Chinese Rare Earths

结晶紫褪色光度法测定痕量镧

柳玉英,王玉金,陈娟平

(山东理工大学 化工学院 山东 淄博 255049)

关键词: 动力学光度法; 结晶紫; 镧

中图分类号: 0657.32 文献标识码: A 文章编号: 1004-0277(2012) 01-0065-03

微量稀土元素是钢的良好脱氧、脱硫剂,可以明显改善钢的质量[1]。同时由于稀土元素具有独特的电子结构,能提供良好的电子转移轨道,因而使含稀土的催化剂具有良好的催化活性。在催化剂中加入一定量的镧可明显地改善催化剂的活性和稳定性,且镧的加入量直接影响催化剂的活性、热稳定性、选择性^[2]。

微量镧的测定方法有电感耦合等离子体原子发射光谱法^[3~6]、电感耦合等离子体质谱法^[7]、光度分析法^[8~13]等。本文研究发现,在硫酸介质中,镧能够催化 KIO₄ 氧化结晶紫的褪色反应,适量氯化十六烷基吡啶的存在可以提高测定的灵敏度,从而建立了一种测定痕量镧的新方法。该方法用于催化剂中镧的测定,获得满意结果。

1 实验部分

1.1 主要仪器与试剂

722 分光光度计(上海第三分析仪器厂);电热恒温水浴锅(江苏金坛荣华仪器厂)。

镧标准溶液: 1000 μg/ mL ,用时稀释成 10 μg / mL 标准工作溶液; 结晶紫溶液: 0.1% 的水溶液; 硫

酸: 0.1 mol/L; KIO₄ 溶液: 0.01 mol/L; 氯化十六烷 基吡啶(CPC): 0.1%。

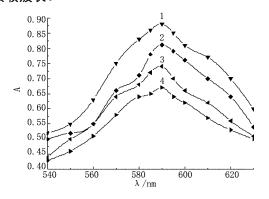
所用试剂均为分析纯,水为二次石英亚沸蒸馏水。

1.2 实验方法

取规格一致的 25 mL 具塞比色管两支 ,一支作为空白(非催化反应,吸光度为 A_0),另一支加入适量 $La(\mathbb{H})$ 标准溶液,然后依次向两个比色管中分别加入结晶紫溶液 1.0 mL,氯化十六烷基吡啶 0.80 mL 高碘酸钾溶液 2.0 mL 和 H_2SO_4 溶液 2.5 mL,最后定容至刻度 摇匀。置于 80% 的恒温水浴中加热 10 min,迅速取出冰水冷却 5 min。以 1 cm 比色皿用蒸馏水为参比,在分光光度计上,于 590 nm 波长处测定催化反应和非催化反应吸光度 A 和 A_0 ,计算反应速率 lgA_0/A 。

2 结果与讨论

2.1 吸收光谱


在实验条件下 测不同溶液的吸收光谱 ,如图 1 所示 ,La(Ⅲ) 对 KIO₄ 氧化结晶紫的反应有催化作 用 ,且 CPC 的存在可以提高 La(Ⅲ) 催化效果 ,各体

收稿日期: 2010-04-21

基金项目: 山东省自然科学基金项目资助(Y2008B26)

作者简介: 王玉金(1975-) 男 山东淄博人 硕士研究生 庄要研究方向为光谱分析。

系的最大吸收波长均为 590nm 本文选择 590 nm 作为吸收波长。

1: 结晶紫(0.5 mL) + H₂SO₄(2.5 mL); 2:1 + KIO₄(2.0 mL); 3:2 + La(III) (1.0 mL); 4:3 + CPC(0.80 mL)

图1 吸收光谱

Fig. 1 Absorption spectra

2.2 试剂的用量

考察了结晶紫和 KIO_4 的用量对 $lg(A_0/A)$ 的影响 结果表明 ,结晶紫的用量太大 ,吸光度 A 过大 ,超出仪器的测量范围; 而结晶紫的用量太小且 KIO_4 的用量较大时 线性范围较小 ,当结晶紫为 0.5 mL、 KIO_4 为 2.0 mL 时 $lg(A_0/A)$ 较大 ,故本实验选择结晶紫和 KIO_4 的用量分别为 0.5 mL 和 2.0 mL。

2.3 酸度的影响

2.4 CPC 用量的影响

试验了表面活性剂 CPC 对反应的影响。实验结果表明 $_{\rm CPC}$ 的存在可以加快反应速度 $_{\rm LPC}$ 即可以提高测定的灵敏度。当 CPC 的用量为 0. $_{\rm LPC}$ 的用量

2.5 反应温度的影响和表观活化能

实验表明 温度低于 50 % 时 ,催化反应的速度 较慢; 当温度高于 50 % 时 ,随着温度的升高 ,反应速 度不断加快。本文选择 80 $^{\circ}$ 化水浴作为加热条件 在 50 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 的范围内,以 $^{\circ}$ $^$

2.6 反应体系的稳定性

反应体系经流水冷却5 min ,室温下静置6 h ,吸 光度值基本不变 ,结果见表 l。实验表明此方法能 够有效终止化学反应 ,且体系稳定性较好。

表 1 反应体系的稳定性
Table 1 The stability of the reaction system

	A_0	A	
静置前	0.678	0.677	
静置后	0.505	0.491	

2.7 共存离子的影响

当相对误差控制在 ± 5% 以内 ,对 1.0 μg /mL 的 La(III) 进行测定时 ,下列倍量的离子不干扰测定: K⁺、Ca²⁺、Mg²⁺、Na⁺、NH₄⁺、Cl⁻、NO₃⁻、Br⁻ (1500); Ba²⁺、Zn²⁺、Cu²⁺、Mn²⁺、F⁻、PO₄³⁻ (1000); Cr³⁺、Ag⁺、Ni²⁺、Al³⁺、Co²⁺、V⁵⁺、Pb²⁺、Hg²⁺、Cd²⁺、SO₄²⁻ (500); Fe³⁺ (50)。

