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Abstract Health management of industrial robots is paramount for maintaining effective operations, ensuring consistent
performance, minimizing downtime, and ultimately enhancing the safety and productivity of robotic systems. Since the
invention of industrial robots, significant efforts have been dedicated to their health management. In recent years, thanks to
advances in condition monitoring and fault diagnosis technologies of industrial robots, robot health management has shifted
from scheduled maintenance to condition-based maintenance. This paper aims to comprehensively review the evolution of
condition monitoring and fault diagnosis technologies that are critical for implementing condition-based maintenance of
industrial robots. A brief introduction to robotic systems is given first to analyze the robot failure modes and their corre-
sponding root causes. Next, the data acquisition strategies and commonly used sensors of industrial robots are investigated.
Further, the development of robot condition monitoring and fault diagnosis technologies are reviewed, with an emphasis on the
remarkable achievements and challenges in model-based and data-driven methods. Finally, the paper summarizes the chal-
lenges facing this research field and provides potential avenues for future advancements.
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1 Introduction

Over the past few decades, industrial robots (IRs) have made
their mark in numerous sectors of modern industry, thanks to
their advantages of cost-effectiveness, versatility, and effi-
ciency. Although IRs are more reliable than humans and
never get tired or bored with tedious tasks, they do go on
strike occasionally due to reliability issues [1]. Scheduled
maintenance is a common practice to prevent unexpected
shutdowns of IRs. However, the scheduled maintenance of a
large stock of IRs always results in resource wastage and
even may fail to eradicate potential risks. To overcome the
limitations associated with scheduled maintenance, a variety
of condition monitoring and fault diagnosis technologies
have been developed to realize a paradigm shift toward
condition-based maintenance of IRs.

The failure modes of IRs include performance degradation
of the overall systems and faults of individual components
within the robotic system [2‒4]. Therefore, existing studies
on the condition monitoring and fault diagnosis of IRs can be
categorized into two levels: system level and component
level. The former concentrates on the performance evalua-
tion of the entire robotic system, emphasizing positioning
accuracy, load capacity, and stability of the overall system of
IRs. The latter focuses on the health assessment of compo-
nents within the robot, highlighting the faults of key com-
ponents, such as electronic drives, electric motors, speed
reducers, and sensors.
In the system-level condition monitoring and fault diag-

nosis of IRs, model-based methods are widely recognized as
the most powerful tools for the detection, isolation, and
identification of robot abnormalities, including body colli-
sion, driving force losses, and sensing drift [5‒8]. Note that
the generalized momentum observer-based method, one of
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the typical model-based methods, has been commercialized
and integrated into the control systems of numerous IRs for
real-time monitoring and diagnosis of robotic systems [9]. In
the implementation of model-based methods for condition
monitoring and fault diagnosis of IRs, the challenge mainly
comes from the unmodelled uncertainties. Indeed, accurate
modelling of the nonlinear behaviors of IRs, e.g., deforma-
tion, contact, impact, and friction, remains an open problem
[10‒12].
In the component-level condition monitoring and fault

diagnosis of IRs, data-driven methods are becoming in-
creasingly popular with most of them developed in the last
five years [13‒16]. Key components within IRs, such as
speed reducers and electric actuators, are also common in the
rotating machinery. Consequently, many studies leveraged
the experience gained from fault diagnosis of rotating ma-
chinery to develop data-driven fault diagnosis methods for
the rotating components in IRs [17‒19]. In addition to the
problems related to individual components of IRs, there are
some robotic-specific challenges in condition monitoring
and fault diagnosis of IRs, such as the scarcity of robotic-
specific data, dynamic coupling between multiple compo-
nents, and time-varying configuration of IRs [20‒22].
This paper aims to provide a comprehensive overview of

the development of condition monitoring and fault diagnosis
of IRs and explores future opportunities and challenges in
this research area. Compared with the related surveys
[3,4,9,13‒15,23‒25], the primary contributions of this paper
are as follows.
(1) This paper systematically investigates the failure

modes of IRs, including the faults of robot components and
body collision as noted in the existing surveys. Further, the
paper discusses the behavior and root causes of the robot
failures and summarizes the common faults of robot com-
ponents in the existing literature.
(2) Data of faulty IRs forms the foundation of the robot

health management, yet strategies for data collection are
rarely discussed in the existing surveys. This paper high-
lights the data acquisition of faulty IRs and discusses in
detail commonly used data acquisition strategies. Mean-
while, the paper introduces the proprioceptive sensors and
investigates the commonly used additional sensors in data
acquisition of IRs.
(3) Almost all surveys on model-based condition mon-

itoring and fault diagnosis of IRs are over ten years old. This
paper reviews the development of model-based methods in
the past 30 years, including the recent advancements made in
system modelling, residual generation, and decision-making.
(4) In reviewing the data-driven condition monitoring and

fault diagnosis of IRs, this paper distinguishes itself from
previous surveys by shifting focus from the types of data-
driven methods to an examination of the data sources utilized
and the faults addressed by these methods. The literature is

organized into three distinct categories based on the data
source: log data, proprioceptive sensor data, and additional
sensor data. Such a categorization clarifies the applicability
of different data sources for diagnosis of various faults of
IRs.
The remainder of this paper is organized as follows. Sec-

tion 2 illustrates the failure modes of IRs and common faults
of robotic components and summarizes the data acquisition
strategies of faulty IRs. Section 3 reviews the existing
methods for condition monitoring and fault diagnosis of IRs.
Further, some practical examples are provided to demon-
strate the implementation of model-based and data-driven
methods. Section 4 discusses the challenges facing this re-
search field and provides potential avenues for future ad-
vancements. Section 5 concludes the paper.

2 Failure modes and data acquisition strategies
of industrial robots

The scope of this paper is limited to electrically actuated IRs
composed of four subsystems: mechanical system, electrical
system, control system, and sensing system. The three con-
centric rings in Figure 1, from the innermost to the outer-
most, respectively present the typical mechanical structures,
a concise principle of cooperation among subsystems, and
some basic components of IRs. Note that the components of
IRs are far more diverse than those displayed in Figure 1.
The diversity of components and mechanical structures
makes IRs adaptable to numerous applications but also poses
a great of challenges to the condition monitoring and fault

Figure 1 (Color online) System structure and basic components of in-
dustrial robots.
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diagnosis of IRs. Further, the number of proprioceptive
sensors in IRs is far less than the number of components,
where most IRs are equipped only with essential sensors for
motion control and most components in the mechanical
system are sensorless. The above features of IRs make their
condition monitoring and fault diagnosis a challenging task.
Prior to introducing methods for condition monitoring and
fault diagnosis of IRs, this section discusses in detail the
failure modes and common faults of IRs, as well as data
acquisition of faulty IRs.

2.1 Failure modes and common faults

In the early days of IRs, industrial control devices, such as
programmable logic controllers, had just entered the digital
age, and the electronic components in controllers were un-
reliable and subject to frequent failures [26]. At the same
time, the primary cause of robot failures was the malfunction
of electronic components, leading to the loss of basic func-
tions of IRs. Therefore, the fault diagnosis of electronic
components was a major concern in the design of control
systems of the old-fashioned IRs [27].
Over the past fifty years, there has been a dramatic trans-

formation in robot hardware and software technologies,
significantly improving the reliability of control systems,
which now integrate elementary fault diagnosis functions
[2,28]. However, manual inspections of IRs are still indis-
pensable to evaluating the health status of sensor-less me-
chanical systems. Further, it is well-known that the evolution
process of faults in mechanical systems is always long-term,
and faults in mechanical systems typically result in a de-
gradation of the overall performance of IRs rather than an
immediate loss of functions. For example, an unacceptable
positioning error of the end-effector caused by faults in the
mechanical system is a common failure mode in IRs used for
precision machining [29‒31]. Thus, failure modes of IRs
include not only the loss of basic functions but also the

substandard performance of the overall system.
In addition to the problems from IRs, interferences from

the external environment, such as human mistakes, are also
major sources of failure of IRs [32‒35]. For example, IRs,
especially those who frequently interact with the external
environment, often fail tasks due to unexpected collisions
with their surroundings. In summary, an IR is generally
considered a failure if it is unable to complete user-specified
tasks. The failure modes of IRs can be broadly categorized
into three types: loss of basic functions, substandard per-
formance of the overall system, and external environmental
interferences.
All the failure modes of IRs can be isolated to the abnor-

mal behaviors of robot joints and links based on the well-
known kinematic and dynamic models of IRs. Further, all the
abnormal behaviors of robot joints and links are related to
faults or abnormal behaviors of robot components, but re-
lations between them are complex and difficult to model.
Therefore, in the existing literature, the abnormal behaviors
of robot joints and links are often simulated by modifying the
inputs, outputs, or system parameters of IRs. The commonly
simulated abnormal behaviors of robot joints and links in-
clude free-swinging joints [36], locked joints [37], partial
loss of joint driving forces [38], drift in feedback data of joint
displacements/speeds [39], and abnormal oscillation of joints
and links [40,41].
The complex behaviors of robot joints and links, plus the

diversity of robot components and faults, make the fault
diagnosis of IRs challenging. Identifying the possible faults
of robot components and corresponding abnormal behaviors
of the overall system is helpful for the fault diagnosis of IRs,
particularly for fault isolation [18‒22,42‒105]. Table 1
summarizes the common component faults of IRs and cor-
responding studies that provide experiment results of faulty
IRs. Note that, in practice, the component faults of IRs go far
beyond those listed in Table 1. Examples include faults of
planetary gearboxes used in mobile robots [42], faults of load

