SCIENTIA SINICA Mathematica

论 文

正交极空间 $Q^+(7,q)$ 中的 $PSU_3(q)$ - 不变奇妙集

献给朱烈教授80华诞

冯涛1. 李伟聪2,3. 陶然4,5*

- 1. 浙江大学数学科学学院, 杭州 310027;
- 2. 南方科技大学数学系, 深圳 518055;
- 3. 南科大杰曼诺夫数学中心, 深圳 518055;
- 4. 山东大学教育部密码技术与信息安全重点实验室, 青岛 266237;
- 5. 山东大学网络空间安全学院, 青岛 266237

E-mail: tfeng@zju.edu.cn, liwc3@sustech.edu.cn, rtao@sdu.edu.cn

收稿日期: 2022-04-27;接受日期: 2022-08-29; 网络出版日期: 2022-09-26; * 通信作者 国家重点研发计划(批准号: 2021YFA1001000)和国家自然科学基金(批准号: 12171428)资助项目

摘要 设 $q \equiv 2 \pmod{3}$ 为一个素数幂. 借助于 Kantor 的 $Q^+(7,q)$ 模型,本文研究了正交极空间 $Q^+(7,q)$ 的点集在群 $PSU_3(q)$ 作用下的轨道结构,由此构造出新的自同构群为 $PSU_3(q)$ 的 (q^2+q) - 和 q^3 - 卵形体 (ovoid). 在此模型下,本文确定 $Q^+(7,q)$ 的所有 $PSU_3(q)$ - 不变奇妙集,证明其一定是酉型 卵形体、新构造的两类 m- 卵形体或它们的补集.

关键词 奇妙集 卵形体 正交极空间 酉群

MSC (2020) 主题分类 51A50, 51E20, 05B25

1 引言

假设 S 是一个秩为 r 的有限经典极空间,并用 \bot 表示其上的极映射. S 的点共线图 $\Gamma(S)$ 是一个强正则图,其顶点集为 S 中的点,两个顶点相邻当且仅当它们正交 (参见文献 [4]). 用 A 表示 $\Gamma(S)$ 的邻接矩阵,并用 $\mathbf{1}$ 表示长为 |S| 的全 $\mathbf{1}$ 向量. 给定极空间 S 中的一个非平凡集合 M, 用 χ_M 表示其示性向量,即对于 S 中的点 P,根据其是否在 M 中,相应地有 $\chi_M(P)=1$ 或 $\chi_M(P)=0$. 如果 $\chi_M-\frac{|M|}{|S|}\mathbf{1}$ 是矩阵 A 的特征向量,则称 M 为该极空间 S 中的奇妙集 (intriguing set). 邻接矩阵 A 有两个受限的 (restricted) 特征值,分别对应于两类奇妙集: i- 紧集 (tight set) 和 m- 卵形体 (ovoid),其中 i 和 m 为它们对应的参数. 特别地, i- 卵形体简称作卵形体.

奇妙集的概念最早由 Bamberg 等^[2] 在经典广义四边形中给出, 随后被 Bamberg 等^[1] 推广到了有限经典极空间. 它统一了此前有限几何中的多个概念, 并揭示了这些几何对象的代数意义. 奇妙集

英文引用格式: Feng T, Li W C, Tao R. $PSU_3(q)$ -invariant intriguing sets of orthogonal polar space $Q^+(7,q)$ (in Chinese). Sci Sin Math, 2023, 53: 249–260, doi: 10.1360/SSM-2022-0071

不但是重要的几何构型, 而且与图论和编码理论有密切的联系, 因此近些年来得到了广泛关注和研究, 详情参见文献 [1,5].

对于奇妙集的研究涉及较为深刻的群论和数论知识. 对于满足特定的传递性假设的奇妙集, 一般可以利用有限典型群的结构定理和深刻的表示论知识完全分类, 例如, Bamberg 和 Penttila [3] 对有限经典极空间中具有不可解自同构群的传递卵形体进行了分类. 三维射影空间中的 Cameron-Liebler 线族等价于 $Q^+(5,q)$ 中的紧集, 在文献 [11] 的构造中涉及极为复杂的指数和运算.

在低秩极空间中, 奇妙集的构造方面已经有大量工作, 可参见文献 [1,6–14] 及其中所列的参考文献. 当极空间的秩较大时, 已知的奇妙集构造比较稀少. 1982 年, Kantor [16] 利用群 $PGU_3(q)$ 的 8 维绝对不可约表示构造了双曲正交极空间 $Q^+(7,q)$ 中的一类卵形体, 其中 $q\equiv 2\pmod{3}$. 这类卵形体称作酉型 (unitary) 卵形体. 本文将采用相同的模型, 研究特殊酉群 $PSU_3(q)$ 在 $Q^+(7,q)$ 点集上的轨道结构, 从而得到 $Q^+(7,q)$ 上自同构群为 $PSU_3(q)$ 的 (q^2+q) - 卵形体和 q^3 - 卵形体, 并且对 $Q^+(7,q)$ 中的 $PSU_3(q)$ - 不变奇妙集进行完全分类.

针对本文的研究内容,介绍下列定义与引理.

定义 1.1 [1] 令 q 是一个素数幂, $Q^+(7,q)$ 是双曲型正交极空间, 其极映射用 \bot 表示. 给定极空间 $Q^+(7,q)$ 中的一个非平凡点集 \mathcal{M} , 如果 $|\mathcal{M}| = m(q^3+1)$ 并且

$$|P^{\perp} \cap \mathcal{M}| = \begin{cases} m(q^2 + 1) - q^2, & \text{if } P \in \mathcal{M}, \\ m(q^2 + 1), & \text{if } P \in Q^+(7, q) \setminus \mathcal{M}, \end{cases}$$
 (1.1)

则称 M 为 $Q^+(7,q)$ 中一个 m- 卵形体.

引理 1.1 ① 令 \mathcal{M}_1 和 \mathcal{M}_2 分别为 $Q^+(7,q)$ 中的 m_1 - 卵形体和 m_2 - 卵形体.

- (1) 如果 \mathcal{M}_1 是 \mathcal{M}_2 的子集, 则 $\mathcal{M}_2 \setminus \mathcal{M}_1$ 是 $Q^+(7,q)$ 的 $(m_2 m_1)$ 卵形体;
- (2) 如果 \mathcal{M}_1 和 \mathcal{M}_2 不相交, 则 $\mathcal{M}_1 \cup \mathcal{M}_2$ 是 $Q^+(7,q)$ 的 $(m_1 + m_2)$ 卵形体.

