and Rijmen as the advanced en-

cryption standard (AES) in 2001 by NIST, it has been researched worldwide through various cryptanalysis

methods, for example, impossible differential attack [2–4], SQUARE attack [5], collision attack [6], and

meet-in-the-middle attack [7–9]. Although the full versions of AES-192 and AES-256 have been theoret-

ically broken under the related-key model [10, 11], the attacks do not threaten the practical use of AES.

Recently, some new 5-round distinguishers of AES were proposed [12,13]; these extend the long-standing

4-round distinguisher by 1 round.

Nowadays, Intel, AMD, and ARM introduce AES instructions to their modern processors to reduce

encryption overheads. As such, it becomes meaningful to design a permutation based on the AES round

function as we can directly introduce the AES instruction during software implementation. As there are

cipher suites that allow message blocks processed independently for encryption, the fixed block size of

AES becomes a limitation.
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To achieve a higher throughput, Gueron and Mouha proposed Simpira in ASIACRYPT 2016 [14]. It

is a family of cryptographic permutations that accepts arbitrarily large input sizes of x× 128 bits, where

x ∈ N
+. Furthermore, to take advantage of the security of AES round function and the AES instructions

set for well-optimized software implementations, Simpira uses two rounds of AES as the basic building

block and uses a Feistel structure for x > 2 that operates on x input subblocks of 128 bits each.

One application of Simpira recommended by its designer is as a permutation in the Even-Mansour

construction [15,16] for constructing a block cipher without round keys. The Even-Mansour construction

has a trade-off security claim that when D plaintext-ciphertexts are available, the secret key K can be

recovered in 2n/D evaluations of the permutation [15]. In addition, the designer established a security

claim about the permutation according to which Simpira can be used in constructions where an adversary

cannot query a distinguisher more than 2128 times.

Two related studies that focus on Simpira v1 are as follows. In SAC 2016 [17], Dobraunig et al.

showed that for Simpira v1, the underlying assumptions of independence and thus the derived bounds

are incorrect. They provided differential trails with only 40 (instead of 75) active S-boxes for Simpira-v1

with x = 4. Based on these trails, they proposed full-round collision attacks on the proposed Davies-

Meyer hash constructions based on Simpira v1 with x = 4. In addition, Rønjom reported on the invariant

subspaces in Simpira v1 with x = 4 [18]. He showed that the whole coset of dimension 56 over F64
28 and

the invariant subspaces result from the AES-based round function and the particular choice of Feistel

configuration.

To solve these problems, Simpira v2 was designed by ensuring that every subblock will only be operated

once. Simpira v2 has more complex round constants, and uses a more logical Feistel structure. In the

following text, we use simply Simpira to denote Simpira v2.

In this study, we explored the security of Simpira against impossible differential cryptanalysis. The

impossible differential cryptanalysis was independently proposed by Knudsen [19] and Biham [20]. Its

main concept is to use impossible differentials that hold with probability zero to discard the wrong keys

until only one key remains. Recently, inspired by Sun’s work in [21,22], a new automatic search tool [23]

was proposed for searching impossible differentials.

Our contribution. In the current study, we focus on the block cipher mode of Simpira v2 with four

branches (x = 4), that is, the Even-Mansour construction with Simpira-4. We first present a 9-round

impossible distinguisher, which is the first 9-round impossible differential on Simpira v2 with x = 4.

In addition, we mount two impossible differential key recovery attacks: one on a 7-round Simpira with

x = 4, a data complexity of 257 plaintexts, and a time complexity of 257 encryption units to recover 256

of 512 key bits with 6-round impossible differentials; and the other on an 8-round Simpira with x = 4, a

data complexity of 2170 plaintexts, and a time complexity of 2170 encryption units to recover all 512 key

bits with 7-round impossible differentials.

2 Preliminaries

2.1 Notations

⊕

: Bitwise XOR.

P : Plaintext.

C: Ciphertext.

