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   Abstract—Group  scheduling  problems  have  attracted  much
attention  owing  to  their  many  practical  applications.  This  work
proposes  a  new  bi-objective  serial-batch  group  scheduling
problem considering the constraints of sequence-dependent setup
time,  release  time,  and  due  time.  It  is  originated  from  an
important industrial process, i.e., wire rod and bar rolling process
in  steel  production  systems.  Two  objective  functions,  i.e.,  the
number of late jobs and total setup time, are minimized. A mixed
integer linear program is established to describe the problem. To
obtain its  Pareto  solutions,  we present  a  memetic  algorithm that
integrates  a  population-based  nondominated  sorting  genetic
algorithm II and two single-solution-based improvement methods,
i.e.,  an  insertion-based  local  search  and  an  iterated  greedy
algorithm. The computational results on extensive industrial data
with  the  scale  of  a  one-week  schedule  show  that  the  proposed
algorithm  has  great  performance  in  solving  the  concerned
problem  and  outperforms  its  peers.  Its  high  accuracy  and
efficiency  imply  its  great  potential  to  be  applied  to  solve
industrial-size group scheduling problems.
    Index Terms—Insertion-based  local  search,  iterated  greedy
algorithm,  machine  learning,  memetic  algorithm,  nondominated
sorting genetic algorithm II (NSGA-II), production scheduling.
  

I.  Introduction

A S  an  important  branch  of  production  scheduling
problems,  group scheduling problems (GSPs) have been

increasingly  concerned  in  recent  years  because  of  their
extensive  industrial  applications  [1]–[7].  In  GSP,  jobs  to  be
scheduled are from several groups (or families). Those from a
group  have  the  same  production  requirements.  In  many
industrial processes, jobs from a group are processed in serial
batches  [8],  [9].  A  so-called  serial  batch  means  that  jobs
within  it  have  to  be  processed  consecutively  and  thus  its
processing time equals the summation of the jobs’.

S̃

S̃

S̃

Setup time,  which means the time for  preparing a  machine
to  satisfy  production  requirements,  is  sometimes  non-
ignorable.  It  can  be  divided  into  two  classes,  i.e.,  sequence-
independent setup time [10] and sequence-dependent one [3].
The  former  means  that  setup  time  is  only  determined  by  a
task, i.e., job or batch, to be processed; while the latter means
that  it  depends on two consecutive tasks.  In  GSP,  setup time
does  not  exist  between  two  consecutive  jobs  in  a  batch,  but
between two consecutive batches from different groups. Since
it requires extra energy and labor cost, minimizing total setup
time  (denoted  as )  is  an  essential  optimization  objective  in
many  scheduling  problems  [11].  Lee et  al. [12]  study  a
scheduling problem originated from a polyvinyl chloride sheet
manufacturing  process  to  minimize .  Chen  investigates  a
single machine scheduling problem by considering sequence-
dependent setup time and minimizing  [13].

Ñ

Ñ

Two important  classes  of  constraints,  i.e.,  release  time  and
due  time,  are  commonly  considered  in  scheduling  problems
[14]. The former is the time when a task becomes available for
processing; while the latter is the time before which a task is
expected to be completed. A scheduling problem considering
the  constraints  of  release  time and  sequence-dependent  setup
time,  as  well  as  an  objective  of  minimizing  makespan,  is
studied in [15], where a beam search algorithm is presented to
solve  it.  A  job  is  considered  as  a  late  one  if  it  is  completed
later than its due time. The total number of late jobs (denoted
as )  is  an  important  objective  to  be  minimized  in  many
scheduling  problems  [16].  A  branch-and-bound  method  is
designed in [17] to solve a single machine scheduling problem
with  periodic  maintenance  constraints  and  an  objective  of
minimizing .  A  single  machine  scheduling  problem  with  a
time-dependent  learning effect  is  studied in  [18]  to  minimize
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Ñ ,  which  is  solved  by  a  branch-and-bound  method  and  two
heuristics.

In  some scheduling problems,  a  scheduler  makes  decisions
based  on  multiple  optimization  objectives.  Thus,  many
researchers  focus  on  multi-objective  scheduling  problems
[19]–[22]. Different from a single-objective one that is to find
an  optimal  or  near-optimal  solution,  a  multi-objective  one
aims to  find an optimal  or  near-optimal  Pareto  set  (or  Pareto
front)  containing  its  non-dominated  solutions  [19].  Multi-
objective  evolutionary  algorithms  (MOEAs)  [23]–[28]  are
effective  and  popular  to  solve  multi-objective  optimization
problems.  Among  them,  a  nondominated  sorting  genetic
algorithm II (NSGA-II) [23] is a well-known and widely used
one,  which  effectively  solves  some  flexible  job-shop
scheduling problems [29] and flow-shop ones [30]. Recently,
memetic  algorithms  which  integrate  population-based  global
search and individual-based local  heuristic  search show great
performance in solving multi-objective optimization problems
[31]–[33], and thus motivates this work.

S̃ Ñ

Ñ

Ñ

Ñ

This  work  proposes  and  studies  a  new  bi-objective  serial-
batch GSP (BSGSP) with a goal to minimize both  and  by
considering sequence-dependent setup time, release time, and
due  time.  The  work  in  [3]  and  [4]  tackles  a  similar  problem
but considers only a single objective function, i.e., minimizing

.  This  work  extends  it  to  a  bi-objective  optimization  pro-
blem to suit industrial needs. Besides [3] and [4], some similar
but different problems are studied in literature [33]–[35]. [33]
investigates  a  bi-objective  parallel  flow-shop  scheduling
problem  with  release  time  to  minimize  both  and  total
flowtime. [34] considers a serial-batch GSP with release time,
sequence-independent  setup  time,  and  an  aim  to  minimize
makespan. [35] tackles a serial-batch scheduling problem on a
single machine with learning effect to minimize .