Table 1 Common faults of robot components

Components Faultsa) References

Servo drive Inverter fault, capacitor fault, current sensor faultb) [50‒54]

Permanent magnet synchronous motor Stator fault, rotor fault, brake fault, bearing fault [55‒66]

Harmonic reducer Flexible spline fault, circular spline fault, wave generator fault, input
shaft fault, manufacturing and assembly error, poor lubricant [18,22,56,57,63,67‒75]

Rotate vector reducer
Sun gear fault, planetary gear fault, crankshaft fault, pin gear fault, cycloidal
gear fault, main bearing fault, seal fault, manufacturing and assembly error,

poor lubricant
[19,20,70,76‒98]

Timing belt Belt fault, pulley fault [75,99‒101]

Bearing Fault of support bearings in robot joints [21,102,103]

Fastener Bolt loosening of robot joints, bolt loosening of robot base [104,105]

a) Faults listed in this table can be further subdivided according to their type and degree.
b) Current sensors are typically embedded in servo drives.
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balancing mechanisms used in heavy-duty IRs [43], and
faults of power cables [44]. Furthermore, there are lots of
studies, not explicitly related to robotics, that have in-
vestigated the faults of components commonly used in IRs
[45‒49]. Although most of the fault diagnosis methods de-
veloped in these studies are not applicable to IRs, the fruitful
experience gained from these studies advances the devel-
opment of condition monitoring and fault diagnosis of IRs.
For example, drawing on the experience gained from fault
diagnosis of rotating machinery, many data-driven methods
use vibration signals to diagnose the faults of speed reducers
and electric actuators in IRs [14].

2.2 Data acquisition

Data acquisition of faulty IRs is both costly and labor-in-
tensive due to the complexity and diversity of robot com-
ponents. Further, it usually takes years to collect the full
lifecycle data of an IR. In the existing studies, the following
strategies are commonly used to collect data on faulty IRs:
numerical simulation of faulty IRs; manual modification of
inputs, outputs, or parameters of actual IRs; replacement of
normal (healthy) components of IRs with faulty ones; and
accelerated aging tests of IRs or their individual components.
Details of these four strategies are given as follows.
(1) Numerical simulation of faulty IRs. The benefits of

numerical simulation are economical, efficient, and safe,
making it a preferred strategy for the development, debug-
ging, and validation of condition monitoring and fault di-
agnosis methods for IRs. Since the 1990s, numerical
simulation has been accepted by many studies to generate
data on faulty IRs [106‒109]. Nowadays, a wide range of
robot simulation platforms are available, such as Gazebo,
Webots, Coppeliasim, Mujoco, Isaac, and Raisim [10].
However, numerical simulation of component faults of IRs
remains underdeveloped. For example, the existing studies
predominantly employ simple functions such as pulses,
steps, and ramps to simulate excitations generated by faulty
components of IRs [77,110].
(2) Manual modifications of inputs, outputs, or parameters

of actual IRs. Manually modifying robot inputs, outputs, and
parameters to simulate faults of actual IRs is cost-effective
and easy to implement, since it does not require any hard-
ware modifications. Such a strategy is typically used to si-
mulate anomalies in joint driving forces [36,111‒114],
anomalies in sensor feedback data [39,115‒118], and ex-
ternal disturbances [119‒123]. For example, the free-
swinging actuation failure can be simulated by setting the
reference torque to zero and the drift in sensor data can be
simulated by introducing an additive signal to the measured
data. However, it is impossible by far to simulate all com-
ponent faults of IRs without hardware modifications. For
example, modifications of robot inputs, outputs, and para-

meters are unable to simulate the stochastic excitations in-
troduced by faults of speed reducers, which involve complex
behaviors that are not yet understood thoroughly [124‒126].
Further, modifications of robot inputs, outputs, and para-
meters could make IRs unstable and even pose risks to op-
erators, especially in human-robot interaction scenarios
[122].
(3) Replacement of normal components of IRs with faulty

ones. In robotic factories, there are many substandard com-
ponents of IRs retired from actual industrial lines. It is
therefore cost-effective to obtain faulty IRs by replacing the
components of normal IRs with substandard ones. For ex-
ample, many studies employed faulty speed reducers and
motors obtained from actual industrial lines to collect data on
faulty IRs [20,64,65,67‒69]. Fault injection is another way to
obtain faulty components of IRs. The existing studies fo-
cused on fault injection of rotating machinery of IRs, in-
cluding rotate vector (RV) reducers [19,79‒83], harmonic
reducers [70,75], and timing belts [75,99‒101]. Most exist-
ing studies chose to inject faults into the rotating machinery
of IRs for two main reasons: frequent impact and contact in
rotating machinery make it susceptible to wear and tear, and
IRs are able to work with faulty mechanical components.
(4) Accelerated aging tests of IRs or their individual

components. It is time-consuming and costly to collect full
lifecycle data of IRs. For example, Vallachira et al. [127]
spent over four years collecting full lifecycle data of 26
IRs worked in actual industrial lines, where 13 IRs were
reported with gearbox failures and the rest were normal.
Accelerated aging tests are therefore usually employed to
expedite the acquisition of full lifecycle data of IRs and their
components. Indeed, accelerated aging tests of IRs are also
time-consuming, typically taking at least three months
[87,88,94,128]. In addition to accelerated aging tests of IRs,
a few studies have conducted accelerated aging tests of in-
dividual components of IRs, where the test duration is sig-
nificantly reduced by increasing the load of components. For
example, as reported in refs. [53,129‒131], accelerated aging
tests of harmonic reducers and electronic drives were gen-
erally completed within a few days.
Among the above four strategies, the numerical simulation

strategy is the most flexible, allowing to read any data
available in the simulation model of IRs. In the remaining
three strategies, the type of data that can be obtained depends
on the sensors that the robot is equipped with. In most IRs,
states of electric actuators obtained by proprioceptive sen-
sors can be read through the control system. Further, addi-
tional sensors are usually employed to assist the
proprioceptive sensors in acquiring data from actual IRs.
One of the key issues in using additional sensors is sensor
selection, where the following factors need to be considered:
(i) costs of adding sensors, (ii) faults needed to be diagnosed,
(iii) reliabilities of additional sensors, and (iv) operating
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conditions of additional sensors [87,132]. The application of
additional sensors in condition monitoring and fault diag-
nosis of IRs is discussed in detail in subsections 3.2.3 and
3.3.2.

3 Condition monitoring and fault diagnosis
technologies

The existing methods for condition monitoring and fault
diagnosis of IRs can be broadly categorized into three types:
knowledge-based methods, model-based methods, and data-
driven methods. Expert knowledge permeates the entire
lifecycle of IRs, from design and manufacturing to service
and maintenance. During the design phase, a systematic
analysis of failure modes and effects offers essential insights
for condition monitoring and fault diagnosis of IRs [133].
The knowledge accumulated from condition monitoring and
fault diagnosis is then fed back into the design and manu-
facturing processes to eliminate potential flaws. Expert
knowledge of condition monitoring and fault diagnosis
forms knowledge-based methods. Further, the development
of both model-based and data-driven methods leverages a
rich pool of expert knowledge, effectively integrating most
knowledge-based approaches. This section therefore in-
corporates knowledge-based methods into the review of
model-based and data-driven methods.

3.1 Model-based methods

Model-based methods use analytical redundancy to replace
hardware redundancy to address condition monitoring and
fault diagnosis issues of practical systems [134,135]. Main
tasks of model-based condition monitoring and fault diag-
nosis include system modelling, residual generation, and
decision making.