S: Internal state.

F : Basic building block of Simpira.

∆S: Difference between S and S
′

.

Sh: Input of the hth round, h > 0.

Si: The ith subblock of S, i∈ {0,1,2,3}.

Si[j]: The jth byte of Si, j ∈ {0, 1, 2, . . . , 15}.

Simpira-x: Simpira with x subblocks, x ∈ N
+.

0: Nibbles and subblocks with zero difference.
 https://engine.scichina.com/doi/10.1007/s11432-016-9075-6



Zong R, et al. Sci China Inf Sci March 2018 Vol. 61 032106:3

Si

Si+1 Si+1 Si+1 Si+1

Si Si Si

0

0 1

1 2

2

3

3

F2i+1,4 F2i+2,4

Figure 1 Round function of Simpira-4.

*: Nibbles and subblocks with nonzero difference.

f−1: Inverse operation of function f .

a, b, α, β: To express the difference pattern of a subblock.

2.2 Description of Simpira

Simpira is a family of cryptographic permutations that supports 128×x bits, where x is a positive integer.

Its design goal is to achieve high throughput on virtually all modern 64-bit processor architectures.

We only provide the details of Simpira-4, as all attacks were performed on it. For more information

about Simpira, refer to [14]. Figure 1 presents the round function of Simpira-4; thus the state update

rule is as follows, with 0 6 i 6 14:

S0
i+1 = S1

i ⊕ F2i+1,4(S
0
i ), S1

i+1 = S2
i ,

S2
i+1 = S3

i ⊕ F2i+2,4(S
2
i ), S3

i+1 = S0
i .

Note that when the number of rounds is not a multiple of 4, the state words are output in a permuted

order to allow for more efficient implementations.

The Feistel update function is represented as F = Fc,x, where x is the number of subblocks, that is, 4,

for Simpira-4 and c is a counter counted from 1. The function is made up of two rounds of AES, except

the second AddRoundKey operation, which is the specific round constant updating process. Beyond that,

SubBytes, ShiftRows, and MixColumns are identical to those in AES. For more details, refer to [1].

Every subblock can be expressed as a 4× 4 matrix of bytes as follows:

S = (s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15) =













s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15













.

Moreover, we refer to si as S[i].

For convenience when referring to the internal states inside the F function for an input S, we use the

same notations as in [17]:

S
SB
−−→ SSB1

SR
−−→ SSR1

MC
−−→ SMC1

AC
−−→ SAC SB

−−→ SSB2
SR
−−→ SSR2

MC
−−→ SMC2 = F (S).

2.3 The Even-Mansour construction

The (single-key) Even-Mansour construction [16] encrypts a plaintext P to a ciphertext under a secret

key K as follows:

C = EK(P ) = π(P ⊕K)⊕K,

where π is an n-bit permutation.
 https://engine.scichina.com/doi/10.1007/s11432-016-9075-6
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Figure 2 Super Sbox of AES.

2.4 Our attack assumptions

In this study, we focused on the impossible differential cryptanalysis of round-reduced Simpira-4. As

recommended by the designer, Simpira-4 can be used as a permutation to construct block ciphers without

round keys, for example, the Even-Mansour scheme with a 512-bit key.

In 2012 [15], Dunkelman and Shamir made a security claim that when D plaintext-ciphertexts are

available, the secret key K of the Even-Mansour construction can be recovered in 2n/D (offline) eval-

uations of the permutation π. If we use Simpira-4 as the permutation in the Even-Mansour scheme,

then the product of the time complexity and the data complexity of an attack must be less than 2512

encryption units.

Furthermore, the designer made another security claim about Simpira [14]: Simpira can be used in

constructions that require a random permutation; however, no statements were made for adversaries that

exceed 2128 queries. As a result, both the data and time complexities of an attack should be less than

2128.

