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Once complex number is introduced as a field, it is natural to consider functions de-
pending only on its “pure” holomorphic variable z. As it is independent of z̄,

∂f

∂z̄
= 0.

There are surprisingly rich properties of these holomorphic functions.

The possibility of holomorphic continuation of holomorphic functions forces us to
consider multi-valued holomorphic functions.

The concept of Riemann surfaces was introduced to understand such phenomena.

The ideas of branch cuts and branch points immediately relate topology of these sur-
faces to complex variables.

The possibility that two Riemann surfaces can be homeomorphic to each other without
being equal was realized in the nineteenth century when remarkable uniformization the-
orems were proved by Riemann for simply connected surfaces. Although it took Hilbert
many years later to make Riemann’s work on variational principle rigorous, the Dirich-
let principle of constructing harmonic functions and hence holomorphic functions has
tremendous influence up to modern days.

Koebe finally proved that every abstractly defined simply connected Riemann surface
is either the disk, the complex line or the Riemann sphere.

There are proofs based on complex function theory, variational principle and geomet-
ric deformation equations.

The uniformization theorem allows one to identify space of complex structures to
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space of discrete groups of SL(2, R) which acts on the disk by linear fractional transfor-
mations.

The problem of how to parametrize all possible Riemann surfaces with a fixed topol-
ogy has been one of the most interesting problems in mathematics.

A very important distinction between two dimensional geometry and higher dimen-
sional geometry is that every two dimensional orientable Riemannian manifold admits a
complex structure so that the metric has the form h(dx2 + dy2). For genus greater than
one, it was found by Poincaré that each of these metrics can be conformally deformed to
a unique metric with curvature equal to −1.

Hence the space of conformal structures on a surface of genus g is the same as the
space of metrics with constant negative curvature = −1 on the surface. It is of course
important to realize that the group of diffeomorphism acts on this space. The quotient
space is the moduli space of conformal structure. It is denoted by Mg . If we restrict the
diffeomorphisms to those that are isotopic to identity, then the quotient space is called the
Teichmüller space and is denoted by Tg .

Naturally, Tg covers Mg and the covering transformation is the mapping class group
which is the quotient of the above two diffeomorphism groups.

It is not hard to prove that Tg is contractible. The topology and the geometry of Mg

are far more complicated.

Teichmüller has studied Tg extensively by introducing the concept of extremal con-
formal map between Riemann surfaces. Bers demonstrated that it is possible to embed
Tg into C

3g−3 as a domain of holomorphy. It would be interesting to find a meaningful
extension of extremal conformal map to higher dimensional complex manifolds.

However, there is no precise description of how bad the boundary of the Bers’ embed-
ding is. It is also not clear what is the “optimal” embedding of Tg into C

3g−3.

The geometry of Mg is more algebraic in nature. It is quasiprojective in the sense that
there is algebraic variety M g so that M g\Mg are given by subvarieties. The most basic
construction of M g was due to Deligne-Mumford who introduced the concept of stable
curves (concept of stable manifolds that are derived from geometric invariant theory).

It is known that for large genus, Mg is difficult to describe in the sense that it is of
“general type” and there is no nontrivial holomorphic map from complex projective space
onto M g .

Study of M g has been a fundamental subject in complex geometry and mathematics
in general.

There are many natural complex bundles over Mg . In fact, there is a universal curve
over Mg , i.e., a complex manifold fibered over Mg so that each fiber is the given Riemann
surface. On the universal curve, we can take tangent bundles along the fiber and we can
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form the Hodge bundle by taking holomorphic one-forms along the fiber. The Chern
classes of these natural bundles give important cohomology classes of M g . The Mumford
conjecture says that low dimensional (related to g) cohomology of M g is generated by
Chern classes. Madsen[1] has settled this problem recently. But it is still an interesting
problem to understand such cohomology in the unstable range.

The Chern numbers of these bundles can be organized nicely and have been a very ac-
tive area of study. In the past fifteen years, string theory has contributed a great deal of un-
derstanding into these numbers. There are Witten conjecture (proved by Kontsevich[2,3]),
Mariño-Vafa formula (proved by Liu-Liu-Zhou[4]) and many other exciting works.

The concept of holomorphic functions of one variable can be readily generalized to
functions of several variables. The naive generalization of uniformization fails completely
as the equations ∂f

∂z̄i
= 0 for all i form an overdetermined system.

We call a manifold M to be complex if there are coordinates charts (z1, . . . , zn) so
that their coordinate transformations are holomorphic.