$Q^+(7,q)$ 的模型和 $PSU_3(q)$ 的轨道结构

$Q^+(7,q)$ 的模型

令 $q = p^h$ 是一个素数幂, 满足 $q \equiv 2 \pmod{3}$ 且 q > 2; 令 \mathbb{F}_q 表示有 q 个元素的有限域. 对于 $x \in \mathbb{F}_{q^2}$, 令 \overline{x} 表示 x 的共轭, 即 $\overline{x} = x^q$; 定义从 \mathbb{F}_{q^2} 到 \mathbb{F}_q 上的迹函数为 $\text{Tr}(x) = x + \overline{x}$. 令 V 是由如下矩阵构成的 \mathbb{F}_q 上的 8 维向量空间:

$$M = \begin{pmatrix} \alpha & \beta & c \\ \gamma & a & \overline{\beta} \\ b & \overline{\gamma} & \overline{\alpha} \end{pmatrix}, \tag{2.1}$$

其中 α , β , $\gamma \in \mathbb{F}_{q^2}$, $a,b,c \in \mathbb{F}_q$ 且 $\alpha + a + \overline{\alpha} = 0$. 定义 V 上的一个二次型

$$Q(M) = \alpha^2 + \alpha \overline{\alpha} + \overline{\alpha}^2 + \text{Tr}(\beta \gamma) + bc.$$
 (2.2)

该二次型是非退化的, 其极化型 (polar form) 如下:

$$B(M,N) = Q(M+N) - Q(M) - Q(N) = tr(MN), \tag{2.3}$$

其中 tr(MN) 表示矩阵 MN 的迹. 相应的极映射为

$$\langle v \rangle \mapsto v^{\perp} = \{ x \in V : B(x, v) = 0 \}.$$

由 (2.2) 所定义的 Q 是双曲二次型, 其定义的正交极空间 $Q^+(7,q)$ 的点集为

$$Q = \{ \langle M \rangle_{\mathbb{F}_q} : M \in V, Q(M) = 0 \}, \tag{2.4}$$

其中 $\langle M \rangle_{\mathbb{F}_q}$ 表示 V 中向量 M 的 \mathbb{F}_q 射影点. 下文将 $\langle M \rangle_{\mathbb{F}_q}$ 简记为 $\langle M \rangle$.

令 $GL_3(q^2)$ 表示 \mathbb{F}_{q^2} 上 3 阶可逆矩阵的全体构成的一般线性群, 即

$$GL_3(q^2) = \{ A = (a_{ij})_{3\times 3} \mid \det(A) \neq 0, a_{ij} \in \mathbb{F}_{q^2}, 1 \leq i, j \leq 3 \},$$

其中 $\det(A)$ 表示矩阵 A 的行列式. 对于 $A \in \mathrm{GL}_3(q^2)$, 定义其共轭 \overline{A} 为将 A 中每个元素均取 q 次方 所得的矩阵. 记

$$J = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

并定义 $G_0 = \{A: A \in \operatorname{GL}_3(q^2) \mid J^{-1}AJ = (\overline{A}^\top)^{-1}\}$, 其中 \overline{A}^\top 表示矩阵 A 的共轭转置. 由文献 [16] 可知 G_0 同构于酉群 $\operatorname{GU}_3(q)$, 且群 G_0 按如下方式作用在向量空间 V 上: 矩阵 $A \in G_0$ 将 $X \in V$ 映到 $A^{-1}XA$. 容易验证 G_0 中的数量矩阵在 V 上的作用是平凡的, 故这诱导了 $\operatorname{PGU}_3(q)$ 在 V 上的作用. 令 Q 由 (2.4) 所定义, 根据文献 [16], G_0 对应的射影群 $\operatorname{PGU}_3(q)$ 在二次曲面 Q 上有 3 个轨道, 分别对应于 Q 中秩为 1、2 和 3 的矩阵.

2.2 $PSU_3(q)$ 的轨道结构

令

$$G = \{A : A \in G_0 \mid \det(A) = 1\}. \tag{2.5}$$

其在 V 上的作用诱导了射影特殊酉群 $PSU_3(q)$ 在 Q 上的作用. 本小节分析 $PSU_3(q)$ 在 Q 上的轨道结构.

由于 $q \equiv 2 \pmod{3}$, 3 整除 q+1, 故 \mathbb{F}_{q^2} 中有 3 阶元 ω . 我们有 $\omega^q + \omega + 1 = \omega^2 + \omega + 1 = 0$. 现 取 V 中的 5 个向量如下:

$$X_{1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad X_{21} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad X_{22} = \begin{pmatrix} 0 & \omega & 0 \\ 0 & 0 & \omega^{2} \\ 0 & 0 & 0 \end{pmatrix}, \tag{2.6}$$

$$X_{23} = \begin{pmatrix} 0 & \omega^2 & 0 \\ 0 & 0 & \omega \\ 0 & 0 & 0 \end{pmatrix}, \quad X_3 = \begin{pmatrix} \omega & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \overline{\omega} \end{pmatrix}. \tag{2.7}$$

容易验证它们是 (2.2) 的零点, 故它们是 $Q^+(7,q)$ 中的点.

对于 Q 中的一点 $\langle M \rangle$, 令 $O(\langle M \rangle)$ 表示以点 $\langle M \rangle$ 为代表元的 $PSU_3(q)$ - 轨道. 令

$$O_i = O(\langle X_i \rangle), \quad i = 1, 3, \tag{2.8}$$

$$O_{2j} = O(\langle X_{2j} \rangle), \quad j = 1, 2, 3.$$
 (2.9)

定理 2.1 假设 $q \equiv 2 \pmod{3}$, q > 2, 并设二次曲面 Q 由 (2.4) 所定义. 群 $PSU_3(q)$ 在 Q 上恰有 5 个轨道, 即 O_1 、 O_{21} 、 O_{22} 、 O_{23} 和 O_3 , 其中 O_i (i = 1, 3) 和 O_{2j} (j = 1, 2, 3) 由 (2.8) 和 (2.9) 所定义. 它们的长度分别为

$$|O_1| = q^3 + 1, \quad |O_3| = q^3(q^3 + 1),$$
 (2.10)

$$|O_{21}| = |O_{22}| = |O_{23}| = \frac{(q^2 + q)(q^3 + 1)}{3}.$$
 (2.11)

证明 矩阵 X_1 和 X_3 的秩分别为 1 和 3, 矩阵 X_{21} 、 X_{22} 和 X_{23} 的秩均为 2. 已知 $q \equiv 2 \pmod{3}$ 且 q > 2,群 $PSU_3(q)$ 的阶为 $\frac{q^3(q^2-1)(q^3+1)}{3}$. 下面将计算点 $\langle X_i \rangle$ (i=1,3) 和 $\langle X_{2j} \rangle$ (j=1,2,3) 在 $PSU_3(q)$ 中的稳定化子的大小,从而得到轨道的长度如 (2.10) 和 (2.11) 所示. 通过比较大小即可知这 5 个轨道是 Q 的划分,从而是所有的 $PSU_3(q)$ 轨道.

由于方法类似,此处只给出 $\langle X_1 \rangle$ 的稳定化子的计算过程. 群 $\mathrm{SU}_3(q)$ 中的元素 A 稳定 $\langle X_1 \rangle$ 当且 仅当存在 $\lambda \in \mathbb{F}_q^*$ 使得 $A^{-1}X_1A = \lambda X_1$,这等价于

$$X_1 A = \lambda A X_1, \quad A J \overline{A}^\top = J, \quad \det(A) = 1.$$
 (2.12)

记 $A = (a_{ij})_{3\times 3}, 1 \le i, j \le 3$. 经展开计算可得, (2.12) 中的 3 个等式成立等价于下列等式同时成立:

$$\begin{aligned} a_{21} &= a_{31} = a_{32} = 0, \quad a_{33} = \lambda a_{11}, \quad a_{22} = \lambda^{-1} a_{11}^{-2}, \\ \lambda &= a_{11}^{-(q+1)}, \quad a_{23} = -\lambda^{-1} a_{11}^{-q-2} a_{12}^q, \quad \operatorname{Tr}(a_{13} a_{11}^q) = -a_{12}^{q+1}. \end{aligned}$$

从而, 矩阵 A 由其分量 $a_{11} \in \mathbb{F}_{q^2}^*$ 、 $a_{12} \in \mathbb{F}_{q^2}$ 和 $a_{13} \in \mathbb{F}_{q^2}$ 所唯一确定, 且这 3 个分量满足 $\operatorname{Tr}(a_{13}a_{11}^q) = -a_{12}^{q+1}$. 容易验证 $\langle X_1 \rangle$ 在 $\operatorname{SU}_3(q)$ 中的稳定化子包含 3 阶数量矩阵, 从而有 $|\operatorname{Stab}_{\operatorname{PSU}_3(q)}(\langle X_1 \rangle)| = \frac{(q^2-1)\cdot q^2\cdot q}{3}$. 因此,

$$|O(\langle X_1 \rangle)| = |O_1| = \frac{|\operatorname{PSU}_3(q)|}{|\operatorname{Stab}_{\operatorname{PSU}_3(q)}(\langle X_1 \rangle)|} = q^3 + 1.$$

证毕.