Therefore, for different security claims, we mount two attacks of the Simpira-4-based Even-Mansour

construction: one on a 7-round Simpira-4 with a data complexity of 257 plaintexts and a time complexity

of 257 encryption units, and the other on an 8-round Simpira-4 with a data complexity of 2170 plaintexts

and a time complexity of 2170 encryption units.

3 Impossible differential attacks on Simpira-4

In this section, we first present some useful observations and properties of Simpira-4, and then present

the impossible differential distinguisher and attack procedure.

3.1 Some observations

In [24], Daemen and Rijmen introduced the structure of Super S-box to analyze the two-round differentials

of AES. For clarity, we quote the definition of Super S-box as follows.

Definition (Super S-box). The AES Super S-box maps a 4-byte array (s0, s1, s2, s3) to a 4-byte array

(e0, e1, e2, e3) and takes a 4-byte key k. It consists of a sequence of four transformations: Subbytes,

MixColumns, AddRoundKey, and SubBytes.

Property (Differential property of super S-box). Given that ∆input and ∆output are two nonzero

differences in F 32
2 , the equation of Super S-box can be written as follows:

Super− S(x) ⊕ Super− S(x⊕∆input) = ∆output,

and has one solution in average for each key value.

Observation 1. Consider the computational process of F -function: If there exists at least one inactive

column of ∆SSR1 , the number of all possible values of ∆F will not be less than 2128.

Proof. Without loss of generality, we set the difference pattern of ∆S as follows:

∆S = (0, ∗, 0, 0, 0, 0, ∗, 0, 0, 0, 0, ∗, ∗, 0, 0, 0),

and swap the order of the first SubBytes and ShiftRows operations (Figure 2) to obtain an integrated

super S-box structure.
 https://engine.scichina.com/doi/10.1007/s11432-016-9075-6
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Then, after the ShiftRows operation, the difference pattern will become

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ∗, ∗, ∗, ∗).

The difference pattern of the output of the Super S-box will become

∆SSB2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ∗, ∗, ∗, ∗).

Thus, although all 16 bytes of ∆F are active, the number of possible values is only 232 instead of 2128.

Observation 2 (The 9-round impossible differential; Figure 3). If ∆S1
0 is the only active subblock of

the input difference ∆S0 and ∆S0
9 is the only active subblock of the output difference ∆S9, the differential

(0,∆S1
0 , 0, 0)

9R
−−→ (∆S0

9 , 0, 0, 0)

is impossible when the difference patterns SR−1 ◦MC−1(∆F (S1
0 )) and SR−1 ◦MC−1(∆F (S0

9 )) are not

the same.

For example, when the difference pattern of ∆S1
0 is

(∗, 0, ∗, ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗, 0, 0, ∗, ∗, ∗),

the difference pattern of SR−1 ◦MC−1(∆F (S1
0 )) is

(∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 0, 0, 0, 0).

Further, when the difference pattern of ∆S0
9 is

(0, ∗, 0, 0, 0, 0, ∗, 0, 0, 0, 0, ∗, ∗, 0, 0, 0),

the difference pattern of SR−1 ◦MC−1(∆F (S0
9 )) is

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ∗, ∗, ∗, ∗).

In this case, if there exists i such that SR−1 ◦MC−1(∆F (S1
0 ))[i] is zero but SR−1 ◦MC−1(∆F (S9

0))[i]

is nonzero, or vice versa, we say their difference patterns are different.

Proof. We denote the difference pattern of ∆S1
0 as a and the difference pattern of F (∆S1

0) as α, that is,

α = F (a). Similarly, we use b and β to denote the difference patterns of ∆S0
9 and F (∆S0

9), respectively,

then β = F (b).

In the forward direction, when the input difference pattern is

∆S0 : (0, a, 0, 0),

the first 4-round difference pattern will be

∆S0 : (0, a, 0, 0) → (a, 0, 0, 0) → (α, 0, 0, a) → (F (α), 0, a, α) → (F 2(α), a, α, F (α)) : ∆S4.