3.1.1 System modelling
The aim of system modelling is to find a mapping between
the inputs and outputs of actual systems. Typically, IRs are
equipped with rotary encoders and current sensors to mea-
sure angular displacements and driving torques of electric
motors, respectively. Dynamic models of IRs, that are able to
characterize the relationship between angular displacements
and driving torques of electric motors, are therefore common
in condition monitoring and fault diagnosis of IRs. In some
specific scenarios, dynamic models are not the only option
for condition monitoring and fault diagnosis of IRs where the
robot or its surrounding environment is equipped with ad-
ditional sensors. For example, in visual servoing applica-
tions, IRs are typically equipped with vision sensors. In such
cases, it is able to assess the health status of IRs using the
robot kinematic models that characterize the relationship

between the measurements of proprioceptive and additional
sensors [136‒138]. This paper focuses on the dynamic
modelling of IRs, and readers interested in other models are
referred to ref. [2].
The well-known rigid-body dynamic is widely used to

characterize the dynamic behavior of IRs with high stiffness
[139,140]. However, rigid-body dynamics often fail to
characterize the dynamic behaviors of IRs with elastic joints
or long arm spans, such as collaborative robots. Various ri-
gid-flexible coupling models were introduced in existing
studies to address the flexibilities of IRs [9,141,142]. The
trade-off between computational efficiency and numerical
accuracy is a big issue in the existing studies of flexible body
modelling, where most rigid-flexible coupling models are
too complicated to be both computationally efficient [143].
Further, there are many unresolved issues in the parameter
identification of flexible body models [144]. Besides flex-
ibility in IRs, modelling and parameter identification of
nonlinear characteristics introduced by contact, collision,
friction, and clearance between multiple components are also
challenging [77,145].
Around 1990, neural networks were introduced into the

dynamic modelling of robots to learn nonlinear behaviors
[146]. Nevertheless, the learning abilities of early neural
networks are not powerful enough to achieve the perfor-
mance of traditional physical models in many scenarios.
After more than twenty years of revolution, the advent of
deep learning brought rapid progress to neural networks. For
example, the popular physics-inspired neural networks of
recent years have made significant breakthroughs in robot
dynamics learning and interpretability [147‒150]. However,
the practical implementation of physics-informed neural
networks still faces many limitations, such as their perfor-
mance being highly dependent on the chosen application
object, as well as the quality and quantity of training data
[143]. Readers are recommended to refer to refs. [148,151]
for the details of recent advances in learning-based model-
ling methods for robot dynamics. Furthermore, a systematic
review of learning-based methods applied to the modelling
and identification of general dynamic systems can be found
in ref. [152].

3.1.2 Residual generation
In model-based condition monitoring and fault diagnosis,
residual generation is a process of using the known nominal
models to find a residual that contains information of faults
on actual systems [6]. Studies on model-based condition
monitoring and fault diagnosis of IRs can be classified into
three categories based on their residual generation ap-
proaches: parameter identification methods, parity space
methods, and state estimation methods.
(1) Parameter identification methods
Parameter identification-based residual generation meth-
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ods make use of the fact that faults of actual systems often
lead to changes in the values of model parameters [106,153].
The primary tasks of parameter identification-based residual
generation methods include model selection and parameter
identification. A necessary condition for model selection is
that at least one of the identifiable parameters reflects the
fault of actual systems. In practice, model selection depends
on the expert knowledge of actual systems and it is usually
not easy to find a model with identifiable parameters that are
both sensitive to faults and robust to disturbances. One of the
challenges in model selection is that most model parameters
are coupled with each other and cannot be identified in-
dividually. For example, most parameters of dynamic models
of IRs are not individually identifiable due to the complex
robot structure and scarcity of proprioceptive sensors [154].
Further, model parameters that carry information on robot
faults are typically time-varying and depend on the operating
conditions of the robot. For example, the stiffness and fric-
tion coefficients of robot joints that are able to reflect faults
of speed reducers are influenced by various factors, such as
the spatial configuration and trajectory of the robot, and
environmental conditions [77].
Parameter identification of robot models is also challen-

ging due to unmodelled dynamics and measurement un-
certainties. Common methods to cope with unmodelled
dynamics and measurement uncertainties in parameter
identification include extended Kalman filter [155,156],
maximum likelihood estimation [157,158], set membership
estimation [159,160], instrumental variable method
[161,162], and semi-definite programming method with
physically feasible constraints [163‒166]. Among the above
methods, adding reasonable constraints based on the expert
knowledge of the actual robot is the only way to obtain
physically feasible estimates of all model parameters [167].
However, obtaining accurate estimates of all model para-
meters remains by far a challenging task due to the inherent
nonlinear dynamics of IRs. For example, Bittencourt et al.
[94,128] used friction models to estimate the wear of robot
joints, where the displacement, speed, load, and temperature
of robot joints, as well as the temperature of the lubricant,
have to be simultaneously recorded to determine the para-
meters of friction models.
In practice, parameter identification methods are more

commonly used in residual generation in combination with
other model-based methods than in isolation. For example,
many studies employed parameter identification and state
estimation methods to design adaptive observer for residual
generation [110,168‒171]. Indeed, since some parameters of
robot models are time-varying, parameter identification
methods are essential for almost all the model-based residual
generation methods.
(2) Parity space methods
Parity space-based residual generation methods take ad-

vantage of the parity relations of inputs and outputs of the
actual systems. Around 1980, the parity space-based residual
generation methods were first introduced to linear systems in
two forms: direct redundancy and temporal redundancy
[172]. The direct redundancy depends on the parity relations
among instantaneous inputs and outputs and the temporal
redundancy depends on the parity relations among historical
inputs and outputs. Based on the linear forms of parity space
methods, Leuschen et al. [173,174] developed a nonlinear
analytic redundancy method for the residual generation of a
planar robot, where the robot model is assumed to be con-
sistent with the actual robot. Further, Halder and Sarkar
[117,175] proposed a robust nonlinear analytic redundancy
method to minimize the effects of model-plant-mismatch on
the generated residuals by solving a nonlinear optimization
problem. Their method was verified by experiments on a
PUMA 560 robot, where faults were simulated by manually
modifying actuator inputs and sensor outputs. Another way
to improve the robustness of the generated residuals is to
increase the order of parity relations [176,177]. However, the
order of parity relations is also limited by some practical
issues, such as noise amplification and huge computation
burden [113]. It is therefore of primary interest to generate a
residual with the lowest possible order of parity relations that
is able to detect faults.
Since parity space methods excel at redundancy analysis of

sensor outputs, they are usually used to aid other model-
based methods for designing residuals. For example, Frank
et al. [107,123] employed parity space methods to design
state observers for residual generation and applied the gen-
erated residual to detect the collision of robots.
(3) State estimation methods
State estimation methods are the most popular residual

generation methods in condition monitoring and fault diag-
nosis of IRs [8,9]. The key idea of state estimation methods is
to design observers or filters that reconfigure the inputs and
outputs of IRs to generate residuals. Depending on the model
used, state estimation methods can be classified into three
categories: physical model-based methods, neural network-
based methods, and hybrid model-based methods.
Physical model-based state estimation methods commonly

used in the residual generation of IRs include direct esti-
mation [178‒180], time-delay estimation [8,181], recursive
estimation [8,39,182‒184], adaptive estimation
[110,120,168,169,185‒191], Kalman filter [192‒194],
Luenberger observer [107,195‒203], high-gain observer
[204], sliding mode observer [115,116,205‒218], unknown
input observer [115,205,206,218‒220], disturbance observer
[217], H-infinity based observer [221‒223], energy-based
observer [9,224], velocity observer [9,225‒231], and mo-
mentum observer [9,141,170,197,211,223,232‒236].
Among the above methods, the momentum observer method
has been commercially applied to many collaborative IRs. A
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detailed comparison of the state estimation methods can be
found in refs. [9,237,238]. Due to the difficulty in accurately
modelling the inherent nonlinear characteristics of IRs,
model-plant-mismatch remains one of the unsolved chal-
lenges of physical model-based state estimation methods.
Around 2000, neural networks were introduced into robot

modelling, which led to the development of neural network-
based state estimation methods. Since then, numerous stu-
dies used state estimation methods based on shallow neural
networks, such as Hopfield network, radial basis function
network, and multi-layer perceptron with one hidden layer,
for residual generation of IRs [239‒251]. Given the limited
capability of shallow networks in learning robot dynamics,
many studies developed hybrid model-based state estimation
methods for the residual generation of IRs by combining
neural networks with physical models [112,252‒259]. In
recent years, deep learning has revolutionized robotics. Deep
neural networks provide better approximations of the non-
linear dynamics of IRs compared to shallow neural networks
[148]. Alongside deep learning, reinforcement learning is
also gaining momentum in the field of robotics. However,
the application of deep learning and reinforcement learning
for state estimation-based residual generation of IRs is still in
its early stages with only a few relevant studies [14,15]. For
example, Sacchi et al. [206] used a state estimation method
based on deep reinforcement learning to design residuals for
a robot with sensor faults.