A complex manifold M has the property that the complexified tangent bundle admits a
linear operator J so that J 2 = − identity such that {v | Jv =

√
−1 v} form holomorphic

tangent space { ∂

∂zi
} and {v | Jv = −

√
−1 v} form antiholomorphic tangent space.

A manifold that admits such an operator J is called an almost complex manifold.

It is said to satisfy the complex Frobenius condition if for any complex vector field vj

so that Jvj =
√
−1 vj , we know that

J [vj , vk] =
√
−1 [vj , vk].

The celebrated Newlander-Nirenberg theorem says that an almost complex manifold
which satisfies the complex Frobenius condition is a complex manifold.

While there is an effective method to determine which smooth manifold admits an
almost complex structure, it is a great mystery and fundamental question to find a topolog-
ical condition to determine which even dimensional orientable manifold admits a complex
structure.

Most tools in studying complex manifolds come from Kähler geometry.

Kähler observed the importance of existence of Hermitian metric
∑

gij dzi dz̄j so
that d

(√
−1

∑
gij dzi ∧ dz̄j

)
= 0. Kähler metric has the important property that there

is a holomorphic coordinate system so that it can be approximated by the flat metric up to
first order.

Since the introduction of the concept of complex manifolds, the first important con-
tribution was the introduction of Chern classes. Coupling with the classical theory of
Riemann-Roch theorem and sheaf theory, Chern classes were used in a prominent way
by Hirzebruch[5] to prove the Riemann-Roch formula for higher dimensional algebraic
manifold. The formula of Hirzebruch was interpreted and generalized by Grothendieck in
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functorial setting and K-theory was developed as a fundamental tool.

Based on this formula and the idea of Bochner’s vanishing formula, Kodaira[6] proved
the embedding theorem for Kähler manifolds of special type. Note that once a Kähler man-
ifold is holomorphically embedded into complex projective space, a fundamental theorem
of Chow says that it must be defined by an ideal of homogeneous algebraic polynomials.
Hence they are algebraic manifolds.

Chow also introduced fundamental tools to study algebraic cycles. The Chow coordi-
nates were introduced. The concept of Chow variety is one of the most important concepts
in modern algebraic and arithmetic geometry.

The work of Hodge on the Hodge structures of Kähler manifolds was also used ex-
tensively by Kodaira. At the same time it puts the old theory of Picard and Lefschetz on a
new setting. The conjecture of Hodge on algebraic cycles is perhaps the most elegant and
important question in algebraic geometry. Due to its relation to the arithmetic question, a
lot of number theorists made contribution to it.

The development of Hodge structure was due to many people: Hodge, Atiyah,
Grothendieck, Deligne, Shafarevich, Borel, Dwork, Katz, Schmid, Griffiths, Clemens,
and others. A very important question is its relation to monodromy and the Torelli the-
orem. The establishment of the suitable form of Torelli theorem has been an important
direction. It has been a fundamental tool in the study of Calabi-Yau manifolds.

Kodaira proved that every Kähler surface can be deformed to an algebraic surface.

According to Kodaira’s classification (with later work by Siu[7] on K3 surfaces), the
only unknown non-Kähler complex surfaces would be the so-called class VII0 surfaces.

Such surfaces are not Kähler and it would be good to classify them. There are two
subclasses of such surfaces:

(1) Those with no holomorphic curves. This was classified by Bogomolov and Li-
Yau-Zheng[8].

(2) Those with the finite number of curves.

Hopefully the method of Li-Yau-Zheng can be used to clarify this remaining class of
non-Kähler surfaces.

How to describe topology of algebraic surfaces?

Riemann-Roch formula and Atiyah-Singer index formula have played fundamental
roles.

When b1 6= 0, the formula provides information on holomorphic one-forms and hence
one can integrate the one-form to obtain nontrivial information.

Van de Ven[9] was the first one to observe that Riemann-Roch formula implies

8C2(M) > C2
1 (M).
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Bogomolov[10] used his idea of stable bundles and symmetric tensors to improve Van
de Ven inequality to

4C2(M) > C2
1 (M).

Immediately afterwards, I[11] used the newly developed existence of Kähler-Einstein
metric to prove

3C2(M) > C2
1(M)

which was optimal as the inequality is achieved by quotient of the complex ball.

Miyaoka[12] then also sharpened Bogomolov’s method to achieve similar inequality.