注 2.1 令 $A_0 = \operatorname{diag}(1, \omega, 1)$,则 $A_0 \in \operatorname{GU}_3(q) \setminus \operatorname{SU}_3(q)$,且 $X_{22} = A_0^{-1} X_{21} A_0$, $X_{23} = A_0^{-2} X_{21} A_0^2$. 特别地, A_0 的作用引起 O_{21} 、 O_{22} 和 O_{23} 之间的传递置换,它们的并构成一个 $\operatorname{PGU}_3(q)$ - 轨道 O_2 :

$$O_2 = O_{21} \cup O_{22} \cup O_{23}. \tag{2.13}$$

由定理 2.1 可知, 轨道 O_{21} 、 O_{22} 和 O_{23} 构成了 Q 中所有秩为 2 的点, 故对于 i=1,2,3, 集合 O_i 恰好是由 Q 中秩为 i 的点构成.

3 $Q^+(7,q)$ 中的 $\mathrm{PSU}_3(q)$ - 不变奇妙集

本节采用第 2 节所引入的各种符号. 特别地, O_1 、 O_2 和 O_3 分别为秩为 1、2 和 3 的奇异点集合. 本节的目标是确定 $Q^+(7,q)$ 中所有 $PSU_3(q)$ - 不变的奇妙集. 由文献 [16] 可知, O_1 是卵形体. 第 3.1 小节将证明 O_2 和 O_3 分别构成 m- 卵形体. 第 3.2 小节将证明除了 O_1 、 O_2 、 O_3 以及它们的补以外没有别的 $PSU_3(q)$ - 不变奇妙集.

3.1 $Q^+(7,q)$ 中自同构群为 $PSU_3(q)$ 的 m- 卵形体

Kantor [16] 对轨道 O_1 进行研究, 证明了如下结论.

定理 3.1 [16] 集合 O_1 是正交极空间 $Q^+(7,q)$ 中的卵形体.

该卵形体称作 $Q^+(7,q)$ 的酉型卵形体, 也称作 Kantor 卵形体. 接下来对剩下的 $PSU_3(q)$ - 轨道 O_{21} 、 O_{22} 、 O_{23} 和 O_3 展开研究.

引理 3.1 令 O_2 为由 (2.13) 所定义的集合,则 $O_2 = S_1 \cup S_2 \cup S_3$,其中

$$S_{1} = \left\{ \left\langle \begin{pmatrix} 0 & 0 & 0 \\ \gamma & 0 & 0 \\ b & \overline{\gamma} & 0 \end{pmatrix} \right\rangle : \gamma \in \mathbb{F}_{q^{2}}^{*}, b \in \mathbb{F}_{q} \right\} \cup \left\{ \left\langle \begin{pmatrix} 0 & \beta & c \\ 0 & 0 & \overline{\beta} \\ 0 & 0 & 0 \end{pmatrix} \right\rangle : \beta \in \mathbb{F}_{q^{2}}^{*}, c \in \mathbb{F}_{q} \right\}, \tag{3.1}$$

$$S_{2} = \left\{ \left\langle \begin{pmatrix} \lambda b \ \lambda \overline{\gamma} \ \lambda^{q+1} b \\ \gamma \ 0 \ \overline{\lambda} \gamma \\ b \ \overline{\gamma} \ \overline{\lambda} b \end{pmatrix} \right\rangle : \lambda, \gamma \in \mathbb{F}_{q^{2}}^{*}, b \in \mathbb{F}_{q}, \operatorname{Tr}(\lambda) = 0 \right\},$$

$$(3.2)$$

$$S_{3} = \left\{ \left\langle \begin{pmatrix} \lambda_{1}\gamma + \lambda_{2}b & \beta & \lambda_{1}\overline{\beta} + \lambda_{2}\overline{\lambda_{1}\gamma + \lambda_{2}b} \\ \gamma & -\operatorname{Tr}(\lambda_{1}\gamma + \lambda_{2}b) & \overline{\beta} \\ b & \overline{\gamma} & \overline{\lambda_{1}\gamma + \lambda_{2}b} \end{pmatrix} \right\} : \lambda_{1}, \lambda_{2} \in \mathbb{F}_{q^{2}}^{*}, \gamma \in \mathbb{F}_{q^{2}}, b \in \mathbb{F}_{q},$$

$$\beta = -\lambda_1 \operatorname{Tr}(\lambda_1 \gamma + \lambda_2 b) + \lambda_2 \overline{\gamma}, \operatorname{Tr}(\lambda_2) = \lambda_1^{q+1}, \, \gamma^{q+1} \neq -b \operatorname{Tr}(\lambda_1 \gamma + \lambda_2 b) \bigg\}.$$
(3.3)

证明 可以直接验证 S_1 、 S_2 和 S_3 中的元素均在 O_2 中,即秩为 2 且是二次型 Q 的零点. 现取 O_2 中的一个元素 $\langle M \rangle$,其中 M 表达式形如 (2.1). 下面分 3 种情形进行讨论.

情形 1 矩阵 M 有全零行.

如果 M 的第二行 $(\gamma, a, \overline{\beta}) = (0, 0, 0)$,则 $\text{Tr}(\alpha) = 0$,由 Q(M) = 0 可得 $\alpha^2 + bc = 0$. 此时 M 的秩为 1,与 $M \in O_2$ 矛盾. 因此只能是 M 的第一行全为 0 或第三行全为 0. 此时,容易验证 $\langle M \rangle$ 为 S_1 中元素.

情形 2 矩阵 M 没有全零行但有两行线性相关.

首先考虑第一和二行线性相关的情形. 此时存在 $\lambda \in \mathbb{F}_{q^2}^*$ 使得 $(\alpha,\beta,c) = \lambda(\gamma,a,\overline{\beta})$,即 $\alpha = \lambda\gamma$, $a = -\mathrm{Tr}(\lambda\gamma)$. 由此可以推导出 $\beta = -\lambda\mathrm{Tr}(\lambda\gamma)$, $c = -\lambda^{q+1}\mathrm{Tr}(\lambda\gamma)$. 直接计算 Q(M) = 0 可得 $-b\mathrm{Tr}(\lambda\gamma) = \gamma^{q+1}$,利用这些关系可以推导出 M 的第二和三行线性相关,从而 M 的秩为 1,与 $M \in O_2$ 矛盾. 因此第一和二行线性无关. 类似地,M 的第二和三行线性无关.