This work attempts to make the following contributions:
S̃ Ñ1) It proposes a new BSGSP to minimize  and , which is

never  addressed  in  existing  work  to  the  best  of  authors’
knowledge;

2)  It  establishes  a  mixed-integer  linear  program (MILP)  to
describe BSGSP in a rigorous way; and

3) It develops a new algorithm integrating NSGA-II and two
individual-based  improvement  methods,  i.e.,  an  insertion-
based  local  search  and an  iterated  greedy algorithm,  to  solve
BSGSP.  In  addition,  this  work  compares  the  proposed
algorithm  with  three  competitive  peers  by  extensive  experi-
ments  to  show  its  great  performance  and  readiness  for
industrial applications.

Section  II  describes  the  concerned problem and formulates
it  into  an  MILP.  A  new  algorithm  is  presented  to  solve  the
concerned  problem  in  Section  III.  Experimental  results  are
shown  and  analyzed  in  Section  IV.  Section  V  draws  the
conclusions and discusses some future research issues.  

II.  Problem Description and Modeling
  

A.  Industrial Problem
A wire rod and bar rolling process plays a key role in steel

production  systems  [3].  Steel  ingots  with  short  and  thick
shapes  are  processed  into  steel  billets  with  long  and  thin

shapes by going through a rolling mill as shown in Fig. 1. This
work  considers  a  single-machine  scheduling  problem  on  a
rolling mill. Typically, a job in a rolling process is not just to
deal  with one steel  ingot,  but  to  continuously handle a  set  of
steel  ingots  from  a  customer  order,  which  have  the  same
production and delivery requirements. A rolling mill has many
positions to equip rolling stands as shown in Fig. 2 where 17
positions are available [36]. A rolling stand contains a pair of
rollers  in  either  parallel  or  vertical  directions.  The  whole
mechanical structure consisting of the equipped rolling stands
is called a roll pass of a rolling mill. A roll pass can deal with
the  jobs  with  a  range  of  specifications.  Note  that  the  rolling
stands are not identical. Equipping different rolling stands on
a position can lead to different size of steel billets. Apparently,
the specification requirement of a job determines the roll pass
of a rolling mill. If two jobs requiring different roll passes are
processed consecutively, workers have to spend setup time in
switching  the  equipped  roll  pass  between  them.  In  other
words,  some  rolling  stands  need  be  equipped  on  or  removed
from  the  rolling  mill.  The  setup  time  can  be  regarded  as  a
linear  function  of  the  number  of  different  rolling  stands
among the ones making up two roll passes [3].
 

Stell ingot Stell billet
Rolling

mill

 
Fig. 1.     Schema of a rolling process.
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Fig. 2.     Schema of a rolling mill.
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Ñ Ñ
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As a medium process of steel production systems, a rolling
process  has  time  limits  from  its  upstream  and  downstream
ones.  A job in it  can only be handled after  being released by
an  upstream  process  and  is  expected  to  be  completed  before
the  due  time  required  by  a  downstream  process.  A  job
becomes  a  late  one  if  it  is  completed  after  its  due  time.
According to industrial  production rules,  the jobs in a rolling
process are assigned into some batches in advance.  The ones
in  the  same  batch  require  the  same  roll  pass  and  have  to  be
processed  continuously  [3].  Realizing  optimal  scheduling  for
such an industrial process is very important for steel plants. In
the  scheduling  problem,  schedulers  and  practitioners  must
focus on minimizing two objective functions, i.e., the number
of late jobs ( ) and total setup time ( ). Reducing  tends to
continuously  process  the  batches  from  the  same  family  and
thus  may  increase ;  while  reducing  needs  to  process  as
many  jobs  as  possible  before  their  due  time  and  thus  may
increase ,  which  results  from  frequent  changes  of  machine
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S̃ Ñ
states  to  satisfy  production  requirements.  Hence,  minimizing
both  and  causes a conflict.  

B.  Problem Transformation

J F

B

J ≥ B ≥ F

S̃
Ñ

To  model  and  solve  the  above  industrial  problem,  we
transform  it  into  a  new  single  machine  scheduling  problem,
i.e.,  a  bi-objective  serial-batch  group  scheduling  problem
(BSGSP).  It  has  the  following characteristics.  jobs  from 
families  are  to  be  scheduled on a  single  machine.  They have
been  arranged  into  serial  non-preemptive  batches  in
advance.  The  ones  assigned  into  a  batch  are  from  the  same
family. Thus, .  There is no setup time between two
consecutive  jobs  from  the  same  batch.  However,  sequence-
dependent  setup  time  is  necessary  between  two  consecutive
batches if they are from different families. It is to change the
machine states to satisfy different production requirements the
two batches. The batches and jobs to be scheduled have their
release  time,  processing  time,  and  due  time  requirements. 
and  are two objective functions to be minimized.

S̃
Ñ

b
Ñb tb

Nb
b tb Ñb

Nb+1
ťb,n t̂b,n

n ∈ Nb = {0,1, . . . ,Nb} ťb,n ≤ tb < t̂b,n Ñb = n
S̃ Ñ

S̃
Ñ

 is  only  impacted  by  a  batch  sequence,  i.e.,  an  order  in
which  all  batches  are  processed  on  a  rolling  mill,  while 
depends on not only a batch sequence but also job sequences
in the batches. Thus, intuitively, BSGSP aims to find a batch
sequence and a job sequence in each batch. However, by using
the first stage of a two-stage decomposition method proposed
in  [3],  the  number  of  late  jobs  within  a  batch  (denoted  by

) can be derived from its start  time (denoted by ),  which
only  depends  on  a  batch  sequence.  To understand the  details
of  the  decomposition  method,  one  can  refer  to  [3].  Here  we
directly  use  its  conclusion.  Let  be  the  number  of  jobs  in
batch . The method [3] constructs a mapping from  to . It
divides  the  timeline  into  slots  with  lower  and  upper
bounds  denoted  by  and ,  respectively,  where

.  If ,  then .  After
using  it,  we  can  see  that  both  and  are  determined  by  a
batch sequence only. In other words, the need for considering
job  sequences  in  the  batches  is  eliminated  and  the  goal  of
BSGSP is  to  optimize a  batch sequence and minimize  and

. Note that we aim to obtain the Pareto solutions of BSGSP
since it is a bi-objective optimization problem.  