However up to now, analytic method is the only way to prove that 3C2(M) = C2
1 (M)

implies that either M is CP2 or quotient of the ball.

The generalization of this kind of inequality to quasi projective manifolds and orb-
ifolds is rather straightforward and was achieved by Yau[13], Cheng-Yau[14], Kobayashi[15]

and Tian-Yau[16].

My observation that Kähler-Einstein metrics become metrics with constant holomor-
phic sectional curvature when 3C2(M) = C2

1(M) makes me realize the relevance of
Mostow rigidity theorem. It immediately implies that the only complex structure over
such a manifold is the standard one.

Therefore I conjectured that compact Kähler manifold with negative curvature has the
unique complex structure. I proposed to use harmonic map to settle this problem. The idea
was that curvature of the target should force the rigidity of harmonic map. It is inspired by
the way to prove uniformization theorem by Dirichlet principle. I proposed this program
to Siu[17] who observed that the special form of the curvature of Kähler metric helps to
solve an important case of my conjecture.

Application of harmonic map to prove existence of incompressible minimal surfaces
was initiated by Schoen and myself[18] a few years earlier. In that theory, the collar the-
orem of Linda Keen was used, and Schoen and I realized that the energy of harmonic
map can be turned around to provide an important exhaustion function of the Teichmüller
space. After my talk in Utah in 1976, this idea was picked up by other people. The beau-
tiful work of Wolf[19–21] demonstrated how harmonic map can be used to give Thurston
compactification of Teichmüller space.

Jost and I then found that harmonic map can be used to demonstrate that a topological
map from a compact Kähler manifold to a curve of higher genus can be homotopic to a
holomorphic map if we change the complex structure of the curve.

While harmonic map is effective for manifolds with the large fundamental group, its
existence for simply connected manifold is not known.

Let f : M −→ N be a map from a compact Kähler manifold M to another one
such that its induced map on Π2(M) is nontrivial. I conjectured that there is always one
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harmonic map from M to N whose induced map on Π2(M) is nontrivial.

The reason that this may be true comes from understanding of the celebrated theorem
of Sacks-Uhlenbeck[22] on harmonic maps of two dimensional spheres.

Siu and I[23] studied the structure of bubbling of Sacks-Uhlenbeck sphere in the proof
of Frenkel conjecture. Similar study was also used later by Parker-Wolfson[24] and Ruan-
Tian[25] to understand the compactification of stable maps and Gromov-Witten invariant.
The final formulation was due to Kontsevich[26] on the concept of moduli space of stable
maps.

Even when existence theorem for harmonic map can be proved, it still remains to find
properties of such harmonic maps. Under what conditions are these maps unique up to
holomorphic endomorphisms of M and N?

In general, methods from linear and nonlinear partial differential equations can be
used to produce holomorphic objects. However, the analogue construction for algebraic
varieties over characteristic p will be difficult to be carried out. This can be an interesting
direction as Mori was able to construct rational curves through methods of characteristic
p. This spectacular method still needs to be understood through analytic means.

Let us now discuss ideas from nonlinear analysis.

Kähler-Einstein metrics are Kähler metrics so that

Rij̄ = c gij̄ .

For c 6 0, it is unique if we fix the Kähler class. If c > 0, it is also unique up to
automorphisms of the manifold, due to the work of Bando-Mabuchi[27].

Hence when the metric exists, it provides important invariants for the complex struc-
ture of the manifold.

It is not hard to show that the Kähler-Einstein metric in fact determines the complex
structure of the underlying manifold unless it is hyperkähler. This follows by studying the
pull back of the Kähler form under the isometry.

The existence of Kähler-Einstein metrics therefore provides a way to understand the
complex structure by metrics.

A very important question is therefore the full spectrum of Laplacian acting on the
space of (p, q) forms should determine the structure (polarized complex structure if c =

0). Some contribution of these spectrum would give rise to important invariants of the
manifold, e.g., holomorphic torsion. While we can embed the moduli space of complex
structures into the space of spectrum, there is no obvious way to give the complex structure
to the later space which makes the embedding holomorphic.

Kähler-Einstein metric with c 6 0 has been very powerful in understanding the com-
plex structure of the manifold. There were the following major ways:
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(1) Using curvature representation of Chern classes, one can represent c2ω
n−2 by L2

integrals of curvature which is clearly non-negative and trivial only if the manifold is flat.
If ω = ±c1, there is then an inequality between c2c

n−2
1 and cn

1 with equality only when
the manifold is complex projective space or the quotient of the complex ball.