3.1.3 Decision making
The process of determining the health status of IRs through
residual evaluation is known as decision-making, which in-
volves fault detection, fault isolation, and fault identification.
The decision-making methods in condition monitoring and
fault diagnosis of IRs can be broadly categorized as thresh-
old-based and learning-based methods.
(1) Threshold-based methods
The basic idea of threshold-based methods is to compare

the raw or post-processed residuals with specified thresholds
to detect faults of IRs. In general, multiple residuals and
associated thresholds are required to achieve fault isolation
of IRs [153]. For example, many studies combined multiple
residual generators to develop a general diagnostic frame-
work capable of addressing multiple faults of IRs simulta-
neously [194,197,209,218,221,222,260]. Further, the
residuals are affected by model and measurement un-
certainties that vary with the operating conditions of IRs. It is
therefore a challenging task to determine thresholds for nu-
merous residuals of IRs. To address the above issues, the
existing studies on residual evaluation of IRs have tried
numerous methods to determine thresholds, including expert
knowledge-based methods, statistics-based methods, and
fuzzy logic-based methods.
Expert knowledge-based methods are typically used to

determine thresholds for the IRs whose dynamics are well-
understood. For example, the residual thresholds can be
determined using interval estimation methods when the
bounds of the model and measurement uncertainties of the
robot are known [108,114,191,261]. For the IRs with un-
known models and measurement uncertainties, statistics-
based methods are commonly used to determine the residual
thresholds. In such cases, extensive experiments on the IRs
are required to figure out the statistical properties of residuals
since model and measurement uncertainties vary with the
operating conditions of IRs [8,39,112,171,182]. Among
statistics-based methods for determining thresholds of IRs, a
commonly used method is to set the threshold as the max-
imum of the corresponding residual. However, fixed
thresholds are too conservative to detect incipient faults.
Therefore, many studies introduced fuzzy logic-based
methods to adaptively update the threshold according to the
operating conditions of IRs [123,231,241,242]. Additionally,
proper post-processing of residuals also helps avoid con-
servative thresholds. For example, in collision detection of
IRs, high-pass filtering of residuals is able to weaken the
influence of model uncertainties [9,262].
(2) Learning-based methods
Learning-based methods address decision-making as a

classification problem. They are capable of learning the
features of different faults from the raw residuals of IRs,
avoiding the difficulties associated with the post-processing
of residuals and determination of numerous thresholds.
However, machine learning-based methods also have lim-
itations, such as they typically require a comprehensive fault
dataset for training the classifier.
Numerous studies have shown that the traditional learning-

based method, such as learning methods based on radial
basis function networks, multilayer perceptron, support
vector machines and k-nearest neighbours, achieve high ac-
curacy in residual classification of IRs [207,239,240,246,
247,249‒251,254,263,264]. The primary reason for this
success is that the residual generation incorporates extensive
expert knowledge of the robot faults, along with preliminary
treatment of the model and measurement uncertainties of the
robot. This makes the generated residuals sensitive to faults,
enabling learning-based methods to effectively extract fea-
tures of faults from the raw residuals.
Terra and Tinós [246] compared a learning method based

on radial basis function networks and a threshold-based
method for the actuator fault diagnosis of a robot. Their
experimental results demonstrated that the learning method
based on radial basis function networks is more robust to
perturbations than the threshold-based method. Park et al.
[265] used a learning method based on support vector ma-
chines and convolutional neural networks to classify mo-
mentum residuals of a robot to detect collisions. The results
showed that the learning method based on convolutional
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neural networks outperformed the learning method based on
support vector machines when the number of training sam-
ples was sufficient. Considering the high cost of collecting
robot fault data, Park et al. [266] introduced unsupervised
learning for residual classification to reduce the dependence
on large amounts of labelled fault data. Additionally, Kim
et al. [267] employed a transfer learning method for residual
classification to facilitate the sharing of fault data and
knowledge across multiple robots.

3.2 Data-driven methods

The data obtained from proprioceptive sensors, event logs
from the control system and maintenance logs are typically
available for condition monitoring and fault diagnosis of IRs.
However, log data and proprioceptive sensor data are ob-
viously insufficient for the condition monitoring and fault
diagnosis of all components of IRs. Adding sensors to IRs is
therefore a common practice to enhance data acquisition of
their components, particularly for the sensorless compo-
nents. Based on the available data for IRs, three categories of
data-driven condition monitoring and fault diagnosis meth-
ods have been developed: methods based on log data,
methods based on proprioceptive sensor data, and methods
based on additional sensor data.

3.2.1 Methods based on log data
Robot log data mainly includes event information such as
warnings and alarms from controllers and electronic drives.
In practice, robot maintenance experts often begin their
troubleshooting with the above log data, leveraging expert
knowledge to investigate the causes of faults. They further
enrich their expert knowledge based on collected historical
log data and maintenance records. Manually refining expert
knowledge is time-consuming and labour-intensive,
prompting many studies to use techniques like natural lan-
guage processing to refine knowledge from log data and
maintenance records. Knowledge graphs, known for their
powerful information organization and association abilities,
are particularly favoured for the refinement and management
of fault diagnosis knowledge of IRs [268]. For example,
Wang et al. [269‒271] utilized deep learning methods to
extract semantic entities and relationships from log data,
maintenance records, and repair manuals of IRs. They con-
structed a fault diagnosis knowledge graph for the robot fault
isolation and maintenance decision-making. Due to the dif-
ficulty of fault isolation caused by the rich semantic relations
in the knowledge graph, Li et al. [272,273] integrated
methods like fuzzy decision-making into the fault diagnosis
knowledge graph to analyze the root causes of faults of IRs.
Given the lower sampling frequency of log data compared

to proprioceptive sensor data, log data is generally used for
fault isolation and cause analysis in fault diagnosis, while

proprioceptive sensor data is mainly used for online fault
detection. For example, the predictive maintenance system
for welding robots developed by Wang et al. [60] first ex-
tracts fault characteristics from proprioceptive sensor data to
identify the robotʼs health status. When a fault is detected,
the log data is recorded and input into the fault diagnosis
knowledge graph for fault isolation, cause analysis, and
maintenance decision-making.

3.2.2 Methods based on proprioceptive sensor data
The proprioceptive sensor data can be accessed through the
control system of IRs at sampling frequencies ranging from
1 Hz to 7000 Hz [274]. The proprioceptive sensor data of IRs
typically includes angular displacements, angular speeds,
currents, and torques of electric motors. In recent years,
numerous data-driven methods based on proprioceptive
sensor data have been developed for condition monitoring
and fault diagnosis of IRs.
One of the most intuitive data-driven methods is to directly

compare proprioceptive sensor data from normal and faulty
IRs. Such methods are generally applicable to IRs that per-
form repetitive tasks [275]. For example, Izagirre et al. [55]
achieved the fault diagnosis of a robot by comparing joint
torques under identical motion trajectories. They validated
their method on a heavy-duty IR that unexpectedly shut
down on a production line. Upon disassembly, it was dis-
covered that the shutdown was due to a significant increase
in joint torques caused by a fault in the motor brake. Xiao
et al. [276,277] detected the abnormal vibrations or noise of
different robot joints by comparing the proprioceptive sensor
data from normal and faulty IRs under the same motion
trajectory. They also investigated the effect of data sampling
frequency on fault detection. Their experiment results show
that the classification accuracy of faults in the robot joints
remains high even at a sampling frequency of 0.1 Hz. Chen
et al. [56,57,63,64,278] collected proprioceptive sensor data
from IRs with single and compound faults by replacing
faulty motors and speed reducers with normal ones. They
demonstrated that faults in electric motors and speed re-
ducers of IRs can be diagnosed using data-driven methods
based on deep learning and the proprioceptive sensor data
with a sampling frequency of 1 Hz. Yang et al. [72] utilized
proprioceptive sensor data from an IR under a single-joint
reciprocating motion to identify abnormal vibrations induced
by the harmonic reducer in the robot joint. Similarly, Hsu
et al. [100] employed proprioceptive sensor data from an IR
under a single-joint reciprocating motion to detect the timing
belt looseness in the robot joint.
Considering the difference between online operating tra-

jectories and offline test trajectories, Oh et al. [20] im-
plemented fault diagnosis of IRs using transfer learning and
proprioceptive sensor data under multiple trajectories for
both reciprocating motions of a single-joint and those of
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multiple joints. Heo et al. [279] used deep learning and
proprioceptive sensor data to detect the collision of a robot
that executes randomly generated motion trajectories, where
the robot is required to repeatedly follow these trajectories.
In summary, existing data-driven condition monitoring and
fault diagnosis methods necessitate robots repeatedly ex-
ecuting specific motion trajectories. When it comes to a new
trajectory, most data-driven algorithms require fine-tuning or
even retraining based on the proprioceptive sensor data of the
new trajectory.