C.  Mathematical Model

P0 = 0
B = {0,1, . . . ,B}

B+ = {1,2, . . . ,B} R F1
F2 S̃ Ñ

In this section, an MILP is established to describe BSGSP.
A virtual batch with index 0 is introduced as the first one in a
schedule to represent the initial state of a machine and .
For  an  easy  description,  we  define  two  sets: 
and .  means the set of real numbers.  and

 represent  two  objective  functions,  i.e.,  and ,
respectively. Besides, we define some notations in Table I and
three groups of decision variables as follows:
 

xb,b′ =

{
1, if batch b′ is immediately after batch b
0, otherwise

yb,n =

{
1, if Ñb = n
0, otherwise

tb ∈ R b: start time of batch .
Then, an MILP is proposed as follows:

 

min F1 = S̃ =
∑
b∈B

∑
b′∈B+

S b,b′ xb,b′ (1)

 

min F2 = Ñ =
∑
b∈B+

Ñb =
∑
b∈B+

∑
n∈Nb

nyb,n (2)

 

s.t.
∑

b′∈B+
xb,b′ ≤ 1, b ∈ B (3)

 ∑
b∈B

xb,b′ = 1, b′ ∈ B+ (4)

 

tb ≥tb′ +Pb′ +S b′,b+M(xb′,b−1),
b ∈ B+,b′ ∈ B (5)

 

t0 = min
b∈B+

Rb (6)
 

tb ≥ Rb, b ∈ B+ (7)
 ∑

n∈Nb

yb,n = 1, b ∈ B+ (8)

 

tb ≥
∑
n∈Nb

ťb,nyb,n, b ∈ B+ (9)

 

tb ≤
∑
n∈Nb

t̂b,nyb,n, b ∈ B+ (10)

 

xb′,b,yb,n ∈ {0,1}, b′ ∈ B,b ∈ B+,n ∈ Nb (11)
 

tb ∈ R, b ∈ B. (12)
S̃ Ñ

M
xb,b′ = 1

The  objective  functions  in  (1)  and  (2)  minimize  and ,
respectively.  Equations  (3)–(7)  together  ensure  a  feasible
batch  sequence.  Specifically,  (3)  means  that  there  is  at  most
one batch immediately after  a  batch.  Only the last  one is  not
followed by anyone. Equation (4) ensures that there is exactly
one  batch  immediately  before  a  batch  to  be  scheduled.  Note
that  the  virtual  batch  as  the  first  one  is  not  restricted  by  it.
Equation (5) ensures that at  most one batch can be processed
at a time, where  is a sufficiently large positive number. If

, we rewrite (5) as
 

tb ≥ tb′ +Pb′ +S b′,b (13)
b ∈ B+ b′ ∈ Bwhere  and .  Otherwise,  it  is  automatically

relaxed. Equation (6) defines that the virtual batch starts from
the earliest release time among all the batches to be scheduled.
Equation (7)  ensures  that  a  batch  is  available  only  after  its

 

TABLE I  
Notations

Notation Definition

Rb bRelease time batch 
Pb bProcessing time of batch 

S b,b′ b b′Setup time between two consecutive batches  and 
D j jDue time of job 

ťb,n n b
A lower bound of a start time window leading to

 late jobs in batch 

t̂b,n n b
An upper bound of a start time window leading to 

 late jobs in batch 
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tb Ñbrelease  time.  Equations (8)–(10)  together  map  to .
Specifically, (8) ensures that a batch starts within exactly one
time  slot.  Equations  (9)  and  (10)  provide  its  start  time  with
lower  and  upper  bounds.  Equations (11)  and  (12)  define  the
ranges of decision variables.  

III.  Memetic Algorithm
  

A.  Encoding and Decoding

B
π = ⟨1,3,2⟩

According  to  the  problem  description,  we  know  that  the
concerned problem is to find batch sequences that  satisfy the
constraints  and  lead  to  non-dominated  objective  function
values.  Thus,  we  use  a  non-repetitive  integer  permutation  of
the elements from  to encode a batch sequence. For example,
when  scheduled  three  batches,  a  permutation 
means that batch 1 is the first one to be processed followed by
batches 3 and 2.

xb,b′

xb,b′ = 0 b,b′ ∈ {1,2,3} x1,3 = 1 x3,2 = 1
S̃ Ñ tb

b ∈ B
tb

In  a  decoding  procedure,  given  a  batch  sequence,  decision
variables  become known. For the above instance,  all  the

, where , except for  and .
Then, we calculate  by (1).  For obtaining ,  needs to be
calculated  first  for  each  batch .  According  to  (7)  and
(13),  can be obtained via
 

tb =max{Rb, tb′ +Pb′ +S b′,b} (14)
b′ b b = 0 t0

tb Ñb

Ñ

where  is the previous batch of . Note that when ,  is
determined  by  (6).  Then,  is  mapped  to  by  (8)–(10).
Finally, we calculate  via (2).  

B.  Algorithm Design
We use each circle point in Fig. 3 to represent a solution of

BSGSP.  The  hollow  ones  mean  the  solutions  that  are
dominated by at least one of the others. The solid ones mean
the  solutions  that  constitute  a  Pareto  front  and  are  not
dominated by the others. NSGA-II [23], [24] is a well-known
MOEA,  which  is  a  population-based  algorithm.  However,
when solving BSGSP with it, we find that the obtained Pareto
front is far away from the ideal one. Thus, we design a novel
memetic  algorithm  in  Algorithm  1  by  combining  NSGA-II
and two individual improvement methods, i.e., insertion based
local search (ILS) and iterated greedy algorithm (IGA) [37] to
solve  BSGSP.  Both  ILS  and  IGA  are  single-solution-based

algorithms that start from an initial solution and return a local
optimal  solution.  For  an  easy  description,  we  use  NIMA  to
denote  the  proposed  NSGA-II  and  Individual-improvement-
based memetic algorithm.