(2) By using the curvature decreasing property, one can prove that the tangent bundle
is slope stable in the sense of Mumford. (This kind of work was motivated by Bogo-
molov’s work.) From tangent bundle and cotangle bundle, we can take tensor product
and wedge product and build natural bundles that come from natural representation of
GL(n, C). They all have the natural Kähler-Einstein metric induced from the tangent
bundle.

If a natural bundle V comes from an irreducible representation of GL(n, C) and if
c1(V ) = 0, then any nontrivial holomorphic section of V is parallel and the holonomy
group of the original connection must be reduced to a smaller group.

In this way, one can characterize those Kähler manifolds that are locally symmetric.

The fact that we can give a complete algebraic geometric characterization of Shimura
varieties gives a way to prove that Galois conjugation of Shimura variety is still Shimura.
This is a theorem due to Kazhdan using representation theory.

It should be possible to characterize submanifolds whose metrics are Kähler-Einstein.

It should also be interesting to characterize by algebraic geometric means those sub-
manifolds which are locally symmetric.

(3) Deformation of the complex structure using parallel forms.

For K3 surfaces, one can mix up the (2, 0) form, (0, 2) form and (1, 1) form to find
P 1 family of complex structures.

Bogomolov[28] observed that for hyperkähler manifolds, complex structures are un-
obstructed. This was followed by Tian[29]-Todorov[30] closely with basically the same
argument.

(4) Since we know the Ricci curvature of such manifolds, one can apply Schwarz
lemma to study holomorphic maps between Kähler manifolds.

One should be able to compute Weil-Petersson metric associated to the canonical KE
metric. The moduli space should have rich properties to be studied. This includes the vol-
ume of the Weil-Petersson geometry and its L2-cohomology. For Calabi-Yau manifolds,
the cohomology classes are called BPS states and should have interest in string theory.

(5) It is clear that the tangent bundle is stable when the manifold has Kähler-Einstein
metric. However it has not exhausted the strength of Kähler-Einsten metric yet. At the
time when I applied KE metric to algebraic geometry, I realized that existence of KE
metric should be equivalent to stability of manifolds in the sense of geometric invariant
theory. (Besides the obvious obstruction that comes from the sign of first Chern class.)
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Only until recently did Donaldson made definite progress on this problem.

While there are some activities on extremal metrics or metrics with constant scalar
curvature recently, the fundamental focus of the research should not be shifted away from
KE metrics with nonpositive scalar curvature. The case of KE metrics with positive scalar
curvature is more relevant to the above-mentioned question of stability and also to under-
stand existence of Ricci flat manifolds.

In 1978 Helsinki Congress, I[31] outlined the existence of complete noncompact Ricci-
flat manifold. The detail was written up with Tian[32,33] later. KE metrics with positive
scalar curvature played a role in the later construction.

So far, no significant contribution of such metrics to algebraic geometry has been
found. When my question of stability can be settled, the situation may be different.

In order to understand geometric stability of Kähler-Einstein manifolds, one would
like to relate the metric with respect to induced metrics from projective embeddings, I
initiated this program more than twenty years ago to find projective embeddings by high
powers of ample line bundles to approximate KE metrics.

Several of my students follow this programm. As was guided by me in his thesis,
Tian[34] applied my idea with Siu[35] on characterization of non-compact Kähler manifolds
which are C

n. He proved that such embedding is possible. The perturbation analysis was
followed by Lu[36], Zelditch[37], and Phong-Sturm[38]. Tian made some partial contribution
to my question of stability, based on Donaldson’s work.

In both theses of Luo[39] and Wang[40] continued such studies on the balanced condi-
tion.

Basically, Donaldson[41] settled the important necessary part of my conjecture. There
are some works related to existence of KE metric with positive scalar curvature for toric
manifolds. (Recently Wang and Zhu[42] made contributions by proving existence of the
real Monge-Ampère equation that comes from the reduction of Donaldson.)

What Donaldson has done should be applied towards understanding of manifolds with
nonpositive first Chern class. This is especially true for manifolds that come from arith-
metic geometry, moduli problem and questions related to algebraic cycles and algebraic
bundles.

Moduli space of polarized algebraic manifolds should support Kähler-Einstein met-
rics with negative scalar curvature. It may admit orbifold type singularities. When the
deformation space is obstructed, it can be very challenging to describe the metric structure
of the singularity.