现在考虑第一和三行线性相关的情形. 此时存在 $\lambda \in \mathbb{F}_{q^2}^*$ 使得 $(\alpha, \beta, c) = \lambda(b, \overline{\gamma}, \overline{\alpha})$, 即 $\alpha = \lambda b$, $\beta = \lambda \overline{\gamma}$, $c = \lambda^{q+1}b$. 从而 M 中的元素均可由 b、 γ 和 λ 表示. 由于 M 的秩为 2, 通过计算其二阶子式可得 $-\gamma^{q+1} \neq b^2 \operatorname{Tr}(\lambda)$. 在此基础上, 直接计算 Q(M) = 0 可得 $\operatorname{Tr}(\lambda) = 0$. 这时, $\langle M \rangle$ 落入集合 S_2 .

情形 3 矩阵 M 的任意两行线性无关.

此时,存在 $\lambda_1, \lambda_2 \in \mathbb{F}_{q^2}^*$ 使得 $(\alpha, \beta, c) = \lambda_1(\gamma, a, \overline{\beta}) + \lambda_2(b, \overline{\gamma}, \overline{\alpha})$,从而 M 中的元素均可以由 $\lambda_1, \lambda_2, \gamma$ 和 b 表示. 通过计算二阶子式的行列式可知 $(\gamma, a, \overline{\beta})$ 和 $(b, \overline{\gamma}, \overline{\alpha})$ 线性无关等价于 $\gamma^{q+1} \neq -b \operatorname{Tr}(\lambda_1 \gamma + \lambda_2 b)$. 直接计算可知

$$Q(M) = (\lambda_1^{q+1} - \operatorname{Tr}(\lambda_2))(-b\operatorname{Tr}(\lambda_1\gamma + \lambda_2 b) - \gamma^{q+1}) = 0.$$

故 $\operatorname{Tr}(\lambda_2) = \lambda_1^{q+1}$. 从而, $\langle M \rangle$ 是 S_3 中的元素.

由上述讨论可知, 集合 $O_2=S_1\cup S_2\cup S_3$, 且集合 S_1 、 S_2 和 S_3 两两之间互不相交. 因此, S_1 、 S_2 和 S_3 构成 O_2 的一个划分.

引理 3.2 令 X_{21} 和 O_2 分别由 (2.6) 和 (2.13) 所定义, 则有 $|X_{21}^{\perp} \cap O_2| = q^4 + q^3 + q$.

证明 现取 O_2 中的元素 $\langle M \rangle$, 其表达式如 (2.1) 所示. 根据 (2.3) 中的极化型 B 可知, M 落在 X_{21}^1 中当且仅当 $\mathrm{Tr}(\gamma)=0$.

由引理 3.1 及其证明过程可知, 集合 $X_{11}^{\perp} \cap O_{2}$ 的大小为

$$|X_{21}^{\perp} \cap O_2| = |X_{21}^{\perp} \cap S_1| + |X_{21}^{\perp} \cap S_2| + |X_{21}^{\perp} \cap S_3|. \tag{3.4}$$

假设 $\langle M \rangle \in X_{21}^{\perp} \cap S_1$, 则有

$$M = \begin{pmatrix} 0 & 0 & 0 \\ \gamma & 0 & 0 \\ b & \overline{\gamma} & 0 \end{pmatrix},$$

其中 γ 是 \mathbb{F}_{q^2} 中满足 $\mathrm{Tr}(\gamma)=0$ 的非零元, b 是 \mathbb{F}_q 中的元素; 或

$$M = \begin{pmatrix} 0 & \beta & c \\ 0 & 0 & \overline{\beta} \\ 0 & 0 & 0 \end{pmatrix},$$

 β 是 \mathbb{F}_{q^2} 中的非零元, c 是 \mathbb{F}_q 中的元素. 因此,

$$|X_{21}^{\perp} \cap S_{1}| = \frac{1}{q-1} \#\{(b,\gamma) : b \in \mathbb{F}_{q}, \ \gamma \in \mathbb{F}_{q^{2}}^{*}, \ \operatorname{Tr}(\gamma) = 0\} + \frac{1}{q-1} \#\{(c,\beta) : c \in \mathbb{F}_{q}, \ \beta \in \mathbb{F}_{q^{2}}^{*}\}$$

$$= \frac{1}{q-1} q(q-1) + \frac{1}{q-1} q(q^{2}-1)$$

$$= q^{2} + 2q. \tag{3.5}$$

类似地,有

$$|X_{21}^{\perp} \cap S_2| = \frac{1}{q-1} \#\{(\lambda, \gamma, b) : \lambda, \gamma \in \mathbb{F}_{q^2}^*, b \in \mathbb{F}_q, \operatorname{Tr}(\lambda) = 0, \operatorname{Tr}(\gamma) = 0\} = (q-1)q.$$
 (3.6)

假设 $\langle M \rangle \in X_{21}^{\perp} \cap S_3$, 则由 (3.3) 可知 M 中的元素可由 \mathbb{F}_q 中元素 b 和 \mathbb{F}_{q^2} 中的元素 $\lambda_1 \setminus \lambda_2$ 和 γ 表示, 其中 $\lambda_1 \lambda_2 \neq 0$, $\operatorname{Tr}(\lambda_2) = \lambda_1^{q+1}$, $\gamma^{q+1} \neq -b\operatorname{Tr}(\lambda_1 \gamma + \lambda_2 b)$. 如前所述, $M \in X_{21}^{\perp}$ 当且仅当 $\operatorname{Tr}(\gamma) = 0$. 因此,

$$|X_{21}^{\perp} \cap S_{3}| = \frac{1}{q-1} \# \{ (\lambda_{1}, \lambda_{2}, \gamma, b) \in \mathbb{F}_{q^{2}}^{*} \times \mathbb{F}_{q^{2}}^{*} \times \mathbb{F}_{q^{2}}^{*} \times \mathbb{F}_{q} : \operatorname{Tr}(\lambda_{2}) = \lambda_{1}^{q+1}, \operatorname{Tr}(\gamma) = 0,$$

$$\gamma^{q+1} \neq -b \operatorname{Tr}(\lambda_{1}\gamma + \lambda_{2}b) \}$$

$$= \frac{q}{q-1} \# \{ (\lambda_{1}, \gamma, b) \in \mathbb{F}_{q^{2}}^{*} \times \mathbb{F}_{q^{2}} \times \mathbb{F}_{q} : b(\lambda_{1}\gamma - \overline{\lambda_{1}}\gamma + \lambda_{1}^{q+1}b) - \gamma^{2} \neq 0, \operatorname{Tr}(\gamma) = 0 \}$$

$$= \frac{q(q^{2}-1)q^{2}}{q-1} - \frac{q}{q-1} N_{0},$$
(3.7)

其中 $N_0 = \#\{(\lambda_1, \gamma, b) \in \mathbb{F}_{q^2}^* \times \mathbb{F}_{q^2} \times \mathbb{F}_q : \operatorname{Tr}(\gamma) = 0, \ b(\lambda_1 \gamma - \overline{\lambda_1} \gamma + \lambda_1^{q+1} b) - \gamma^2 = 0\}.$

按照特征 p 为奇数和偶数两种情形分别计算 N_0 的值.

