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Table 1 Molecular weight and molecular weight distribution of ENR before and after aging

M, M, MWD
before aging 113 000 359 000 3.18
thermal aging 111 000 381 000 3.43
thermal oxidative aging 84 000 340 000 4.05
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Fig.2 The change of n* with shear rate
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Fig.3 The response of G' of ENR to frequency
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Effects of Aging on Molecular Structure and Properties
of Epoxidized Natural Rubber

QIAN Hong-Lian® WANG Ping-Yue CHEN Ying
Agriculture Ministry Key Laboratory of Natural Rubber Processing Agriculture Product
Processing Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang 524001

Abstract The molecular structures molecular weights viscocities and moduli of thermal aged and thermal
oxidative aged epoxidized natural rubber ENR were determined by means of FTIR GPC and RPA. It was
found that the decrease in the IR absorption intensity of the epoxy was more obvious than that of the C=C
bond and the molecular weight and the dynamic rheological behavior had changed. M, and M were reduced
respectively by 26% and 5% after thermal oxidative aging. After thermal aging however M, was reduced by
2% only and M increased by 6% . The molecular weight distribution broadened from 3. 18 for ENR to 3. 43
for the thermal aged ENR and 4. 05 for the thermal oxidative aged ENR. The decrement of 5" of the thermal
aged ENR with rising shear rate was larger than that of the unaged ENR but for the thermal oxidative ENR the
decrement of n” was lower compared with the unaged ENR. G’ of the thermal aged ENR decreased slightly
and G’ of the thermal oxidative aged ENR was obvious lower than that of the unaged ENR in the low frequency
range. In the high frequency range G’ of the thermal aged ENR was larger than that of the unaged ENR and

G’ of the thermal oxidative ENR increased to the same level as that of the unaged ENR.
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