When the moduli space is compactified, the KE metric should behave in a suitable
form asymptotically. It will be important to understand such behaviour in terms of periods
of integrals.
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The simplest problem of this sort appears already in one dimension. Only recently,
was Liu-Sun-Yau[43] able to identify the behaviour of KE metric on the Teichmüller space.

While the boundary of Teichmüller space may be complicated complex analytically,
it is interesting to know that, based on the work of Shi[44], we proved that the curvature
and all its covariant derivatives are bounded. This is in contrast to my previous work with
S. -Y. Cheng[45] on KE metrics on strictly pseudoconvex domains.

Besides KE metric, the Bergman metric is a natural metric to be studied on the moduli
space. Its relation with KE metric and the covering space should be interesting.

There are many interesting subvarieties of moduli space, even in the case of a curve.
Liu[46], Lu and Sun[47] and others exploited the Schwarz lemma, and Kang Zuo studied
variation of Hodge structures.

It is a fascinating problem to characterize those moduli problems where the moduli
space is a Shimura variety or Calabi-Yau space.

Moduli space of algebraic cycles coupled with stable bundles should be an interesting
topic to study.

Based on the idea from string theory, it should be interesting to understand this moduli
space under the following duality:

T k × (T k)∗

↓
T k M×NM̂ (T k)∗

↓ ↙ ↘ ↓
M M̂

↘ ↙
N

The maps from M to N , from M̂ to N are holomorphic fibration that may have
singularity. There should be a rank one holomorphic sheaf over M×NM̂ that serves as
fiberwise Poincaré line bundle. By applying Fourier-Mukai transform via such a sheaf,
one should map the above moduli space from M to M̂ .

In the above picture, we can allow the torus to be real special Lagrangian. In that case,
we shall obtain the mirror map from M to M̂ . This is called the SYZ construction[48].

String theory has provided a very rich background to study geometry of Ricci flat
metrics. Duality concepts have provided very powerful tools. The construction of SYZ
needs to be explored much further, both in terms of construction of special Lagrangian
cycles and the perturbation of semi-flat Ricci flat metrics to Ricci flat metrics in terms of
holomorphic disks.

The fundamental questions in complex geometry are
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(1) To find a topological condition so that an almost complex manifold admits an
integrable complex structure.

(2) To find a way to determine which integrable complex structure admits Kähler
metrics, or weaker form of Kähler metrics, e.g., balanced metrics. There are Hermitian
metrics ω so that

d(ωn−1) = 0.

(3) To find a way to deform a Kähler manifold to a projective manifold.

(4) To characterize those projective manifolds in terms of algebraic geometric data
that can be defined over Q̄.

(5) Study algebraic cycles and algebraic vector bundles (or more generally, derived
category of algebraic manifolds).

(6) To understand moduli space of algebraic structures and the above algebraic ob-
jects.

For dimC > 3, all these problems would be quite different from dimC = 2.

(1) Is it possible that every almost complex manifold admits an integrable complex
structure for dimC > 3 ?

(2) For balanced manifolds, one should study the system of equations introduced by A.
Strominger where the coupled holomorphic bundle is coupled with the Hermitian metric.

There is a holomorphic bundle V over complex three dimensional manifold with Her-
mitian metric whose curvature Fh satisfies

∂∂̄ω =
√
−1 trFh ∧ Fh −

√
−1 trFg ∧ Fg,

F
2,0
h = F

0,2
h = 0,

trFh = 0,

and ω is conformally balanced.

We expect “mirror symmetry” on such class of manifolds also.

Jun Li and I were able to solve the Strominger system in a small neighborhood of
Calabi-Yau manifolds. It should be possible to solve it in a global setting.

There are several important operations in complex geometry:

(1) Blowing up,

(2) Blowing down,

(3) Deformation (local or global).

Neither projective nor Kähler geometries are preserved under all these operations. It
will be certainly desirable to find some kind of geometry that admits such operations.

This is particularly significant if we start from a projective manifold and perform these
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operations successfully. Can we reach the class of all Kähler manifolds? (Note that Voison
did construct Kähler manifolds that cannot be deformed to projective manifolds.) What is
the largest category that can be reached in this way?

Based on twistor’s construction, many non-Kähler complex manifolds were
constructed from the work of Taubes on the existence of anti-self-dual structure on all
four dimensional manifolds after taking connected sum with enough copies of S2 × S2.
The construction of Clemens’ by blowing down curves with negative normal bundle and
smoothing the blowed down manifolds allows us to construct many interesting non-Kähler
complex manifolds. One cannot ignore the theory of non-Kähler complex manifolds any-
more.