P0
P0

t = 0
Qt Pt

Mt
Pt Qt

Pt+1
Mt

t = t+1

M
Pt Ω

|Ω| Ω

Ω ωi i ∈ {1,2, . . . , |Ω|}
S̃

ω1 ω|Ω| S̃ Ñ
ωi

ωi i = 1 i = |Ω|

ω∗i k = 0
k K

ω′i

ω′i ω∗i

ωi ω∗i
Pt

In  Algorithm 1,  NSGA-II  (lines  1–8)  is  used  for  evolution
of  the  population,  while  ILS  (lines  9–13)  and  IGA  (lines
9–23) are used to further  improve the individuals  in a  Pareto
front.  NIMA  starts  from  random  initial  population .  First,
the  individuals  in  are  sorted  by  a  fast  non-dominated
sorting  approach  [23].  It  compares  the  solutions  in  a
population  and  gives  each  individual  a  rank  according  to  the
number  of  solutions  that  dominate  it.  The  fewer  solutions  an
individual is dominated by, the higher rank it  has.  After that,
let  and  a  main  loop  starts  for  evolution.  In  it,  an
offspring population  is generated according to  by using
selection,  crossover,  and  mutation  operators.  Next,  is
obtained  by  merging  and ,  which  is  then  sorted  by  the
fast  non-dominated  sorting  approach.  A  new  population 
for  the  next  generation  is  selected  from  according  to  the
individuals’ ranks  and  crowded  distances  [23].  Then,  update
the  iteration  index  by .  Till  now,  an  iteration  of  a
population-based  global  search,  i.e.,  NSGA-II,  is  done.  After
every  iterations,  we  collect  the  non-repetitive  solutions  in
the Pareto front of  into a set  and improve them by using
ILS and IGA. Actually, ILS (line 13) is used as a step of IGA.
Let  denote the size of . In an IGA section, the solutions
in  denoted by , ,  are  first  sorted in  terms
of  from small to large. It is to find two extreme points of the
Pareto front, i.e.,  and , which have minimum  and ,
respectively, as shown in Fig. 3. ILS is conducted on each .
If  is  an  extreme  point,  i.e.,  or ,  we  further
execute the following steps of IGA to explore better solutions.
First, the solution after ILS is recorded as the current best one
denoted  by .  Let  be  a  counter.  A  subloop  starts  and
continues  until  equals  a  given  parameter .  At  the
beginning  of  this  subloop,  the  counter  is  incremented  by  1.
Then,  destruction  and  construction  steps  are  executed  to
obtain  a  new solution ,  which is  then improved by ILS.  A
simulated  annealing  acceptance  criterion  [37]  is  used  to
determine whether  is accepted or not.  is updated once a
better solution than it is found. When the subloop terminates,

 is  updated  by .  When  the  main  loop  ends,  the  non-
repetitive  solutions  in  the  Pareto  front  of  is  selected  and
output.

Algorithm 1: Outline of NIMA

P0 MInput: A random initial population , a parameter  to activate
local search

ΩOutput: A Pareto set 
P01 Apply fast non-dominated sorting to  to get its individuals’      

 ranks;
t← 02 ;

not termination3 while  do
Qt←4 　     An offspring  population  whose  individuals  are  gen-

              erated by conducting crossover and mutation operations;
Mt← Pt ∪Qt5 　　 ;

Mt6 　 Apply  fast  non-dominated  sorting  to  to  get  its

 

+∞

+∞

N
~

S
~O

ω1 (extreme point)

ω5 (extreme point)

ω2

ω3

ω4

 
Fig. 3.     Search space illustration of the proposed ILS.
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                   individuals’ ranks;
Pt+1← Mt  7 　　  A  new  population  selected  from  based  on

                   individuals’ ranks and crowded instances;
t← t+1  8 　　   ;

t M  9 　　   if  is divisible by  then
Ω←

Pt

10 　   　　  A  set  of  non-repetitive  solutions  in  the  Pareto
                        front of ;

Ω11 　 　    Sort  the  solutions  in  as  one  objective  function
                         value;

i = 1 Ω.size12 　　　    for  to  do
ωi← ILS (ωi)13 　　　   　 ;

i == 1 i == Ω.size14 　　　     　if  or  then
ω∗i ← ωi15 　　　　     　 ;
k← 016 　　　　     　 ;

k < K17 　　　　          while  do
k← k+118 　　　　　      　 ;
ω′i ← Des/Construction(ωi)19 　　　　　      　 ;
ω′i ← ILS (ω′i )20 　　　　　      　 ;
ωi← Acceptance(ωi,ω

′
i )21 　　　　　　       ;

ω∗i ← U pdate(ω∗i ,ω
′
i )22 　　　　　      　 ;

ωi← ω∗i23 　　　　     ;
Ω← Pt24  A set of non-repetitive solutions in the Pareto front of ;

Ω25 return .
  

C.  Selection, Crossover and Mutation
In NIMA, three operators,  i.e.,  binary tournament selection

(BTS)  [23],  partially  mapped  crossover  (PMX)  [38],  and
reciprocal  exchange  mutation  (REM)  [33],  are  used.  Their
details are introduced as follows.

1) A BTS is to select a parent individual. It randomly selects
two  individuals  in  the  current  population  and  compare  them
with  each other.  If  they have different  ranks,  the  higher-rank
one is selected. Otherwise, we randomly select one of them.