情形 1 特征 p 为奇数. 此时, 取 \mathbb{F}_{q^2} 中的一个非零元 δ 使得 $\mathrm{Tr}(\delta) = 0$. 则 1 和 δ 是 \mathbb{F}_{q^2} 在 \mathbb{F}_q 上的一组基, 且 $\mathbb{F}_q \cdot \delta$ 是其中所有相对迹为 0 的元素. 容易验证 δ^2 是 \mathbb{F}_q 中的非平方元, 即 $(\delta^2)^{(q-1)/2} \neq 1$. 记 $\lambda_1 = x_1 + x_2 \delta$ 和 $\gamma = r_1 \delta$, 其中 $x_1 \cdot x_2$ 和 r_1 均为 \mathbb{F}_q 中的元素. 通过展开可知, N_0 是以下集合的大小:

$$T_{0} = \{(x_{1}, x_{2}, r_{1}, b) \in \mathbb{F}_{q}^{4} : \{x_{1}, x_{2}\} \neq \{0\}, (x_{1}^{2} - \delta^{2}x_{2}^{2})b^{2} + 2x_{2}\delta^{2}r_{1}b - r_{1}^{2}\delta^{2} = 0\}$$

$$= \#\{(x_{1}, x_{2}, r_{1}, b) \in \mathbb{F}_{q}^{4} : \{x_{1}, x_{2}\} \neq \{0\}, x_{1}^{2}b^{2} - \delta^{2}(x_{2}b - r_{1})^{2} = 0\}.$$

$$(3.8)$$

令 $L(x_1, x_2, r_1, b) = x_1^2 b^2 - \delta^2 (x_2 b - r_1)^2$. 进一步细分为以下 3 种情形来计算 T_0 的大小.

情形 1.1 b=0. 此时, $L(x_1,x_2,r_1,b)=-\delta^2r_1^2$. 要使得 $L(x_1,x_2,r_1,b)=0$, 则需要 $r_1=0$. 从而 T_0 中相应部分大小为

$$N_1 = \#\{(x_1, x_2) \in \mathbb{F}_q^2 : \{x_1, x_2\} \neq \{0\}\} = q^2 - 1.$$

情形 1.2 $b \neq 0$, $r_1 = x_2 b$. 此时, $L(x_1, x_2, r_1, b) = x_1^2 b^2$. 要使得 $L(x_1, x_2, r_1, b) = 0$, 则需要 $x_1 = 0$. 从而 T_0 中相应部分大小为

$$N_2 = \#\{(x_2, b) \in \mathbb{F}_q^2 : x_2 \neq 0, b \neq 0\} = (q - 1)^2.$$

情形 1.3 $b \neq 0, r_1 \neq x_2 b$. 此时, 由于 δ^2 是 \mathbb{F}_q 中的非平方元, 则 $L(x_1, x_2, r_1, b) = 0$ 无解.

因此, 在特征为奇数的情形下, 得到 $N_0 = N_1 + N_2 = 2q^2 - 2q$.

情形 2 特征 p 为偶数. 此时, 取 \mathbb{F}_{q^2} 的元素 δ 使得 $\mathrm{Tr}(\delta)=1$. 则 1 和 δ 是 \mathbb{F}_{q^2} 在 \mathbb{F}_q 上的一组基. 记 $\lambda_1=x_1+x_2\delta$, 其中 $x_1,\,x_2\in\mathbb{F}_q$. 在该种情形下, 由 $\gamma^q=-\gamma$ 可知 $\gamma\in\mathbb{F}_q$. 通过展开可知 N_0 是以下集合的大小:

$$T_0 = \{(x_1, x_2, \gamma, b) \in \mathbb{F}_q^4 : \{x_1, x_2\} \neq \{0\}, (x_1^2 + x_1x_2 + x_2^2\delta^{q+1})b^2 + x_2\gamma b + \gamma^2 = 0\}.$$

进一步细分为以下两种情形来计算 N_0 .

情形 2.1 $x_2 = 0$. 此时, T_0 中相应部分大小为

$$N_1 = \#\{(x_1, \gamma, b) \in \mathbb{F}_q^3 : x_1 \neq 0, x_1^2 b^2 + \gamma^2 = 0\} = (q - 1)q.$$

这里, 用到以下事实: \mathbb{F}_q 上的映射 $x \mapsto x^2$ 是加性的.

情形 2.2 $x_2 \neq 0$. 此时, T_0 中相应部分大小为

$$N_2 = \#\{(x_1, x_2, \gamma, b) \in \mathbb{F}_q^4 : x_2 \neq 0, (x_1^2 + x_1 x_2 + x_2^2 \delta^{q+1})b^2 + x_2 \gamma b + \gamma^2 = 0\}.$$

令 ψ 是 \mathbb{F}_q 的基本加法特征, 即 $\psi(x) = \omega_p^{\operatorname{Tr}_{q/p}(x)}$, 其中 $\operatorname{Tr}_{q/p}$ 是从 \mathbb{F}_q 到 \mathbb{F}_p 的绝对迹函数, ω_p 是一个本原 p 次单位根. 利用特征的性质, 可进行如下计算:

$$\begin{split} N_2 &= \frac{1}{q} \sum_{\lambda \in \mathbb{F}_q} \sum_{x_2 \in \mathbb{F}_q^*} \sum_{x_1, \gamma, b \in \mathbb{F}_q} \psi(\lambda((x_1^2 + x_1 x_2 + x_2^2 \delta^{q+1}) b^2 + x_2 \gamma b + \gamma^2)) \\ &= \frac{(q-1)q^3}{q} + \frac{1}{q} \sum_{\lambda, x_2 \in \mathbb{F}_q^*} \sum_{x_1, b \in \mathbb{F}_q} \psi(\lambda(x_1^2 + x_1 x_2 + x_2^2 \delta^{q+1}) b^2) \sum_{\gamma \in \mathbb{F}_q} \psi(\lambda(\gamma^2 + x_2 b \gamma)) \end{split}$$

$$= q^{2}(q-1) + \frac{1}{q} \sum_{\lambda, x_{2} \in \mathbb{F}_{q}^{*}} \sum_{x_{1}, b \in \mathbb{F}_{q}} \psi(\lambda(x_{1}^{2} + x_{1}x_{2} + x_{2}^{2}\delta^{q+1})b^{2}) q[[\lambda = x_{2}^{-2}b^{-2}]]$$

$$= q^{2}(q-1) + \sum_{\lambda, x_{2} \in \mathbb{F}_{q}^{*}} \sum_{x_{1} \in \mathbb{F}_{q}} \psi(x_{2}^{-2}x_{1}^{2} + x_{2}^{-1}x_{1} + \delta^{q+1})$$

$$= q^{2}(q-1) - \sum_{\lambda, x_{2} \in \mathbb{F}_{q}^{*}} \sum_{x_{1} \in \mathbb{F}_{q}} \psi(0)$$

$$= q(q-1).$$

在第 3 个等式中, [[**P**]] 表示 Kronecker delta 函数: 若性质 **P** 成立, 则该函数取值为 1, 否则取值为 0. 因此, 在特征为偶数的情形下, 同样有 $N_0 = N_1 + N_2 = 2q^2 - 2q$.

综合特征为奇数和偶数两种情形, 有 $N_0 = 2q^2 - 2q$. 由 (3.7) 可得

$$|X_{21}^{\perp} \cap S_3| = (q+1)q^3 - \frac{q}{q-1}N_0 = q^4 + q^3 - 2q^2.$$
 (3.9)

结合 (3.5)、(3.6) 和 (3.9), 有

$$|X_{21}^{\perp} \cap O_2| = q^4 + q^3 + q. \tag{3.10}$$

证毕.