In studying Kähler structures, Hodge theory did play the most fundamental role. The
important point is that the Laplacian acting on the k-forms split covariantly on (p, q)

forms with k = p+ q. It allows us to link the topology of the Kähler manifold to complex
structure of the manifold. It would be important to seek similar statement for a more
general class of complex manifolds which may include those that support the Strominger’s
structure.

It is conjectured by M. Reid that the moduli space of Calabi-Yau manifolds is con-
nected if we allow to deform through non-Kähler structure. Is it possible that such struc-
ture supports Strominger’s structure?

The most outstanding question in algebraic geometry has been the Hodge conjecture.
The desire to find a characterization of algebraic cycles by (p, p) type Hodge classes is
fundamental.

If we enlarge the scope of geometry, we may have to enlarge the scope of Hodge
conjecture. The most notable example in this regard is that in the case of Calabi-Yau
manifolds we have covariant constant n-forms. We can look for those Lagrangian cycles
so that the restriction of these n-forms becomes a constant multiple of the volume form.
These are called special Lagrangian cycles.

On the construction of Strominger-Yau-Zaslow of mirror manifolds, special
Lagrangian cycles play a fundamental role. A fundamental question is whether, for an
n-dimensional homology class in an n-dimensional Calabi-Yau manifold, some integer
multiple of it is representable by special Lagrangian cycles.

It is believed that special Lagrangian cycles are a “mirror” to stable holomorphic
bundles over the mirror manifold. Hence construction of such cycles may be helpful to
understanding the Hodge conjecture. It is proposed by Thomas-Yau[49] that starting from
the Lagrangian cycles, stable in a well-defined sense, it can be deformed to a special La-
grangian cycle by the mean curvature flow. Mu-tao Wang[50] had made significant progress
on this problem.

It is also a fundamental question to construct holomorphic structures over a complex
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vector bundle. After stabilizing with trivial bundles, such question may be easier to han-
dle. Only in the case of complex two dimensional surfaces, did the work of Taubes and
Donaldson gave effective answers. The work of Jun Li and Gieseker-Li[51,52] gave many
important contributions to understanding the geometry of moduli space of algebraic bun-
dles. It would be useful to construct a flow on almost complex structures on the bundle to
an integrable structure.

Special Lagrangian torus is supposed to be abundent for Calabi-Yau manifolds where
they can give a fibration. In case of complex three dimension, the base of this fibration
may look like S3\G, where G is a trivalent graph. The SYZ geometry calls for existence
of the flat affine structure over S3\G, where certain real Monge-Ampère equation needs
to be solved and the monodromy belongs to SL(3, Z). Recently, Loftin-Yau-Zaslow[53]

was able to solve these equations in a neighborhood of G with nontrivial monodromy.

When the manifold is Kähler-Einstein with scalar curvature not equal to zero, special
Lagrangian cycle should be replaced by those Lagrangian cycles whose mean curvature
form is harmonic. It should be interesting to develop the corresponding SYZ geometry
for such cycles. The moduli space of them would give new invariants for the Kähler
manifold. The understanding of holomorphic curves whose boundaries form homology
classes on these Lagrangian cycles would be also important.

The Donaldson-Uhlenbeck-Yau theorem on the existence of Hermitian-Yang-Mills
connections on stable holomorphic bundles has been generalized when there are special
structures. The most important one is the Higgs bundle structure by C. Simpson. It is
related to the variation of Hodge structure. The theory is not completely satisfactory when
the base manifold is noncompact but quasiprojective.

It is a challenging question to construct Kähler-Einstein metrics with zero or nega-
tive scalar curvature or Hermitian-Yang-Mills connections over quasiprojective manifold,
where the complementary divisors are not smooth but normal crossing.

Hermitian-Yang-Mills connection can be used to reduce the holonomy group of a
holomorphic bundle when suitable algebraic geometric condition is verified. They should
be used extensively in studying moduli space of bundles and non-Kähler complex mani-
folds.

Smith, Thomas and Yau[54] studied the possible mirror manifold of a non-Kähler com-
plex manifold. Some concrete examples of symplectic manifolds were constructed. Per-
haps one can explore such duality in more detail.

Recently Li[55,56] made fundamental contribution towards the understanding of mod-
uli space of stable maps of an algebraic variety. Quantities over such moduli are very
important for future study.
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