2)  A  PMX  operator  is  used  to  generate  two  offspring
individuals (denoted by O1 and O2) after selecting two parent
individuals (denoted by P1 and P2) by twice runs of BTS. An
example of its procedure is illustrated in Fig. 4. First, two cut
points on parent individuals are randomly chosen. The portion
between  the  cut  points  is  inherited  by  the  offspring
individuals. Here, the one of P1 (resp. P2) is inherited by O2
(resp.  O1).  Then,  the  mappings  of  the  genes  between the  cut
points  are  constructed.  The  rest  genes  of  the  offspring
individuals  are  obtained  by  mapping  the  ones  of  the  parent
individuals  to  corresponding  ones.  Here,  the  genes  mapped
from the ones of P1 (resp. P2) are inherited by O1 (resp. O2).

3)  An REM operator  is  to  generate  an  offspring  individual
(O1)  based on a  parent  one  (P1). Fig. 5 shows its  procedure,
where  two  genes  of  the  parent  individual  are  selected  and
swapped to generate an offspring one.  

D.  Insertion-based Local Search
An ILS [37], [39] is used to further improve the solutions in

the  obtained  Pareto  front.  Meanwhile,  it  is  an  important  step
of IGA. The shadows and arrows in Fig. 3 illustrate its search
space.  For  a  solution  in  the  current  Pareto  front,  we  explore
the  space  that  dominates  it.  If  it  is  an  extreme  point,  we
additionally  explore  the  space  that  does  not  dominate  it  but

π∗ π

π

πM πP

m p
π p

m

leads  to  smaller  single  objective  function  value  than  it.
Algorithm  2  shows  its  procedure  that  is  conducted  on  each
non-repetitive solution in a Pareto front. In it, the best solution

 is  initialized by the input solution .  An iteration starts  to
randomly select a gene without repetition and remove it from

. Then, the best position is selected to reinsert it. When doing
it,  the  removed  position  is  initially  marked  as  the  best  one
followed  by  going  through  all  the  positions  and  comparing
them with the marked one. Once a better position is found, it
is  marked  as  the  best  one.  Let  and  be  two  solutions
obtained  by  inserting  the  removed  gene  into  the  marked
position  (denoted  by )  and  another  one  (denoted  by ),
respectively.  According  to  different  input  solution ,  is
considered  as  a  better  position  than  if  it  satisfies  the
following conditions:

π = ω1 πP S̃ πM πP

S̃ πM Ñ
1) For , a)  has smaller  than , or b)  has the

same  as  but smaller  than it.
π = ω|Ω| πP Ñ πM πP

Ñ πM S̃
2)  For ,  a)  has  smaller  than ,  or  b)  has

the same  as  but smaller  than it.
πP πM3) For others,  dominates .

π π∗ π ≺ π∗
π∗ π

π∗

If  the  best  position  is  not  the  removed  one,  we  consider  that
the  solution  after  reinsertion  is  better  than ,  i.e., .
Then,  is updated by .  The search procedure terminates if

 is not updated in an iteration or 10 iterations are performed.

Algorithm 2: Insertion-based local search

πInput: A current solution 
π∗Output: A local optimal solution 

improve = true  1 ;
iteration = 0  2 ;
π∗ = π  3 ;

improve & iteration < 10  4 while  do
improve = f alse  5 　　 ;
iteration← iteration+1  6 　　 ;

i = 1 B  7 　　for  to  do
π  8 　　　Select and remove a gene randomly from  without repe-

                     tition;
π←  9 　　　  Insert the gene into the best position;
π ≺ π∗10 　　    if  then
π∗ = π11 　　　　 ;
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3 4 8 5 1 2 7 6 9

7 2 9 8 3 4

8 5 1 2

9 8 3 4

6 1 5

P1

P2

O1

O2

O1

O2

Mapping: 9

3

8,   8

1,   4

5,

2,

 
Fig. 4.     Illustration of PMX operator.
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Fig. 5.     Illustration of REM operator.
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improve = true12 　　　　 ;
π∗13 return .

  

E.  Destruction and Construction

I
π I

πD

πR

πD πR

π

ILS provides  a  local  optimal  solution,  which  is  broken  out
by  destruction  and  construction  steps  of  IGA  as  shown  in
Algorithm 3. In a destruction step, the batches from  random
families  are  removed  from  a  solution ,  where  is  a
parameter  to  be  adjusted.  The  removed  ones  constitute  a
subsequence  called  and  the  remaining  ones  are  in  a
subsequence  called .  In  a  construction  step,  the  batches  in

 are  reinserted  into  the  best  positions  of  one  by  one  to
construct  a  new  solution.  The  so-called  best  position  is
defined depending on the input solution .

π = ω1
S̃

1) If , the best position means the one that leads to a
subsequence  (or  sequence)  with  minimum  after  insertion.
Smaller makespan is considered as a tie-breaker.

π = ω|Ω|

S̃

2) If , the best position means the one that leads to a
subsequence  (or  sequence)  with  minimum  makespan  after
insertion. Smaller  is considered as a tie-breaker.

Ñ
Ñ

Note  that  we  use  makespan  rather  than  to  evaluate  a
subsequence  since  of  a  subsequence  can  be  significantly
changed by subsequent insertions.

Algorithm 3: Destruction and construction

πInput: A current solution 
π′Output: A new solution 

I1 Select  families randomly;
2 Remove the batches from the selected families;
πD←3  A subsequence consists of the removed batches;
πR←4  A subsequence consists of the remaining batches;

i = 1 πD.size5 for  to  do
π′← πD

i πR6 　　  Insert  into the best position of ;
π′7 return .

  

F.  Acceptance Criterion
ω′i

ωi

∆ ω′i ωi

i = 1 S̃ C S̃ N S̃ ωi ω′i
∆ = S̃ N − S̃ C i = |Ω| ÑC ÑN

Ñ ωi ω′i ∆ = ÑN − ÑC

∆ ≤ 0 ω′i

T
T = T

10·N
∑B

i=1 Pi T
ρ ∈ [0,1] ρ ≤ exp

(
− ∆T
)
ω′i

ωi

A  new  local  optimal  solution  is  obtained  after
destruction,  construction,  and  local  search  procedures.  An
acceptance  criterion  is  used  to  determine  whether  it  is
accepted to replace the current one  and applied for the next
iteration or  not.  Let  mean the distance between  and ,
which is  defined based on different  extreme points.  1)  When

,  we  use  and  to  denote  of  and ,
respectively. Then, . 2) When ,  and 
refer  to  of  and ,  respectively.  Then, .  If

, we accept  directly. Otherwise, we use an a simulated
annealing-like  acceptance  criterion,  which  is  commonly  used
for  scheduling  problems  [37],  [40].  To  adopt  it  for  the
concerned problem, a constant temperature  is calculated as:

,  where  is  a  parameter  to  be  adjusted.  If  a
random  number  satisfies ,  is
accepted.  Otherwise,  we  reject  it  and  use  for  the  next
iteration.  