In addition, in the backward direction, when the output difference pattern of the 9-round distinguisher is

∆S9 : (b, 0, 0, 0),

the last 4-round difference pattern will be

∆S9 : (b, 0, 0, 0) → (0, b, 0, 0) → (0, 0, b, β) → (β, F (β), 0, b) → (b, β, F (β), F 2(β)) : ∆S5.

As S2
4 = S1

5 , ∆S2
4 and ∆S1

5 will share the same difference pattern, that is, there exists at least one value

of S2
4 and S1

5 with the difference pattern of α and β, respectively, satisfying ∆S2
4 = ∆S1

5 . In other words,

F (a) and F (b) share the same difference pattern.
 https://engine.scichina.com/doi/10.1007/s11432-016-9075-6
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Contradiction!

Figure 3 9-round impossible differential.
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As the inverse of ShiftRows and MixColumns are both linear operations, values of the same difference

pattern will also share the same difference pattern through these operations, that is, SR−1 ◦MC−1(F (a))

and SR−1 ◦MC−1(F (b)) will also share the same difference pattern.

This contrasts with our assumption; thus, the observation is proved.

As shown in the above example, when we assume the difference pattern of a as

(∗, 0, ∗, ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗, 0, 0, ∗, ∗, ∗),

and the difference pattern of b as

(0, ∗, 0, 0, 0, 0, ∗, 0, 0, 0, 0, ∗, ∗, 0, 0, 0),

then the difference pattern of SR−1 ◦MC−1(F (a)) will be

SR−1 ◦MC−1(α) = (∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 0, 0, 0, 0),

and the difference pattern of SR−1 ◦MC−1(F (b)) will be

SR−1 ◦MC−1(β) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ∗, ∗, ∗, ∗).

Obviously, they are different; thus,

(0, a, 0, 0)
9R
−−→ (b, 0, 0, 0)

is an impossible differential.

3.2 Attack on 7-round Simpira-4

Owing to the security claim about Simpira according to which an adversary cannot query the distinguisher

more than 2128 times, we cannot directly use the 9-round distinguisher to mount an attack. Instead,

by using the idea of the contradiction in the 9-round distinguisher, we deduced a 6-round impossible

distinguisher.

As shown in Figure 4, when S3
1 is the only active subblock of S1, then after a 3-round encryption, the

difference pattern of S4 will be

(∆S0
4 ,∆S1

4 ,∆S2
4 ,∆S3

4) = (a, α, F (α), 0).

Therefore, when ∆S0
5 = ∆F (S0

4)
⊕

∆S1
4 , the difference pattern of ∆S0

5 will be α.

In addition, when S7 satisfies ∆S1
7 = b and ∆S2

7 = β, in the backward direction, the difference pattern

of ∆S0
5 will be β after a 2-round decryption.

As a result, α = β, and we obtain the contradiction proved in the 9-round distinguisher; thus, the

differential in Figure 4 is impossible.

By adding one round on the top of the 6-round distinguisher, we achieve a 7-round attack on Simpira-4

under the Even-Mansour construction. The differential of the first round is depicted in Figure 5.

The attack process is as follows:

(1) Construct 2n structures such that each structure is made up of 248 plaintexts. We set P 0[1, 12]

and SR−1 ◦MC−1(P 1)[12, 13, 14, 15] to be the six active bytes, then each structure provides 295 pairs.

(2) Encrypt the plaintexts and only choose the pairs that satisfy ∆C1 = b and ∆C2 = β.

As this is a 64-bit filter, there are approximately 2n+95−64 = 2n+31 pairs remaining after this step.

(3) For each remaining pair, ∆S0
0 = ∆P 0. When ∆F (S0

0 ) = ∆P 1, we obtain the input difference

of the distinguisher. As ShiftRows and MixColumns are both linear operations, we obtain the value of

S0
0 [1, 6, 11, 12] according to the Super S-Box property. XOR the value of S0

0 [1, 6, 11, 12] with the value of

P 0[1, 6, 11, 12] to deduce K0[1, 6, 11, 12], which should be eliminated.