2.8 线性范围和检出限

按实验方法,以 $\lg(A_0/A)$ 对的 La(III) 浓度作图。结果表明,La(III) 的质量浓度在 $0.20~\mu g/~mL$ ~8.0 $\mu g/~mL$ 范围内, $lg(A_0/A)$ 与 La(III) 的浓度呈线性关系,其回归方程为: $lg(A_0/A)=0.43C+0.015$ 相关系数为 0.9968。对空白进行 11~次测定的标准偏差为 0.00172~,用 3 倍的标准偏差($3\sigma/K$)计算得到 La(III) 的检出限为 $0.012~\mu g/mL$ 。

2.9 样品分析

准确称取 0.2000g 的催化剂样品于聚四氟乙烯 烧杯中,加少量水润湿,用 HF 加热溶解,然后蒸发 至近干,用 6mol/L HCl 重新溶解,定容至 100 mL。 取适量溶液,按照实验方法进行测定,结果见表 2。

表 2 样品分析结果

Table 2 Determination results of La_2O_3 in samples(n = 11) g /100g

样品	测得值	加标量	RSD/%	测得总量	回收率/%
1#	2.68	2.00	3.6	4.80	106.0
2#	3.10	2.00	4.4	5.02	96.0

3 结论

在酸性条件下, KIO_4 可以氧化结晶紫使其褪色 痕量 La(III) 的存在可以加快其反应速度,从而建立了一个催化动力学光度分析法测定痕量 La(III) 的新体系。该方法的线性范围为 $0.02~\mu g/mL~8.0~\mu g/mL~La(III)$,检出限为 $0.012~\mu g/mL~La(III)$ 。将本方法用于催化剂中痕量镧的测定,获得满意结果。

参考文献:

- [1] 蒋学智 汪宝峰 李春龙 等. La 对纯净钢抗高温氧化性能的影响 [J]. 包头钢铁学院学报 2006 25(1):40-42.
- [2] 梁钰. 钕铁硼永磁材料的 X 射线荧光光谱分析 [J]. 理化检验(化学分册),1990,26(3):157.
- [3] Yadvendra K Agrawal , Pranav Shrivastav. Solvent extraction , spectrophotometric and inductively coupled plasma atomic emission spectroscopic determination of lanthanum with crown hydroxamic acid [J]. Talanta ,1997 ,44: 1307-1312.
- [4] Vicente O , Masi A , Martinez L , et al. On line preconcentration system for lanthanum determination in urine using FI-ICP-AES [J]. Anal Chim Acta , 1998 , 366: 201–

207.

- [5] 魏春艳 ,丁美英. ICP AES 法测定钢中微量 La、Ce、 Pr、Nd 和 Sm [J]. 稀土 2004 25(5): 24-25.
- [7] 陆军 涨艳 ,孟平. 电感耦合等离子体原子发射光谱 法测定铸铁中镧和铈 [J]. 冶金分析 ,2007 ,27(5): 72-74.
- [8] 韩国军,伍星,童坚. 膜去溶 ICP MS 法测定高纯 Eu_2O_3 中 14 种痕量稀土杂质 [J]. 分析试验室 2009, 28(11):91-96.
- [9] 王敏. 偶氮胂(Ⅲ) 光度法测定催化剂中的镧[J]. 光谱实验室 2004,21(2):390-392.
- [10] 徐志贤 ,方秋生 ,张贵云. 三溴偶氮胂直接光度法测定钼中镧[J]. 稀有金属与硬质合金 2008 36(3):45-47
- [11] 叶世源. PMBP 萃取分离偶氮胂 Ⅲ光度法测定锌基稀土合金中镧和铈 [J]. 理化检验 化学分册, 2001 37(6):281-282.
- [12] 陈瑞战,王晓菊,倪月生,等.镧(Ⅲ)中性红双氧水体系催化动力学分光光度法测定痕量镧[J].稀土, 2000,21(6):46-48.
- [13] 于辉 濯庆洲 涨晓霞. DBC 偶氮胂分光光度法测定稀土研究[J]. 稀土 2008 29(1):41-43.

Spectrophotometric Determination of Trace Amount of Lanthanum by the Decolouring Reaction of Violet

LIU Yu-ying ,WANG Yu-jin ,CHEN Juan-ping

(Department of Chemical Engineering Shandong University of Technology Zibo 255049, China)

Abstract: In the presence of cetylpyridium chloride , a sensitive method for the determination of lanthanum($\rm III$) by kinetic spectrophotometry was established based on the catalytic effect of trace lanthanum($\rm III$) on the discoloring reaction of crystal violet with potassium periodate. The influence of acidity , amounts of reagents , temperature and other factors on the reaction were discussed. The optimum conditions of the reaction were determined. The linear range was $0.20 \sim 8.0 \mu g/mL$ of lanthanum , and the detection limit was $0.012 \mu g/mL$. The proposed method has been applied successfully to the determination of trace lanthanum in catalyst samples , and the recovery was between 96.0% to 106.0%.

Key words: spectrophotometry; crystal violet; lanthanum