3.2.3 Methods based on additional sensor data
One of the advantages of data-driven methods based on ad-
ditional sensor data is that sensors can be customized to the
specific faults of IRs. Due to the diversities of faults of IRs, a
variety of sensors have potential applications in condition
monitoring and fault diagnosis of IRs. Table 2 summarizes
the additional sensors that are commonly used in the existing
studies of IRs, with most of the references published within
the last five years [18,19,21,22,34,44,61,62,65‒70,73‒
76,78‒92,95,97‒99,102‒105,118,185,205,262,280‒305]. As
shown in Table 2, accelerometers are the most frequently
used additional sensors in data acquisition of IRs, followed
by current sensors and inertial measurement units (IMUs).
The popularity of accelerometers is due to two main reasons:
mechanical systems of IRs have many rotating components
and accelerometers are widely accepted for condition mon-
itoring and fault diagnosis of rotating machinery [17]. Cur-
rent sensors are also popular for condition monitoring and
fault diagnosis of rotating machinery driven by electric
motors [274]. Although the proprioceptive sensors of IRs
include current sensors, the stator currents obtained by them
are generally not publicly accessible. Therefore, many stu-
dies added current sensors to IRs to collect stator currents of
electric motors. In the following sections, all current sensors

refer to additional current sensors unless otherwise specified.
IMUs added to IRs are usually used to estimate motion states
of links, such as spatial poses, speeds, and accelerations [2].
With the motion states of links, it is thereby able to evaluate
the overall performance of entire systems of IRs, as well as to
estimate the motion states of robot joints by solving inverse
kinematics problems [136]. In addition to accelerometers,
current sensors and IMUs, some studies have employed other
sensors, such as cameras, acoustic emission (AE) sensors,
microphones, and laser trackers, to estimate the states of IRs.
A detailed discussion of applications of the additional sen-
sors in condition monitoring and fault diagnosis of IRs is
given in the sequel.

(1) Accelerometers
As shown in Table 2, accelerometers are the most used

additional sensors in condition monitoring and fault diag-
nosis of IRs. They are typically mounted on the robot joints
and links to acquire vibration data of the rotating components
at sampling frequencies greater than 1 kHz.
Numerous studies have employed the vibration data ob-

tained by accelerometers to diagnose faults in mechanical
power transmission components of IRs. For example,
Nentwich et al. [88,281,283] mounted accelerometers on IRs
to collect the full life cycle data under accelerated wear. They
analyzed the effects of temperature and mounting position on
the vibration data obtained by accelerometers and verified
the feasibility of using vibration data to diagnose faults of
gearboxes in the robot joints. He et al. [18,67‒69] fixed an
accelerometer on each link of a 6-degrees-of-freedom (DOF)
IR to collect vibration data and used deep learning methods
to diagnose artificial faults of harmonic reducers at different
operating speeds of the robot joints. Yang et al.
[22,73,74,282] orthogonally mounted three unidirectional
accelerometers at the end-effector of a 6-DOF IR and
achieved abnormal vibration detection of harmonic reducers

Table 2 Additional sensors commonly used in IRs

Sensors Advantages Disadvantages References

Accelerometer • Sensitive to faults of rotary machine • Trajectory dependent
• Placement dependent

[18,19,21,22,61,67‒69,73‒76,78,81‒83,85‒
88,91,98,99,102‒104,262,280‒290]

Current sensor

• Low cost
• Easy to install

• Sensitive to faults of electric motors,
electronic drives, proprioceptive current

sensors, and power cables

• Trajectory dependent
• Friction dependent [44,62,65,70,78,87,99,102,105,291‒293]

IMU • Sensitive to faults of rotary machine
• Able to track the pose of IRs

• Calibration required for pose tracking
• Prone to drift [79,80,84,89,90,92,95,185,294,295]

Camera • Images are intuitive and interpretable • Light dependent
• Calibration required for pose tracking [34,66,118,205,296‒301]

AE sensor • Sensitive to incipient faults of machinery
• High cost

• Placement dependent
• Extremely high sampling frequency

[97,102,302,303]

Microphone • Large measurement range • Sensitive to noise
• Trajectory dependent [19,304]

Laser tracker • High-accuracy pose measurement of IRs • Extremely high cost
• Stringent measurement conditions required [305]
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in three joints close to the end-effect. Pu et al. [76,81,85,86]
mounted an accelerometer on a link of a 6-DOF IR and used
deep learning methods to detect artificial faults of an RV
reducer connected to the link. Note that although the above
studies using accelerometers for fault diagnosis of IRs
achieve high accuracy close to 100%, most of them require
the robot to follow specific motion trajectories [20].
Considering the effect of time-varying operating condi-

tions on the vibration response of IRs, Kim et al. [98] used
the joint velocities obtained by proprioceptive sensors to
split the vibration data obtained by accelerometers. Further,
they analyzed the spectral characteristics of the vibration
data under the uniform motion of the robot joint to diagnose
the faults of the RV reducer. Qiao et al. [78] combined ac-
celerometers and current sensors to synchronously collect
vibrations and stator currents in a robot joint. They achieved
fault diagnosis of RV reducers at time-varying speeds and
loads using nonlinear response spectrum analysis of current
and vibration data. In addition to fault diagnosis of speed
reducers, vibration signals from accelerometers had also
been applied to fault diagnosis of electric motors [61], timing
belts [75], and bolts [104,284], as well as collision detection
of links [262,285].
(2) Current sensors
The primary advantage of adding current sensors to IRs is

the ease of installation. Most Hall current sensors allow the
power cable of the robot to pass through for measuring the
stator currents of electric motors. This enables the use of
current data obtained by current sensors to diagnose faults of
power cables [44]. The stator currents measured through the
power cable serve as both the output of the electronic drive
and the input to the electric motor, making them useful for
diagnosing faults of electronic drives [54,306,307] and
electric motors [62,291]. Furthermore, additional current
sensors provide hardware redundancy with the propriocep-
tive current sensors within the electronic drive and can be
used for fault diagnosis of sensors. In fact, faults of pro-
prioceptive current sensors can also be identified by current
signature analysis even without hardware redundancy since
the three-phase stator windings of an electric motor are ty-
pically symmetrical [306,307].
Due to the compact structure of IRs, the torsional char-

acteristics of the speed reducers also affect the dynamic re-
sponse of the electric motors. Consequently, the stator
current data of the motor are often used to diagnose faults of
speed reducers in the robot joints [293]. For example, Liu
et al. [77] developed a dynamic model of IRs to analyze the
effects of faults and nonlinear behaviors of RV reducers on
motor performance. They further demonstrated the feasi-
bility of using motor currents or torques for long-term health
monitoring of RV reducers in robot joints. Additionally,
many data-driven methods have employed motor currents
obtained by additional current sensors to diagnose faults of

harmonic reducers and RV reducers [70]. Since motor cur-
rent reflects the health state of speed reducers primarily
through torsional characteristics, this method is insensitive to
partial faults of speed reducers and susceptible to frictional
perturbations. Therefore, some studies have proposed fault
diagnosis methods that integrate multiple sources of data,
such as current, vibration, and acoustic emission, to identify
the health status of speed reducers in robot joints [78,102]. In
fact, in a robot joint, the dynamic response of the motor is
affected by many factors other than faults of speed reducers,
such as loose bolts and lubricant leakage. For example, Xu
et al. [105] verified the feasibility of using motor currents
obtained by additional current sensors to identify bolt loos-
ening of a robot joint.
(3) IMUs
In condition monitoring and fault diagnosis of IRs, IMUs

that consist of accelerometers, gyroscopes, and magnet-
ometers are generally fixed to the robot links to acquire their
linear acceleration, angular velocity, and orientation at a
sampling frequency of less than 1 kHz [308]. Given that the
robot links are driven by robot joints, the fault diagnosis of
components in robot joints can be performed using the mo-
tion data of links. For example, many studies mounted IMUs
on the robot links to collect their motion data and utilized the
link motion data to diagnose faults of the RV reducer con-
nected to the link [79,80,84,89,90,92]. These studies em-
ployed deep learning methods to extract fault features of RV
reducers from the link motion data where the robot is re-
quired to follow specific motion trajectories.
In addition to fault diagnosis of components, IMUs are

also common in collision detection and system performance
evaluation of IRs. For example, Birjandi et al. [294] mounted
an IMU at the end-effector of a 6-DOF robot and performed
collision detection of links by fusing data obtained from the
IMU and proprioceptive sensors. In their work, the precise
calibration of the position of the IMU relative to the robot
link is required to accurately estimate the collision force.
Similarly, the calibration of IMUs is also crucial for esti-
mating the end-effector positioning errors of IRs
[295,309,310].
(4) Cameras
Cameras are common in visual-servoing applications and

environmental monitoring of IRs. There are two configura-
tions of IRs and cameras, namely the eye-in-hand config-
uration and the eye-to-hand configuration [2]. The camera-
based condition monitoring and fault diagnosis of IRs
usually performed in the eye-to-hand configuration where
cameras are fixed in the robot workspace to capture the
image of IRs and their surroundings. For example, Peng and
Chen [298] utilized images captured by cameras fixed in the
workspace of IRs to estimate their actual positions and
compare the actual positions with the desired/commended
ones to detect malfunctions of the robot. At the same time,
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the images captured by cameras can also be used to detect
anomalies of other objects in the robot workspace [296,311].
In addition to 2D images, depth cameras, such as structured
light cameras, are able to produce depth data that can be used
to estimate distance between two entities in 3D space. Ty-
pical applications of depth cameras in condition monitoring
and fault diagnosis of IRs include collision detection [312],
positioning error evaluation [118,297,299‒301], and fault
diagnosis of actuators and sensors [205]. Note that the cali-
bration of cameras is required for almost all applications,
especially for the positioning error evaluation of high-ac-
curacy IRs.
(5) AE sensors
Thanks to the ability to detect transient elastic stress waves