引理 3.3 令 $G_1 = \mathrm{PGU}_3(q)$ 或 $G_1 = \mathrm{PSU}_3(q)$, 并取 $Q^+(7,q)$ 的两个 G_1 - 轨道 O 和 O'. 对于 $X \in O$ 和 $Y \in O'$, 有 $|O| \cdot |X^{\perp} \cap O'| = |O'| \cdot |Y^{\perp} \cap O|$.

证明 由于 O 和 O' 是 G_1 - 轨道, $|Y^{\perp} \cap O|$ 与 $Y \in O'$ 的选取无关. 同样地, $|X^{\perp} \cap O'|$ 与 $X \in O$ 的选取无关. 对集合 $\{(X,Y): X \in O, Y \in O', B(X,Y) = 0\}$ 进行双重计数即可得引理中所述的等式. \square

定理 3.2 令 $q \equiv 2 \pmod{3}$, q > 2, 则 $PSU_3(q)$ - 不变集 O_2 是 $Q^+(7,q)$ 的一个 $(q^2 + q)$ - 卵形体.

证明 根据文献 [16], $O_1 \setminus O_2$ 和 O_3 是所有的 $\operatorname{PGU}_3(q)$ - 轨道, 且 O_1 是 $Q^+(7,q)$ 的卵形体. 根据定义 1.1, $|Y^{\perp} \cap O_1| = q^2 + 1$, 其中 Y 是 O_2 的任意元素. 根据引理 3.3, 对于任意 $X \in O_1$, 有

$$|X^{\perp} \cap O_2| = \frac{|O_2|}{|O_1|} \cdot (q^2 + 1) = (q^2 + q)(q^2 + 1).$$
 (3.11)

现任取 $Q^+(7,q)$ 中的元素 Y,超平面 Y^\perp 和 $Q^+(7,q)$ 相交于一个二次锥体 (quadratic cone), 其顶点 (vertex) 为 Y,基底 (base) 为 $Q^+(5,q)$ (详情参见文献 [15, 引理 1.22]). 从而有

$$|Y^{\perp} \cap Q^{+}(7,q)| = (q^{2} + q + 1)(q^{2} + 1)q + 1.$$

由于 O_2 是一个 $\mathrm{PGU}_3(q)$ - 轨道, 由引理 3.2 知, 对于任意 $Y \in O_2$, 有 $|Y^{\perp} \cap O_2| = q^4 + q^3 + q$, 从而有

$$|Y^{\perp} \cap O_3| = |Y^{\perp} \cap Q^+(7,q)| - |Y^{\perp} \cap O_1| - |Y^{\perp} \cap O_2| = (q^2 + 1)q^3.$$

根据引理 3.3, 对于任意 $X \in O_3$, 有

$$|X^{\perp} \cap O_2| = \frac{|O_2|}{|O_3|} \cdot (q^2 + 1)q^3 = (q^2 + q)(q^2 + 1).$$
 (3.12)

由 (3.10)-(3.12) 和引理 3.3, 即可推导出 O_2 是 $Q^+(7,q)$ 的一个 (q^2+q) - 卵形体. 证毕.

推论 3.1 令 $q \equiv 2 \pmod{3}$, q > 2, 则 $PSU_3(q)$ - 轨道 O_3 是 $Q^+(7,q)$ 的一个 q^3 - 卵形体.

证明 由定理 3.2 可知, O_2 是 $Q^+(7,q)$ 的一个 (q^2+q) - 卵形体. 根据引理 1.1, O_3 作为 $O_1 \cup O_2$ 在 Q 中的补, 构成了 $Q^+(7,q)$ 的一个 q^3 - 卵形体.

注 3.1 当 q=2 时, 通过 Magma 软件直接验证可知, 群 $PSU_3(q)$ 作用在 $Q^+(7,q)$ 上恰有 5 个 轨道, 其描述和 q>2 时相同; 轨道 O_1 和 O_3 仍分别构成 $Q^+(7,q)$ 的 1- 和 8- 卵形体, 其余 3 个轨道 不是奇妙集, 但它们的并 O_2 是 $Q^+(7,q)$ 的 6- 卵形体.

3.2 $Q^+(7,q)$ 中秩为 2 的 $PSU_3(q)$ - 轨道结构分析

首先证明秩为 2 的 $PSU_3(q)$ - 轨道 O_{21} 、 O_{22} 和 O_{23} 均不是奇妙集, 这些集合由 (2.8) 和 (2.9) 定义. 根据文献 [1, 定理 4], i- 紧集和 m- 卵形体相交于 $m \cdot i$ 个公共点. 由于 O_1 是 1- 卵形体且与 O_{21}, \ldots, O_{23} 不相交, 故如果后者是奇妙集, 则其一定是 m- 卵形体. 根据定义 1.1 知, 参数 m 由其大小唯一确定. 由于 $A_0 = \operatorname{diag}(1,\omega,1)$ 引起 3 个 $PSU_3(q)$ - 轨道 O_{21} 、 O_{22} 和 O_{23} 的传递置换, 故只需证明其中任何一个不是 m- 卵形体即可. 这里, ω 是 \mathbb{F}_{q^2} 中的 3 阶元.

令 X_{21} 、 X_{22} 和 X_{23} 如 (2.6) 所定义. 根据定义, O_{22} 是 X_{22} 在 $PSU_3(q)$ 的共轭作用下的像集. 令 S_1 、 S_2 和 S_3 分别是由 (3.1)–(3.3) 所定义的集合, 它们构成 O_2 的一个划分. 取 O_2 中的一个元素 $\langle M \rangle$, 其表达式如 (2.1) 所示. 根据 (2.3) 中 B 的表达式, $B(X_{21},M)={\rm Tr}(\gamma)=0$. 因此 $\langle M \rangle \in X_{21}^{\perp}$ 当且仅当 ${\rm Tr}(\gamma)=0$.

定理 3.3 令 $q \equiv 2 \pmod{3}$, 则轨道 O_{22} 不是 $Q^+(7,q)$ 中的 m- 卵形体.

证明 对于 q=2 的情形, 由注 3.1 可知, O_{22} 不是 $Q^+(7,2)$ 中的 m- 卵形体. 现只需考虑 q>2 的情形. 假设 O_{22} 是 $Q^+(7,q)$ 中的 m- 卵形体. 根据定义 1.1 和定理 2.1, 有 $m=\frac{q^2+q}{3}$. 接下来计算

$$|X_{21}^{\perp} \cap S_1 \cap O_{22}| = \frac{(q+1)q}{3} + q \cdot [[9 \mid (q+1)]], \tag{3.13}$$

$$|X_{21}^{\perp} \cap S_2 \cap O_{22}| = (q-1)q \cdot [[9 \mid (q+1)]],$$
 (3.14)

$$|X_{21}^{\perp} \cap S_3 \cap O_{22}| = \frac{1}{3}q^2(q^2 - 1) + (q - 1)q^2 \cdot [[9 \mid (q + 1)]], \tag{3.15}$$

其中, [[P]] = 1 或 [[P]] = 0, 取决于性质 P 是否成立. 将它们相加, 即可得到矛盾:

$$|X_{21}^{\perp} \cap O_{22}| = \frac{1}{3}(q^4 + q) + q^3 \cdot [[9 \mid (q+1)]] \neq \frac{q^2 + q}{3}(q^2 + 1).$$

由于证明方法类似,这里只给出最复杂的情形 (3.15) 的证明.