G.  Computational Time Complexity
M

M
Since ILS and IGA are enabled per  iterations, we analyze

the  worst-case  time complexity  of  NIMA in  iterations  for

C
S̃ Ñ O(B+ J)
O(J) J ≥ B

O(U2J)
U

O(B2J)
O(B2JK)

K
M M

U
C = O(U2JM+B2JU +B2JK) = O(J(U2M+B2(K +U)))

BSGSP,  which  is  denoted  by .  A  decoding  procedure  for
calculating  and  consumes  time ,  which  can  be
simplified  as  since .  Then,  according  to  [23],
NSGA-II  in  an  iteration  of  NIMA  requires  time ,
where  means the population size. Based on [41], an ILS has
the  time  complexity  when  it  is  conducted  on  an
individual  from  a  Pareto  set.  An  IGA  takes  time 
when  it  is  used  to  improve  an  extreme  point,  since  ILS  is
performed  times  within  it  and  has  the  highest  complexity
among all  steps.  In  iterations of NIMA, NSGA-II runs 
times first.  Then,  we use ILS to improve the solutions in  the
Pareto  front  and  IGA  to  improve  two  extreme  points.  Note
that  solutions are in the Pareto front in the worst case. Thus,

.  

IV.  Experimental Results
  

A.  Experimental Design

B J
B = 20 J = 80 B = 40

J = 240

9×20 = 180

We use 14 400 experiments to test the proposed NIMA. The
experiments  are  conducted  on  a  dataset  from a  wire  rod  and
bar  rolling  process  [3].  The  work  in  [3]  uses  the  same
industrial  dataset  to  study  a  single-objective  optimization
problem while this work uses it to consider a bi-objective one.
Nine  groups  of  instances  with  different  and  are  used.
Their  scales  range  from  and  to  and

.  The  maximum  scale  is  equivalent  to  one-week
workload  in  a  factory  [3].  Each  group  contains  twenty
instances and thus  ones are solved in total.

To  show  the  effectiveness  of  NIMA,  we  compare  it  with
three  MOEAs,  i.e.,  NSGA-II  [23],  NSGA-III  [26],  and  a
recent  peer  denoted  by  NMMA,  which  is  an  NSGA-II  and
Mutation-local-search-based Memetic Algorithm [32]. For all
the algorithms, they share the same population size, crossover
and mutation rates, which are 100, 1 and 0.1, respectively.

B J

180×4×20 = 14400

The  algorithms  are  all  coded  in  C++  and  run  on  a  laptop
computer  with  32  GB  of  RAM  and  an  Intel  Core  i7-8850H,
2.60  GHz  processor.  When  solving  an  instance,  for  a  fair
comparison,  all  the  algorithms  share  the  same  termination
criterion which is the limited running time when an NSGA-II
takes  for 8000 iterations. Table II demonstrates  the  average
termination time for solving an instance with given  and .
To  reduce  the  impact  of  the  randomness  on  algorithm
performance,  we  run  each  of  them  20  times  to  solve  an
instance. The average solutions are summarized and compared
with  each  other.  Therefore,  we  perform 
experiments in this work for algorithm comparisons.  

 
TABLE II  

Termination Criterion

B J Time (s) B J Time (s)

20 80 8.16 30 180 15.06

20 100 8.37 40 160 23.53

20 120 8.87 40 200 23.62

30 120 13.53 40 240 24.25

30 150 14.58
 
 

B.  Evaluation Metrics
Three  kinds  of  metrics,  i.e.,  extreme  points,  inverted
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generational  distance  (IGD),  and  hypervolume,  are  used  to
evaluate the tested algorithms [42].

1) Extreme Points: Extreme points have the minimum single
objective  function  values  and  thus  are  essential  metrics  to
evaluate  an  algorithm.  For  many  practical  multi-objective
scheduling  problems,  the  solutions  of  the  extreme  points  are
important guides for practitioners.

P P∗

P∗
s ∈ P∗ s′ s′

P s
IGD(P,P∗) =∑s∈P∗ mins′∈PD(s, s′)/|P∗|

D(s, s′) s
s′

Fi F ′i
F ′i = (Fi−F̌i)/(F̂i−F̌i) i ∈ {1,2} F̌i F̂i

P

2) IGD: Let  and  be a Pareto front obtained by solving
an instance  with  an  algorithm and an ideal  one,  respectively.
Note that, since the real ideal one is unknown, we use the set
of  non-dominated  solutions  obtained  by  all  tested  algorithms
in  all  runs  to  approximate .  An  IGD  reflects  the  average
distance between each pair of solutions  and , where 
is a solution in  and has minimum distance from . Thus, it
is  calculated  as ,
where  means  the  Euclidean  distance  between  and

.  Note  that,  before  calculating  it,  we  normalize  the  objec-
tive  function  value  of  a  solution  to  by

,  where .  and  represent
the  minimum and  maximum single  objective  function  values
of  the  Pareto  solutions  obtained  by  all  the  runs  of  the
algorithms [43]. Note that the smaller IGD, the better .

P
p p

3) Hypervolume: Hypervolume is the volume of the region
dominated  by  at  least  one  solution  in  and  dominating  a
given reference point . After normalization,  is set to (1,1).  