generated by the deformation of materials, AE sensors are
more sensitive to incipient faults of machinery compared to
accelerometers, current sensors, IMUs, and cameras [49]. In
the condition monitoring and fault diagnosis of IRs, AE
sensors are typically used to detect faults of bearings and
speed reducers [97,102,302,303]. The frequency of acoustic
emissions produced by speed reducers in IRs can reach
hundreds of kilohertz, necessitating a high sample frequency
for AE sensors and resulting in a significant computational
burden for signal processing.
(6) Microphones
In the manual maintenance of IRs, experienced engineers

identify the health status of speed reducers by listening to the
sounds they make during operation. Inspired by this practice,
some studies used microphones to collect sounds produced
by IRs for condition monitoring and fault diagnosis. For
example, Qiao et al. [19] used a microphone and an accel-
erometer to diagnose the faults of an RV reducer in single
joint robot, where the microphone was fixed near the RV
reducer and the accelerometer was fixed on the RV reducer.
They discovered that combining sound and vibration data for
fault diagnosis of RV reducers yields better results than using
either data source alone. Yun et al. [304] attached micro-
phones to the links of a six-DOF IR to identify abnormal
noises caused by overloading. In their experiment setup, the
microphones were securely fixed to the link surfaces to
minimize external sound interference. Similar to accel-
erometers, the condition monitoring and fault diagnosis of
IRs using microphones generally require the robot to re-
spectively execute specific trajectories.
(7) Other sensors
In addition to the six commonly used sensors mentioned

above, other types of sensors such as temperature sensors
and voltage sensors have also been used in condition mon-
itoring and fault diagnosis of IRs. For example, Sabry et al.
[313] added voltage and current sensors to a robotʼs elec-
tronic drive to monitor power consumption, which in turn
was used to diagnose the actuator and sensor faults of the
robot. Temperature sensors were usually used to help

monitor the wear of speed reducers of IRs [94,128].
Although there are abundant sensors available for condi-

tion monitoring and fault diagnosis of IRs, sensors capable of
accurately measuring the pose of the robot end-effector on-
line are scarce. The commonly used sensors for the pose
measurement of IRs include laser trackers, draw-line en-
coders, IMUs, and cameras. While laser trackers and draw-
line encoders offer high-accuracy pose measurement, their
stringent measurement conditions and high costs make them
impractical for online pose measurement of most IRs in real-
production lines [314]. IMUs and cameras are not as accurate
as laser trackers and draw-line encoders for position mea-
surement, but they are cost-effective. Applications of IMUs
and cameras in online pose measurement of IRs are also
challenging due to their inherent drawbacks, such as drift of
IMUs, and the light-dependency of cameras.

3.3 Practical examples

This subsection presents some practical examples to briefly
demonstrate the implementation of model-based and data-
driven methods for condition monitoring and fault diagnosis
of IRs. In the demonstration of the model-based methods, the
dynamic model of IRs is first introduced followed by the
implementation of parameter identification methods, parity
space methods, and state estimation methods. The demon-
stration of data-driven methods is organized into two parts:
(1) data acquisition and (2) data analysis.

3.3.1 Model-based methods
In general, the dynamic models of a n-degrees-of-freedom
robot can be written as a set of second-order differential
equations of the form [274]:

M q p q̈ C q q p q g q p f q q p( , ) + ( , , ) + ( , ) + ( , , ) = , (1)

where Rq q q̈, , n are generalized position, velocity, and
acceleration vectors, respectively. p is a vector of model
parameters that collects geometric parameters, inertial
parameters, friction parameters, and so on. Rn is a vector
of applied forces. RM q p( , ) n n× is a symmetric and posi-
tive-defined matrix of inertia terms.C q q p q( , , ) is a vector of
the Coriolis and centrifugal force terms with RC n n× and
M C C= + T. Rg q p( , ) n is a vector of gravitational terms.

Rf q q p( , , ) n is a vector of force terms that account for any
other forces acting on the system other than those in (e.g.,
friction forces, disturbances generated by speed reducers and
electric actuators). It is well-known that f q q p( , , ) is typically
challenging to model accurately. Therefore, implementing
model-based methods requires extensive attention to address
the modelling errors associated with f q q p( , , ).
In most IRs, q and are measurable. q and q̈ can be ob-

tained by numerically differentiating the measured q once
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and twice. Note that special attentions are always required to
address the noise in q̈ and .
(1) Parameter identification methods
Combining the robot dynamic equations of K samples

yields a set of nonlinear equations of p. The estimates of
model parameters are then obtained by solving the nonlinear
equations of p. Such a process is known as the parameter
identification. Define a simple residual based on parameter
identification as

r p p= , (2)PI 0

where p0 and p are the nominal values and current estimates
of model parameters, respectively.
In the fault-free case, r PI is expected to be zero. However,

the unmodelled dynamics and measurement uncertainties of
real IRs always make r PI greater than zero. Therefore, in
fault detection of IRs, a lot of experiments are required to
determine robust thresholds for each term in r PI. Further, the
fault isolation and fault identification of IRs are also possible
by examining each term in r PI. A detailed illustration of
parameter identification-based fault diagnosis methods can
be found in ref. [106] and a review of parameter identifica-
tion methods can be found in ref. [167].
(2) Parity space methods
Parity space methods rely on past measurement and input

data from the actual system, making them primarily applic-
able to discrete-time dynamic systems. Additionally, de-
termining the parity vector in these methods requires the
state space equations of the actual system. Define the state
variables of the robot as

x
q
q= . (3)

The state space equations of the dynamic model of a n-
degrees-of-freedom robot are given by

x A x B h= + + + (4)c c c c

with

A =
0 1
0 0 ,n n n n

n n n n
c

× ×

× ×
B

M x p
=

0

( , )
,n n

c
×

1

h
M x p N x p

=
0

( , ) ( , )
,n n

c
×
1 N x p C x p q g x p f x p( , ) = ( , ) + ( , ) + ( , ).

In eq. (4), R n
c

2 denotes the modelling uncertainties.
According to the first order forward Euler’s method, the
discrete-time form of eq. (4) with a fixed time step T can be
written as

k k k k k kx Ax B h( + 1) = ( ) + ( ) ( ) + ( ) + ( ) (5)

with
T

A =
1 1
0 1 ,n n n n

n n n n

× ×

× ×
k

T k
B

M x p
( ) =

0

( ( ), )
,n n×

1

k
T k k

h
M x p N x p

( ) =
0

( ( ), ) ( ( ), )
,n n×

1 k T k k( ) = ( ) + ( ),c

where k( ) represents the discretization errors due to the
truncation of the series.
Introducing the actuator faults and sensor faults into the

robot dynamics yields

( )k k k k k
k k k

x Ax B f
h f

( + 1) = ( ) + ( ) ( ) + ( )
+ ( ) + ( ) + ( ), (6)

a

s

where kx( ) and k( ) are the actual values of kx( ) and k( ) of
faulty robots, respectively. Rkf ( ) n

a
2 and Rkf ( ) n

s
2 are

vectors account for the effects of actuator faults and sensor
faults on the robot dynamics.
Combining eq. (6) of K samples yields

( ) ( )x A x B f C h f= (1) + + + + + (7)K K K K a,K K K K s,K
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Define the residual as

( )
( )r V x A x B C h

V B f C C f

= (1)

= + + (8)
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where Rvi
n K2 ( 1)(i s= 1, 2, , ) is known as the parity

vector.
In the actuator fault diagnosis, vi is expected to satisfy

v B v C0, = 0. (9)i iK K

In practice, it is impossible to find vi that always satisfies
eq. (9). The above desired property can be weakened to the
following statement: finding a set of vector vi, such that
v Bi K is far more than v Ci K . Such a statement means that
the residual is much more sensitive to actuator faults than to
modelling errors and sensor faults.
In the sensor fault diagnosis, vi is expected to satisfy

v B v C v C= 0, 0, = 0. (10)i i iK K K K

Similarly, the above desired property can also be weakened
to the following statement: finding a set of vector vi, such
that v Ci K is far more than v Bi K and v Ci K K . Readers
who are interested in the implementation of other forms of
parity space methods are suggested to refer to refs.
[117,315].
(3) State estimation methods
The design of state observers is key to the implementation

of state estimation-based fault diagnosis methods. According
to ref. [8], the general structure of state observer for the robot
dynamics given in eq. (6) can be written as

k k k k k
k k

x Ax B h
K e

( + 1) = ( ) + ( ) ( ) + ( )
+ ( ) + ( ) (11)o

with

k k ke x x( ) = ( ) ( ),
T

K
K

K=
1

0 ,n n

n n
o

1 ×

× 2

where RK n n
1

× and RK n n
2

× are positive definite diag-
onal matrices and are also called the gain matrices.
In eq. (11), kx( ) is the estimate of state variable kx( ) and
k( ) is the estimate of modelling error k( ). The recursive