现任取 $\langle M \rangle \in X_{21}^{\perp} \cap S_3 \cap O_{22}$. 由本定理前的分析以及 (3.3) 可知

$$M = \begin{pmatrix} \lambda_1 \gamma + \lambda_2 b & \beta & \lambda_1 \overline{\beta} - \lambda_2 \lambda_1^q \gamma + \lambda_2^{q+1} b \\ \gamma & -t & \overline{\beta} \\ b & -\gamma & \overline{\lambda_1 \gamma + \lambda_2 b} \end{pmatrix},$$

其中, $t = \text{Tr}(\lambda_1 \gamma) + \lambda_1^{q+1} b$, $\beta = -\lambda_1 \text{Tr}(\lambda_1 \gamma + \lambda_2 b) - \lambda_2 \gamma$, 且 4 个参数 $(\lambda_1, \lambda_2, \gamma, b)$ 满足以下条件: $\lambda_1, \lambda_2 \in \mathbb{F}_{q^2}^*$, $\gamma \in \mathbb{F}_{q^2}$, $b \in \mathbb{F}_q$ 且

$$\gamma^q + \gamma = 0$$
, $\operatorname{Tr}(\lambda_2) = \lambda_1^{q+1}$, $\gamma^{q+1} + bt \neq 0$.

该点 $\langle M \rangle$ 落在 O_{22} 中当且仅当存在 $A=(a_{ij})_{3\times 3}\in SU_3(q)$ 和 $\lambda_0\in \mathbb{F}_q^*$ 使得 $A^{-1}X_{22}A=\lambda_0 M$ 成立. 这等价于

$$X_{22}A = \lambda_0 A M, \quad A J \overline{A}^{\top} = J, \quad \det(A) = 1.$$

通过比较 $X_{22}A = \lambda_0 AM$ 两端各个分量可知, 其等价于

$$a_{32} = -a_{31}\lambda_1, \quad a_{33} = -a_{31}\lambda_2, \quad a_{23} = \lambda_2^q a_{21} + \lambda_1^q a_{22},$$

$$a_{31} = -\omega\lambda_0(a_{22} + \lambda_1 a_{21})(\gamma - \lambda_1 b)^q,$$

$$a_{22} = w^2\lambda_0(\beta a_{11} - t a_{12} - \gamma a_{13}),$$

$$a_{21} = w^2\lambda_0((\lambda_1\gamma + \lambda_2 b)a_{11} + \gamma a_{12} + b a_{13}).$$
(3.16)

利用上述表达式直接计算可得

$$\det(A) = a_{31}(a_{22} + a_{21}\lambda_1)(a_{11}\lambda_2^q + a_{12}\lambda_1^q - a_{13}) = 1.$$
(3.18)

引入辅助变量 $\eta = a_{22} + \lambda_1 a_{21}$, $s = a_{12} + \lambda_1 a_{11}$. 比较 $AJ\overline{A}^{\top} = J$ 两端各项, 可知其等价于下列条件:

$$(a_{12}\lambda_1^q + a_{11}\lambda_2^q - a_{13})a_{31}^q = -1, (3.19)$$

$$a_{22}^{q+1} + \lambda_1^{q+1} a_{21}^{q+1} + \text{Tr}(\lambda_1 a_{21} a_{22}^q) = 1, \tag{3.20}$$

$$(a_{13} + \lambda_2 a_{11})a_{21}^q + sa_{22}^q = 0, (3.21)$$

$$a_{12}^{q+1} + \text{Tr}(a_{13}a_{11}^q) = 0. (3.22)$$

由 (3.18) 和 (3.19) 可得 $\eta = -a_{31}^{q-1} \neq 0$, 故有 $\eta^{q+1} = 1$. 代入 (3.16) 化简可得

$$(\gamma - \lambda_1 b)^{q-1} = -\eta^{-3} w. (3.23)$$

以下运算较为复杂, 我们使用符号计算软件 Maple 辅助计算. 利用上面的等式将 A 中元素全部由 a_{11} 、 η 、s、 λ_0 以及 M 中的参数表示: 将上面等式中的 a_{12} 全部替换为 $s-\lambda_1a_{11}$; 将上面 a_{21} 和 a_{22} 的表达式代入 $\eta=a_{22}+\lambda_1a_{21}$ 将 a_{13} 解出, 再依次代入其他 a_{ij} 的表达式即可. 利用这些表达式以及 $\eta^{q+1}=1$ 可以直接验证: (3.21) 自动成立; (3.18) 和 (3.19) 等价于 (3.23) 且必有 $\eta^{q+1}=1$; (3.21) 和 (3.22) 分别等价于

$$x^{q+1} = \operatorname{Tr}\left(\frac{(\gamma - \lambda_1 b)a_{11}}{\lambda_0 w \eta(\gamma^2 - bt)}\right), \quad \operatorname{Tr}(x) = \frac{b}{\lambda_0(\gamma^2 - bt)}, \tag{3.24}$$

其中 $x = w^{-1}\eta^{-1}s$. 换言之, x 和 x^q 是方程

$$Y^{2} - \frac{b}{\lambda_{0}(\gamma^{2} - bt)}Y + \operatorname{Tr}\left(\frac{(\gamma - \lambda_{1}b)a_{11}}{\lambda_{0}w\eta(\gamma^{2} - bt)}\right) = 0$$
(3.25)

的两个解, 且当 $x \in \mathbb{F}_q$ 时这两个解相同. 由于该方程在 \mathbb{F}_{q^2} 中总有两个解, 故只需保证当它在 \mathbb{F}_q 中有解时两个解相同即可. 综上所述, $\langle M \rangle$ 落在 $X_{21}^{\perp} \cap S_3 \cap O_{22}$ 中当且仅当存在 \mathbb{F}_{q^2} 中元素 a_{11} 、 η 和 λ_0 满足如下条件: $\eta^{q+1} = 1$, $\lambda_0 \in \mathbb{F}_q^*$, (3.23) 成立且 (3.25) 在 \mathbb{F}_q 中要么无解要么有两个相同的解.

考虑两种情形.

情形 1 当 b=0 时, 取 $a_{11}=w\eta\gamma^2$ 即可令 (3.25) 的两个解均为 0, 且 (3.23) 简化为 $\gamma^{q-1}=-\eta^{-3}w$. 由于 $\gamma+\gamma^q=0$, 故 $\gamma^{q-1}=-1$, 从而 $\eta^3=w$. 由于 w 的阶为 3 且 $\eta^{q+1}=1$, 所以存在这样的 η 当且

仅当 3 整除 $\frac{q+1}{3}$, 即 9 | (q+1). 如果 $q \not\equiv -1 \pmod{9}$, 则没有这样的点 $\langle M \rangle$. 如果 $q \equiv -1 \pmod{9}$, 则此时 M 的参数 $(\lambda_1, \lambda_2, \gamma)$ 有 $(q^2 - 1) \cdot q \cdot (q - 1)$ 种选择: 对于给定 $\lambda_1 \in \mathbb{F}_{q^2}^*$, 共有 $q \uparrow \uparrow \lambda_2$ 满足 $\text{Tr}(\lambda_2) = \lambda_1^{q+1}$, 而 γ 有 q-1 种选择. 总之, 共有 $(q^2 - 1)q \cdot [[9 \mid (q+1)]]$ 个这样的射影点 $\langle M \rangle$, 其参数 b = 0.