C.  Parameter Adjustment

M
K

I

T
M ∈ {100,300,500} K ∈ {1,3,5}

I ∈ {1,2,3} T ∈ {1,5,10}

B = 30 J = 150

Orthogonal experiments [43] are designed to adjust the four
parameters  of  NIMA,  i.e.,  1) :  the  number  of  iterations  of
NSGA-II before activating ILS and IGA; 2) : the number of
iterations  of  IGA  for  improving  a  Pareto  solution;  3) :  the
number of families to be removed in a destruction step; and 4)

:  a  temperature  coefficient.  For  each  of  them,  three
candidates  are  given,  i.e., , ,

,  and .  NIMAs  with  nine  parameter
combinations  (denoted  by  G1–G9)  are  used  to  solve  ten
instances with  and . The average experimental
results  are  shown in Table III.  The  parameters  in  G4 leading
to  the  largest  hypervolume  are  selected  as  the  best
combination  and  used  for  the  following  experiments.  Note
that  we draw a box plot  to show the hypervolume metrics of
NIMA  with  different  parameter  combinations  in Fig. 6.  It

shows  that  different  combinations  lead  to  similar
hypervolumes, i.e., NIMA is parameter-insensitive.  

D.  Results and Comparisons
S̃ Ñ

S̃ a Ña a ∈ {i, ii, iii, iv}
S̃

Ñ
Ñ∗

S̃ S̃ ∗

Tables IV and V compare  and  obtained  by  the  four
algorithms,  denoted by  and ,  where ,  i.e.,
the  extreme  point  comparisons.  Note  that  is  measured  in
hours.  The  optimal  solution  or  near-optimal  one  of  is
denoted  by  and  given  in  [3],  where  CPLEX,  i.e.,  a  well-
known  commercial  optimization  solver,  is  used  to  solve  an
MILP. The optimal solution of  is denoted by  and can be
obtained  by  using  CPLEX  to  solving  an  MILP  consisting  of
(1), (3)–(7), and a redundant constraint as follows;
 

xb,b′ = 1, b ∈ B, b′ =minLb. (15)
Lb
b

Ga

a ∈ {i, ii, iii, iv}
Ga = (S̃ a− S̃ ∗)/S̃ a×100%

Ga = (Ña− Ñ∗)/Ña×100%

B = 40

Gi B = 40
J = 200

In (15),  is a set of batches that are from the same family
as  batch  and  have  larger  index  than  it.  (15)  gathers  the
batches  from  the  same  family  and  can  improve  the  solving
speed of CPLEX. The limited time of solving an instance with
CPLEX  is  set  to 7200 seconds  (two  hours).  If  its  optimal
solution cannot be obtained in 7200 seconds, CPLEX provides its
near-optimal solution, which is a feasible one.  in Tables IV
and V illustrate  the  gap  between  the  solutions  obtained  by
CPLEX and a tested algorithm, where . They are
calculated  as  in Table IV and

 in Table V.  We  can  see  that  the
objective  function  values  of  the  extreme  points  obtained  by
NIMA  are  very  close  to  the  optimal  (or  near-optimal)  ones,
and  much  better  than  those  obtained  by  its  peers.  Note  that,
for  some  instances  with ,  CPLEX  cannot  provide
optimal  solutions  in  limited time but  near-optimal  ones  only.
The reason why negative  appears for the group with 
and  in Table V is  that  the  solutions  obtained  by
NIMA are better than CPLEX’s in limited time.

Table VI demonstrates  the  IGD  comparisons  of  the  Pareto
fronts  obtained  by  the  tested  algorithms.  NIMA  gets  the
smallest IGD followed by NSGA-III, and is much better than
NSGA-II and NMMA. Especially as the scale of the problem
increases, NIMA can solve the instances with small IGDs but
its peers’ become larger and larger.

 

TABLE III  
Parameter Adjustment of NIMA

No. M K I T Hypervolume

G1 100 1 1 1 0.716

G2 100 3 2 5 0.718

G3 100 5 3 10 0.718

G4 300 3 3 1 0.720

G5 300 5 1 5 0.718

G6 300 1 2 10 0.717

G7 500 5 2 1 0.716

G8 500 1 3 5 0.717

G9 500 3 1 10 0.716
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Fig. 6.     Comparison of different parameter combinations.
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In  terms  of  hypervolume  metric,  our  comparison  is  shown
in Table VII,  which  indicates  that  NIMA  has  better
performance than its peers. Similar to IGD, the hypervolumes
of  the  compared  algorithms  get  worse  and  worse  as  the
problem scale increases, but NIMA keeps a great one.

t

(+) (−) (∼)

In addition, we adopt -test with 38 degrees of freedom at a
0.05  level  of  significance  to  show  the  performance
comparison of NIMA and its peers. The results in Tables IV–
VII marked  by  using , ,  and  mean  that  NIMA  is
significantly  better  than,  significantly  worse  than,  and

statistically  equivalent  to  its  peers,  respectively [44].  We can
see  that  NIMA  is  significantly  better  than  the  compared
algorithms  for  all  groups  of  instances  in  terms  of  all
evaluation metrics.

B = 20 J = 80 B = 30 J = 150
B = 40 J = 240

To clearly  and  intuitively  illustrate  the  effectiveness  of  the
proposed  algorithm,  in Fig. 7,  we  draw the  final  Pareto  front
obtained by NIMA and its peers when solving three randomly
selected instances with different size, i.e., the ones with small
(  and ), medium (  and ), and large
(  and )  scales.  The  so-called  final  Pareto  front

 

TABLE IV  
S̃  Comparison

B J S̃ ∗
NIMA NSGA-II NSGA-III NMMA

S̃ i Gi (%) S̃ ii Gii (%) S̃ iii Giii (%) S̃ iv Giv  (%)
20 80 5.7 5.8 1.50 6.8 (+) 16.00 6.6 (+) 12.70 6.5 (+) 11.90