equations for ke( ) is given by
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It is clear that r k( + 1)SO is affected by the estimation error
of the modelling error k( ). The typical estimation methods
for k( ) can be found in refs. [8,238]. Note that regardless of
how k( ) is estimated, only fault detection can be achieved
using r k( + 1)SO . A further process of r k( + 1)SO is required to
achieve fault isolation and fault identification. Such a lim-
itation can be addressed by combining the state estimation

methods and parity space methods, e.g., using the parity
space methods to design a transformation matrix for
r k( + 1)SO . Furthermore, the state observer given in eq. (11)
has an inherent limitation: the requirement to calculate the
inverse of the inertia matrix M q p( , ). Such a limitation was
addressed by Luca and Mattone [234], where they proposed
the well-known momentum observer based on the property
of robot dynamics M q p C q q p C q q p( , ) = ( , , ) + ( , , )T . Readers
are recommended to refer to refs. [9,313] for the details of
the implementation of momentum observer and other ob-
servers in fault diagnosis of IRs.
In practice, the combination of the above three categories

of model-based methods is common in the condition mon-
itoring and fault diagnosis of IRs. The advantages of
combing parameter identification methods, parity space
methods, and state estimation methods are as follows. (i)
Model parameters can be continuously updated using para-
meter identification methods to account for the time-varying
terms in robot dynamics, in particular the force term f q q p( , , )
in eq. (1); (ii) Parity space methods can be employed to
design the state observer-based residuals that are sensitive to
faults and robust to disturbances; (iii) Residual generation
can be performed online using state estimation methods to
ensure a numerically stable and efficient computation.

3.3.2 Data-driven methods
(1) Data acquisition
In this subsection, a six-degrees-of-freedom serial robot is

taken as an example to demonstrate the acquisition of log
data, proprioceptive sensor data, and additional sensor data.
The experiment setup of the robot is presented in Figure 2.
All joints of the robot are driven by electric motors equipped
with two types of proprioceptive sensors: the high-resolution
encoders and the phase current sensors. The proprioceptive
encoders and proprioceptive current sensors are used to
measure the positions and stator currents of electric motors,
respectively. All the proprioceptive sensor data is fed back to
the robot control unit to enable close-loop control of electric
motors. Meanwhile, the log data is also recorded in the robot
control unit. Note that the maximum sample frequency of
proprioceptive sensor data is 1000 Hz and the log data is
event-triggered data.
In addition to the proprioceptive sensor, two types of ad-

ditional sensors, accelerometers and current sensors, are
added to the robot. As shown in Figure 2, accelerometers are
fixed on the robot links to collect vibration data. The addi-
tional current sensors are employed to measure the stator
currents of electric motors with the power cable of the robot
passing through the current sensors. Further, a multi-source
data acquisition device is required to collect the additional
sensor data at adjustable sample frequencies. The determi-
nation of sample frequency of additional sensor data depends
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on many practical requirements, where the following factors
need to be carefully considered: (i) fault excitation band-
width; (ii) sensor bandwidth; (iii) computation and storage
requirements; and (iv) associated costs.
In addition to the sensor selection, the choice of exciting

trajectories is also a key issue in the data acquisition of IRs.
Different from the traditional rotating machinery, the choice
of exciting trajectories of IRs must account for numerous
physical constraints, such as the position limits of robot
joints. As depicted in Figure 3, these physical constraints
necessitate frequent acceleration and deceleration of the ro-
bot joints during operation, resulting in significant variations
in the joint positions, velocities, and torques. Further, the
robot configuration, i.e., the poses of robot joints and links,
also varies with the motion of the robot. Note that the time-
varying configuration of robots not only has great influences
on the joint torques but also alters the pose of additional
sensors fixed on the robot links. All the above characteristics
of IRs pose a great of challenges to data acquisition and
analysis. Consequently, the existing studies on condition
monitoring and fault diagnosis of IRs often require IRs to
follow specific motion trajectories.
(2) Data analysis
The data analysis of IRs typically involves three main

procedures: (i) data pre-processing; (ii) feature extraction;
and (iii) fault diagnosis. The key issues in the implantation of
these procedures are discussed as follows.
The synchronization of multi-source data, including pro-

prioceptive sensor data, log data, and additional sensor data,
is of paramount importance in the data pre-processing of IRs.
As displayed in Figure 2, the additional sensor data is col-
lected by a multi-source data acquisition device, while the
proprioceptive sensor data and log data are collected by the
robot control unit. The synchronization between the robot
control unit and the multi-source data acquisition device is

therefore required to allow the data acquisition of proprio-
ceptive and additional sensors to begin at the same time. In
practice, the robot control unit can be programmed to send a
digital trigger signal to the multi-source data acquisition
device when data collection begins and stops. Further, parts
of the multi-source data can also be synchronized through
data analysis [316].
The main challenge in feature extraction of robot data

comes from the time-varying operation conditions of IRs.
One approach to address this challenge is to extract the
stationary data when the robot joint velocity is constant.
Once stationary data is obtained, typical signal processing
techniques can be employed to extract features in the time
domain, frequency domain, and time-frequency domain [17].
Another common approach is using neural networks to ex-
tract features from data of IRs with time-varying operation
conditions. Note that the features extracted by neural net-
works lack clear physical interpretation and are usually not
generalized across different trajectories of IRs [20]. In other
words, when the robot executes a new trajectory, the neural
network used for feature extraction needs to be retrained with
data from the new trajectory.
The fault diagnosis of IRs consists of three key tasks: fault

detection, fault isolation, and fault identification. Generally,
fault detection is easy to be achieved through data analysis
when the robot follows a specific trajectory. For example, it
is able to detect the faults of components in the robot joint by
comparing the proprioceptive sensor data obtained from the
normal and faulty robots. An example is depicted in Figure 4,
where the robot follows the exciting trajectory displayed in
Figure 3(a). It is obvious that the joint torques of normal and
faulty robots are quite different, where notable periodic
fluctuations can be found in the joint torque of the faulty

Figure 2 (Color online) Experimental setup of a six-degrees-of-freedom
robot for data acquisition.

Figure 3 (Color online) Exciting trajectory of a six-degrees-of-freedom
robot. (a) The robot end moves back and forth between point A and point
B; (b) the output positions, velocities, and torques of joint 2.
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robot. The periodic fluctuations are generated by the faults of
the RV reducer in joint 2. Therefore, the faults of the RV
reducer in joint 2 can be detected by comparing the joint
torques of normal and faulty robots.
In the implementation of fault isolation, fusion of multi-

source data is generally essential since there are numerous
exciting sources in IRs. The fusion approaches of multi-
source data can be broadly classified into the following ca-
tegories: (i) data-level fusion; (ii) feature-level fusion; and
(iii) decision-level fusion. The data-level fusion approaches
require synchronization and alignment of data streams and
are often applied to the sensors that measure the same or
complementary phenomena. For example, the fusion of vi-
bration data obtained by multiple accelerometers fixed on the
robot links. The feature-level fusion approaches reduce the
dimensionality of multi-source data, focusing on key in-
formation. For example, the fusion of frequency-domain
features of data measured by multiple accelerometers and
current sensors. The decision-level fusion approaches allow
for the integration of different types of sensors that are not be
compatible at the data- and feature-level. In the decision-
level fusion strategy, each sensor provides a separate deci-
sion or classification. In such cases, all the sensors, including
proprioceptive sensors and additional sensors, can be in-
tegrated together to achieve THE isolation of multiple faults
of IRs.
The fault identification of IRs using data-driven methods

remains an open challenge. To address this issue, it is es-
sential to collect extensive sensor data from a wide range of
IRs with various levels of faults. Additionally, a compre-
hensive understanding of the dynamic behaviors of both
normal and faulty IRs is also crucial to identifying the re-

lationships between sensor data and specific faults.