情形 2 当 $b \neq 0$ 时,由于考虑的是射影点,故不失一般性可设 b = 1. 存在 q + 1 阶元 η 使得 (3.23) 成立当且仅当 $(\gamma - \lambda_1)^{(q^2 - 1)/3} = (-w)^{(q + 1)/3}$. 假设 λ_1 和 γ 满足该条件,并选定这样一个 η . 取 c 为 \mathbb{F}_q 中使得 $Y^2 - Y + c$ 在 \mathbb{F}_q 上不可约的一个元素. 令 $\lambda_0 = (\gamma^2 - t)^{-1}$,并取 a_{11} 使得 $\mathrm{Tr}(\frac{(\gamma - \lambda_1 b) a_{11}}{\lambda_0 w \eta (\gamma^2 - b t)}) = c$,可知 (3.25) 在 \mathbb{F}_q 上无解. 因此, $\langle M \rangle$ 的参数 $(\lambda_1, \lambda_2, \gamma)$ 需要满足的条件为 $(\gamma - \lambda_1)^{(q^2 - 1)/3} = (-w)^{(q + 1)/3}$, $\gamma^q + \gamma = 0$, $\mathrm{Tr}(\lambda_2) = \lambda_1^{q+1}$, $\lambda_1 \lambda_2 \neq 0$. 满足前两个条件的 (γ, λ_1) 共有 $\frac{1}{3}(q^2 - 1) \cdot q$ 对. 当 $\gamma^{(q^2 - 1)/3} = (-w)^{(q+1)/3}$ 时,由 $\gamma^q + \gamma = 0$ 可知 $\gamma^{q-1} = -1$,故 $w^{(q+1)/3} = 1$,这只有在 q = -1(mod 9)时成立. 因此满足前两个条件的 (γ, λ_1) 对中有 $\frac{1}{3}(q^2 - 1)q - (q - 1)[[9 | (q + 1)]]$ 个满足 $\lambda_1 \neq 0$. 对于每一个这种对,有 q 个 λ_2 满足剩余两个条件. 因此,该情形共有 $\frac{1}{3}q^2(q^2 - 1) - (q - 1)q \cdot [[9 | (q + 1)]]$ 个这样的点 $\langle M \rangle$.

综上可知,

$$|X_{21}^{\perp} \cap S_3 \cap O_{22}| = \frac{1}{3}q^2(q^2 - 1) + (q - 1)q^2 \cdot [[9 \mid (q + 1)]]. \tag{3.26}$$

证毕.

推论 3.2 正交极空间 $Q^+(7,q)$ 中的 $PSU_3(q)$ - 不变奇妙集只有 $O_1 \setminus O_2 \setminus O_3$ 以及它们的补集. 证明 由上一小节内容可知, $O_1 \setminus O_2$ 和 O_3 是 m- 卵形体, 且构成 $Q^+(7,q)$ 中点集的划分. 由定理 3.3 及其前面的分析可知, $O_{21} \setminus O_{22}$ 和 O_{23} 均不是 m- 卵形体. 现由引理 1.1 即可推导出所需要的

4 结论

结论.

有限经典极空间中的 m- 卵形体是一类重要的几何构型,它与强正则图和二重量码有着密切的联系. 在高维情形下, m- 卵形体的构造极少,且由于维数较高一般很难利用计算机搜索得到新的例子. 通过研究有限典型群的低维绝对不可约表示的轨道结构,有望得到新参数的奇妙集,在这方面尚没有系统的研究. 本文借助于 Kantor 的 $Q^+(7,q)$ 模型,研究了 $PSU_3(q)$ 的 8 维绝对不可约表示所对应的正交极空间 $Q^+(7,q)$ 的轨道结构,由此构造出新的自同构群为 $PSU_3(q)$ 的 (q^2+q) - 和 q^3 - 卵形体. 在此基础上,本文进一步确定了 $Q^+(7,q)$ 的所有 $PSU_3(q)$ - 不变奇妙集.

致谢 感谢审稿人提出的宝贵意见和建议.

参考文献

- 1 Bamberg J, Kelly S, Law M, et al. Tight sets and m-ovoids of finite polar spaces. J Combin Theory Ser A, 2007, 114: 1293–1314
- 2 Bamberg J, Law M, Penttila T. Tight sets and m-ovoids of generalised quadrangles. Combinatorica, 2009, 29: 1–17
- 3 Bamberg J, Penttila T. Overgroups of cyclic Sylow subgroups of linear groups. Comm Algebra, 2008, 36: 2503–2543
- 4 Brouwe A E, Haemers W H. Spectra of Graphs. Universitext. New York: Springer, 2012
- 5 Calderbank R, Kantor W M. The geometry of two-weight codes. Bull Lond Math Soc, 1986, 18: 97-122
- 6 Cossidente A, Culbert C, Ebert G L, et al. On m-ovoids of W₃(q). Finite Fields Appl, 2008, 14: 76–84
- 7 Cossidente A, Pavese F. Intriguing sets of quadrics in PG(5, q). Adv Geom, 2017, 17: 339–345

- 8 Cossidente A, Pavese F. On intriguing sets of finite symplectic spaces. Des Codes Cryptogr, 2018, 86: 1161–1174
- 9 Cossidente A, Pavese F. Cameron-Liebler line classes of PG(3,q) admitting PGL(2,q). J Combin Theory Ser A, 2019, 167: 104-120
- 10 Cossidente A, Penttila T. Hemisystems on the Hermitian surface. J Lond Math Soc (2), 2005, 72: 731-741
- 11 Feng T, Momihara K, Rodgers M, et al. Cameron-Liebler line classes with parameter $x = \frac{(q+1)^2}{3}$. Adv Math, 2021, 385: 107780
- 12 Feng T, Momihara K, Xiang Q. Cameron-Liebler line classes with parameter $x = \frac{q^2 1}{2}$. J Combin Theory Ser A, 2015, 133: 307–338
- 13 Feng T, Momihara K, Xiang Q. A family of m-ovoids of parabolic quadrics. J Combin Theory Ser A, 2016, 140: 97–111
- 14 Feng T, Tao R. An infinite family of m-ovoids of Q(4,q). Finite Fields Appl, 2020, 63: 101644
- 15 Hirschfeld J W P, Thas J A. General Galois Geometries. Springer Monographs in Mathematics. London: Springer, 2016
- 16 Kantor W M. Ovoids and translation planes. Canad J Math, 1982, 34: 1195-1207
- 17 Lidl R, Niederreiter H. Finite Fields, 2nd ed. Encyclopedia of Mathematics and Its Applications, vol. 20. Cambridge: Cambridge University Press, 1997

$\mathrm{PSU}_3(q)$ -invariant intriguing sets of orthogonal polar space $Q^+(7,q)$

Tao Feng, Weicong Li & Ran Tao

Abstract Suppose that q is a prime power such that $q \equiv 2 \pmod{3}$. By using Kantor's model of $Q^+(7,q)$, we study the orbit structure of the action of $PSU_3(q)$ on the polar space $Q^+(7,q)$ and obtain new $(q^2 + q)$ - and q^3 -ovoids with an automorphism group $PSU_3(q)$. In this way, we determine all the $PSU_3(q)$ -invariant intriguing sets of $Q^+(7,q)$. It turns out that such an intriguing set is either the unitary ovoid, one of the two new m-ovoids, or their complements.

Keywords intriguing set, ovoid, orthogonal polar space, unitary group ${\rm MSC(2020)} \quad 51A50, \, 51E20, \, 05B25$ doi: $10.1360/{\rm SSM-2022-0071}$