20 100 5.3 5.4 1.60 6.5 (+) 17.80 6.3 (+) 15.30 6.1 (+) 13.10

20 120 5.7 5.8 1.40 6.9 (+) 17.20 6.7 (+) 14.70 6.5 (+) 12.50

30 120 5.1 5.1 1.60 8.1 (+) 38.00 6.5 (+) 22.50 7.1 (+) 28.60

30 150 5.4 5.4 0.50 8.3 (+) 35.20 7.0 (+) 23.50 7.2 (+) 25.90

30 180 5.5 5.6 1.10 8.2 (+) 32.80 6.9 (+) 20.30 7.4 (+) 25.20

40 160 5.6 5.7 1.00 11.3 (+) 50.30 7.5 (+) 25.70 9.2 (+) 39.10

40 200 5.2 5.2 1.40 10.0 (+) 48.40 7.1 (+) 27.00 8.4 (+) 38.90

40 240 5.2 5.3 1.70 10.2 (+) 48.90 7.0 (+) 25.20 8.5 (+) 39.00
 

 

TABLE V  
Ñ  Comparison

B J Ñ∗
NIMA NSGA-II NSGA-III NMMA

Ñi Gi (%) Ñii Gii (%) Ñiii Giii (%) Ñiv Giv  (%)
20 80 5.0 5.1 2.8 12.8 (+) 60.9 6.0 (+) 16.6 9.8 (+) 48.9

20 100 14.6 14.8 1.3 25.9 (+) 43.5 15.8 (+) 7.7 21.9 (+) 33.3

20 120 25.7 25.7 0.2 42.3 (+) 39.3 26.8 (+) 4.0 37.6 (+) 31.7

30 120 8.6 8.9 3.8 40.8 (+) 78.9 11.4 (+) 24.6 33.4 (+) 74.2

30 150 23.5 23.7 1.1 65.5 (+) 64.2 26.0 (+) 9.7 57.3 (+) 59.1

30 180 43.9 43.9 0.1 89.3 (+) 50.8 46.3 (+) 5.2 81.0 (+) 45.8

40 160 14.7 14.9 1.8 76.3 (+) 80.8 20.7 (+) 28.9 66.5 (+) 77.9

40 200 32.9 32.6 -0.7 106.8 (+) 69.2 36.3 (+) 9.4 97.7 (+) 66.3

40 240 58.8 59.2 0.7 140.6 (+) 58.2 62.8 (+) 6.4 130.7 (+) 55.0
 

 

TABLE VI  
IGD Comparison

B J NIMA NSGA-II NSGA-III NMMA

20 80 0.02 0.08 (+) 0.05 (+) 0.06 (+)

20 100 0.02 0.09 (+) 0.05 (+) 0.06 (+)

20 120 0.01 0.10 (+) 0.04 (+) 0.07 (+)

30 120 0.02 0.19 (+) 0.06 (+) 0.13 (+)

30 150 0.02 0.20 (+) 0.05 (+) 0.15 (+)

30 180 0.02 0.21 (+) 0.05 (+) 0.16 (+)

40 160 0.02 0.29 (+) 0.06 (+) 0.22 (+)

40 200 0.02 0.30 (+) 0.06 (+) 0.25 (+)

40 240 0.02 0.30 (+) 0.06 (+) 0.25 (+)
 

 

TABLE VII  
Hypervolume Comparison

B J NIMA NSGA-II NSGA-III NMMA

20 80 0.75 0.66 (+) 0.71 (+) 0.70 (+)

20 100 0.74 0.64 (+) 0.70 (+) 0.68 (+)

20 120 0.73 0.61 (+) 0.69 (+) 0.65 (+)

30 120 0.76 0.52 (+) 0.70 (+) 0.59 (+)

30 150 0.74 0.49 (+) 0.68 (+) 0.56 (+)

30 180 0.73 0.48 (+) 0.67 (+) 0.55 (+)

40 160 0.73 0.39 (+) 0.67 (+) 0.47 (+)

40 200 0.73 0.38 (+) 0.67 (+) 0.45 (+)

40 240 0.72 0.38 (+) 0.66 (+) 0.44 (+)
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of an algorithm consists  of the non-dominated solutions after
merging the Pareto solutions of 20 independent runs.  For the
small-scale instance a), Fig. 7(a) shows that  the difference of
the final Pareto fronts obtained by the four tested algorithms is
not significant. However, as problem scale grows, in Figs. 7(b)
and (c), the final Pareto fronts obtained by NIMA are clearly

better than those of its peers.

B = 40
J = 240

From the above comparisons, we can draw the conclusions
that NIMA can well  solve BSGSP and outperforms its peers.
According  to  the  termination  criterion  as  shown  in Table II,
NIMA can solve the concerned problems with practical scales
in very short time. Since the largest-scale instance with 
and  is  equivalent  to  an  actual  scheduling problem in
one  week [3],  which  is  a  common scheduling  period  used  in
practice, NIMA has great potential to be applied to a factory.  

V.  Conclusions and Future Work

This  work  tackles  a  new  bi-objective  serial-batch  group
scheduling  problem  with  release  time,  due  time,  and
sequence-dependent  setup  time.  It  arises  from  a  practical
industrial  production  system  and  aims  to  find  a  batch
sequence  to  minimize  both  the  number  of  late  jobs  and  total
setup  time.  A  mixed  integer  linear  program  is  formulated  to
describe it. Then, we design a novel memetic algorithm, based
on hybrid NSGA-II, insertion-based local search, and iterated
greedy  algorithm,  to  solve  it.  Computational  results  of  many
experiments  show  the  great  effectiveness  of  the  presented
algorithm by comparing the extreme points obtained by it with
the  optimal  or  near-optimal  solutions  and  comparing  its
performance  with  its  three  peers’.  Its  high  solution  accuracy
and speed prove its great potential to be applied in practice.

As  future  research,  we  plan  to  extend  the  considered
problem with real-world constraints, such as uncertain release
time  and  processing  time  [35],  [45].  The  proposed  algorithm
can be problem-specifically modified to solve various similar
problems [46]–[66].
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