(4) Repeat step(3) until only one value of the 32-bit key value remains; and this is the correct value

of K0[1, 6, 11, 12].
 https://engine.scichina.com/doi/10.1007/s11432-016-9075-6
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Figure 4 6-round impossible differential.

By changing the positions of the active nibbles of the structure, we can obtain all 256-bit values of K0

and K2. Table 1 lists the positions of active nibbles with their corresponding key values.

Complexity. To recover K0[1, 6, 11, 12], we must analyze the remaining 2n+31 pairs. The number of

remaining 32-bit key values is N = 232 × (1− 2−32)2
n+31

. To ensure that N ≈ 1, we choose n = 6. Then,
 https://engine.scichina.com/doi/10.1007/s11432-016-9075-6
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Figure 5 First round of the 7-round attack.

Table 1 Corresponding key bytes of the 7-round attack

∆P 0(∆P 2) ∆C1(∆C3) Responding bytes of K0(K2)

(*00000000000000*) (0****0****0****0) [0,5,10,15]

(0*0000000000*000) (*0****0****00***) [1,6,11,12]

(00*0000000000*00) (**0****00****0**) [2,7,8,13]

(000*0000000000*0) (***00****0****0*) [3,4,9,14]

the data complexity is 254 chosen plaintexts. The time complexity of the attack is obviously dominated

by encrypting the plaintexts, and is thus 254 encryption units. Similarly, to recover the other 224-bit

values of K0 and K2, we must repeat a similar attack procedure eight times. That is, to recover K0 and

K2, the data complexity is 257 chosen plaintexts and the time complexity is 257 encryption units.

3.3 Attack on 8-round Simpira-4

Owing to the security claim of the Even-Mansour scheme, we could not use the 9-round distinguisher to

attack Simpira-4. To attack the 8-round Simpira-4, we propose a 7-round distinguisher (Figure 6). Its key

concept is also the same as that of the 9-round distinguisher. When the input difference ∆S1 = (0, a, 0, 0)

and the output difference ∆S8 = (∗, 0, b, β), we obtain the contradiction.

By using the 7-round impossible differential, we recover all 512-bit key values of Simpira-4 under the

Even-Mansour construction. The attack can be partitioned into two phases:

(a) Mounting an 8-round attack to recover the 256-bit key by adding one round on the top of the

7-round impossible differential;

(b) Recovering the other 256-bit key by adding one round on the bottom of the distinguisher.

Figure 7 depicts the difference characteristic of the first round. The process of the first phase is as

follows.

Phase a:

(1) Construct 2n structures such that plaintexts in each structure traverse 8 bytes: P 2[1, 6, 11, 12] and

SR−1 ◦MC−1(P 3)[12, 13, 14, 15]. Thus, in each structure, there are 264 plaintexts providing 2127 pairs.

(2) Encrypt the plaintexts in each structure, and only choose the pairs that satisfy: (a) ∆C1 = 0;

(b) ∆C2 = b; and (c) ∆C3 = β. This step performs a 192-bit filter; thus, we expect approximately

2n+127−192 = 2n−65 pairs.

(3) For each remaining pair, we can directly obtain the values of ∆S2
0 and ∆S3

0 from ∆P 2 and ∆P 3,

respectively. When ∆F (S2
0) = ∆S3

0 , S1
1 will be the only active subblock in S1; thus we obtain the

input difference of the distinguisher. By applying the differential property of the Super S-box, we can
 https://engine.scichina.com/doi/10.1007/s11432-016-9075-6
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Figure 6 7-round distinguisher.

easily obtain the value of S2
0 [1, 6, 11, 12]. Furthermore, by combining S2

0 [1, 6, 11, 12] and P 2[1, 6, 11, 12],

we obtain one wrong value of K2[1, 6, 11, 12].