4 Challenges and prospects

4.1 Challenges

Based on the survey of existing methods and practical ex-
amples presented in the last section, this section examines
the challenges related to condition monitoring and fault di-
agnosis of IRs from five key aspects: complex structures and
numerous components, complex dynamics, complex oper-
ating conditions, various failure modes, and weak sensing
ability.
(1) Complex structures and numerous components
Various types of IRs have emerged in the industry to adapt

to different task requirements. Depending on the kinematic
structure, IRs can be classified into serial, parallel, and hy-
brid types. The condition monitoring and fault diagnosis
methods of IRs generally need to be customized to the robot
structure. For example, the system performance evaluation
and fault isolation methods need to be tailored to the robot
structure since the source of positioning errors of a robot is
related to the robot structure.
Further, even IRs with the same structure can have dif-

ferent components due to differences in workspace and load
capacity. For example, light-weight IRs typically use har-
monic reducers, while heavy-load IRs mostly use RV re-
ducers. Different components typically have unique dynamic
characteristics, requiring individualized condition monitor-
ing and fault diagnosis methods. The diversity in structures
and components makes the data acquisition, system model-
ling, and customization of condition monitoring and fault
diagnosis methods costly and labour-intensive. This is evi-
denced by the scarcity of experimental data on faults of serial
IRs, despite the fact that serial IRs have been a primary focus
of robot condition monitoring and fault diagnosis for the past
30 years.
(2) Complex dynamics
Speed reducers provide IRs with powerful load capacity

and reliable positioning accuracy but also introduce non-
linear characteristics to the robot system, such as contact,
collision, flexibility, backlash, and friction. The time-varying
excitation caused by the inherent nonlinearity of speed re-
ducers is often coupled with fault excitation, posing sig-
nificant challenges to the condition monitoring and fault
diagnosis of speed reducers. Additionally, the joint structure
of IRs is typically compact. Such compact structure makes
the nonlinear behaviors of speed reducers affect not only the
performance of electric motors but also the system perfor-
mance of IRs. Since the nonlinear behaviors of speed re-
ducers and the flexibility of robot links are difficult to model
accurately, the system performance evaluation of IRs in real-
time is therefore challenging. Consequently, a precise pose

Figure 4 (Color online) Comparison of proprioceptive sensor data ob-
tained from the normal and faulty robots. (a) The output positions, velo-
cities, and torques of joint 2; (b) local view of the output positions,
velocities, and torques of joint 2.
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measurement sensor is essential for accurately estimating the
positioning errors of IRs.
(3) Complex operating conditions
The complexity of operating conditions of IRs is mainly

reflected in two aspects: the time-varying motion states and
complex surroundings. The motion process of IRs involves
continuous changes in the spatial configuration of the overall
system. Correspondingly, motion states such as joint angular
displacement, speed, acceleration, and torque are constantly
changing. The time-varying characteristics of these motion
states make the robotʼs dynamic responses complex, pre-
senting obstacles to the extraction of fault features.
Further, the condition monitoring and fault diagnosis of

IRs are also affected by their complex surroundings. For
example, time-varying temperature and humidity of the en-
vironment affect the lubricant properties of speed reducers,
electromagnetic radiation affects the performance of elec-
tronic components, etc. For IRs that interact with the external
environment, they have to comply with the motion con-
straints and loads imposed by the environment. For example,
in robotic grinding applications, motion constraints of the
robot end-effector change with the surface morphology of
the workpiece, and the reaction force from the workpiece can
cause abnormal behaviors of the robot, such as the oscillation
of robot links. The variety of internal and external time-
varying excitations mentioned above poses significant
challenges to the condition monitoring and fault diagnosis of
IRs, particularly fault isolation and identification.
(4) Various failure modes
The complexity of failure modes in IRs is mainly influ-

enced by two factors: the compact structure and the diversity
of components. Clearly, the more components, the more
failure modes of IRs. Table 1 lists about thirty common
component faults of IRs documented in existing studies, each
of them can be further subdivided into various specific fault
types. For example, the sun gear fault of RV reducers in-
cludes tooth cracking, tooth pitting, tooth spalling, tooth
wear, tooth chipping, tooth profile error, misalignment, etc.
[317].
The compact structure of IRs means that each component

affects the others during operation. For example, wear and
tear of speed reducers due to poor lubrication tend to increase
the friction forces and temperature of speed reducers, which
subsequently elevates the current and temperature of electric
motors. This, in turn, causes the current of electronic drives
to rise, ultimately leading to the degradation of multiple
components within the robot system. These characteristics of
IRs—compact structure and numerous components—result
in complex failure modes, making the identification of the
root cause of failures and the degradation patterns of the
entire system a challenging task.
(5) Weak sensing ability
The cost of IRs is a critical factor in determining the fea-

sibility of implementing robotic automation in manufactur-
ing processes. To maintain cost-effectiveness, IRs often have
limited proprioceptive sensors and relatively low data sam-
pling frequencies. This setup results in weak sensing abilities
of IRs, leading to the following issues for condition mon-
itoring and fault diagnosis: (i) The number of sensors is
much fewer than the components of the robot, making fault
localization and quantitative fault evaluation difficult; (ii)
Proprioceptive sensors are typically located at the motor end,
which means they may not effectively detect faults in other
components of the robot; (iii) Data collected at low fre-
quencies may miss high-frequency information crucial for
diagnosing certain types of faults; (iv) Performance evalua-
tion of the overall system of IRs, such as the positioning
accuracy of the robot end-effector, necessitates an accurate
robot model.
Additional sensors can be integrated into IRs to improve

their sensing ability, but this introduces further considera-
tions: (i) Careful cost-benefit analyses of adding sensors to
IRs for condition monitoring and fault diagnosis are required
to justify the potential benefits against added expense; (ii)
More sensors make the robot system more complex, where
additional sensors introduce additional faults to the entire
system; (iii) Using additional sensors to collect intensive
data of numerous faults of IRs is essential to understand the
intrinsic relationship between faults of IRs and responses of
additional sensors; (iv) The scarcity of cost-effective pose
measurement sensors that is able to simultaneously offer
large measurement ranges, high accuracy, and real-time
tracking capability without altering operating conditions of
IRs.

4.2 Prospects

Addressing the reliability issues of IRs necessitates ad-
vancements across multiple facets of robotics: modelling,
sensing, planning, control, prognostics, and health manage-
ment. This section explores the potential avenues to deal
with the current challenges from five aspects: sensing ability,
robotic-specific dataset, fault mechanism, multimodal mod-
el, and digital twin.
(1) Sensing ability
Enhancing the sensing ability of IRs is an intuitive way to

address the challenges related to condition monitoring and
fault diagnosis. For existing IRs, adding sensors is the pri-
mary approach to improve their sensing ability. The optimal
selection of additional sensors is crucial to find a low-cost
and reliable solution. Meanwhile, it is important to develop
pose measurement sensors with a large measuring range,
high accuracy, and high reliability to enable real-time mea-
surement of the pose of IRs. For future IRs, it would be
interesting to develop robot components with self-sensing
abilities. Such self-sensing components not only simplify the
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health monitoring of themselves but also facilitate the per-
formance evaluation of the overall system.
(2) Robotic-specific dataset
Data scarcity is a significant challenge in the condition

monitoring and fault diagnosis of IRs, high-lighting the need
to establish robotic-specific datasets of normal and faulty
IRs. Clearly, data collection of real-world IRs that en-
compass various structures, faults, and operating conditions
is a reliable way to establish robotics datasets. Meanwhile,
simulations of normal and faulty IRs are also worth in-
vestigating to efficiently expand the quantity of robotics
datasets, with careful attention to narrow the gap between
simulation and reality. Further, a thorough investigation into
data cleaning and data labelling is also essential to ensure the
quality of the robotics datasets.
(3) Fault mechanism
Fault mechanism analysis of IRs, which aims to explain

the causes and manifestation of faults, is essential for ad-
dressing issues related to fault diagnosis, fault simulation,
and optimal selection of sensors. There is no doubt that ex-
tensive experimental data on IRs and their components are
required to understand the nonlinear behaviors of IRs.
Combining models based on physical laws, statistics, and
neural networks remains by far an effective approach to
understanding and learning the nonlinear behaviors of IRs,
with particular attention to the complex behaviors involving
contacts and friction.
(4) Multimodal model
Multimodal models are increasingly popular for proces-

sing data from multiple sources. They have the potential to
provide a comprehensive understanding of the health status
of IRs by integrating diverse types of data, including data
from various proprioceptive and additional sensors, as well
as logs and manual maintenance records. Further, the de-
velopment of large multimodal models is particularly pro-
mising for diagnosing numerous faults simultaneously in
IRs, especially when multiple faults emerge concurrently.
(5) Digital twin
The digital twin of IRs, functioning as a virtual re-

presentation of the physical robotic systems, facilitates real-
time monitoring and predictive maintenance. Given the di-
verse degradation patterns and health assessment criteria of
IRs across various applications, the development of task-
specific digital twin systems shows great potential. By tai-
loring the digital twin systems to specific tasks, they can
deliver reliable and computationally efficient health man-
agement services for IRs in actual industry.

5 Concluding remarks

This paper presents a comprehensive review of condition
monitoring and fault diagnosis of IRs, highlighting both

challenges and achievements in model-based and data-driven
methods. Through examination of the existing literature, the
paper analyses various failure modes of IRs and the root
causes of robot failures. Meanwhile, the data accessible to
IRs and the commonly used additional sensors have been
explored, with accelerometers being the most popular, fol-
lowed by current sensors and IMUs. Based on the knowledge
of faults of IRs and available data, the paper delves into the
current state of model-based and data-driven methods for
condition monitoring and fault diagnosis. Further, some open
issues are outlined, such as model uncertainties, data scar-
city, and dependence on operating conditions. Finally, the
paper summarizes the challenges in addressing these open
issues and discusses promising pathways for future progress.
We hope these insights will inspire readers who are inter-
ested in this research field to develop new targeted solutions.
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