(4) Repeat step (3) until there is only one value of K2[1, 6, 11, 12] remaining; this is the correct value.

By changing the position of active bytes of P 2 and C2, we can recover all 256-bit values of K2 as shown
 https://engine.scichina.com/doi/10.1007/s11432-016-9075-6
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Figure 7 First round of Phase a.

Table 2 Corresponding key bytes of Phase a

∆P 2(∆P 0) ∆C2(∆C0) Responding bytes of K2(K0)

(0*0000*0000**000) (*0****0****00***) [1,6,11,12]

(00*0000**0000*00) (**0****00****0**) [2,7,8,13]

(000**0000*0000*0) (***00****0****0*) [3,4,9,14]

(*0000*0000*0000*) (0****0****0****0) [0,5,10,15]

in Table 2.

Complexity. To recover K2[1, 6, 11, 12], we must analyze 2n−65 pairs. The number of remaining

32-bit key values is N = 232 × (1− 2−32)2
n−65

. To ensure that N ≈ 1, we chose n = 102. Then, the data

complexity is 2166 chosen plaintexts, and the time complexity of the attack is 2166 8-round encryptions.

Similarly, to recover all the bits of K0 and K2, we repeat the same procedure eight times. Thus, the

data complexity is 2169 chosen plaintexts and the time complexity is 2169 encryption units.

Till now, we recovered all 256-bit values of K0 and K2. Next, we mount an attack to recover K1 and

K3 by adding one round on the bottom of the 7-round distinguisher. The differential trail of the last

round is shown in Figure 8.

Phase b:

(1) Construct 2n structures such that each structure is made up of 232 plaintexts that traverses

P 1[1, 6, 11, 12]. We expected to obtain 2n+63 pairs.

(2) Encrypt the plaintexts and only choose the pairs that satisfy (a) ∆C1 = b and (b) ∆C2 = β. This

step performs a 64-bit filter; thus, after this step, approximately 2n−1 pairs remain.

(3) For each remaining pair, we set ∆F (S0
8 ) = ∆C0, then ∆S1

8 = 0, and obtained the output difference

of the impossible distinguisher. By using the property of the Super S-box, we obtained a value S3
9 . After

XORing this value of S3
9 with the value of C3, we obtained the value of K3 and deleted it.

(4) Repeat step (3) until there is only one value of K3 remaining. Similar to phase a, we can recover

all 256-bit values of K1 and K3 by mounting two analogous attacks.

Complexity. To enure that there is only one value of the 128-bit key remaining after the attack

process, N = 2128 × (1 − 2−128)2
n−1

should be approximately equal to 1. We choose n = 136; then,

the data complexity is approximately 2168 chosen plaintexts, and the time complexity is approximately

2168 encryption units to encrypt the plaintexts. As we must mount two attack process to recover all

256 bits of K1 and K3, the data complexity becomes 2169 plaintexts and the time complexity becomes

2169 encryption units.

Therefore, we require a final data complexity of 2170 chosen plaintexts and a time complexity of 2170
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to recover all 512-bit key values.

4 Conclusion

In this paper, we proposed a 9-round impossible differential on Simpira-4. To the best of our knowledge,

this is the first impossible distinguisher of Simpira-4. By using the same contradiction as in the 9-round

distinguisher, we proposed a 6-round distinguisher and achieved a 7-round attack on Simpira-4 under

the Even-Mansour construction with a data complexity of 257 plaintexts and a time complexity of 257

encryption units to recover a 256-bit key. Next, we presented an attack on an 8-round Simpira-4 under

the Even-Mansour construction. By using 2170 plaintexts and 2170 encryption units, we recovered all

512 bits of the master key. These two attacks aim at contradicting two security claims of the Even-

Mansour scheme and the Simpira-4 permutation. As far as we know, this is the first result of impossible

differential attacks on Simpira v2.
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