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Abstract  Composing existing web services for enterprise applications may enable 
higher level of reuse. However the composition processes are mostly static and lack of 
support for runtime redesign. In this paper, we describe our approach to the extension of 
the OWL-S ontology framework for dynamic web service composition. We raise the level 
of abstraction and propose an abstract service layer so that web services can be com-
posed at the abstract service level instead of the concrete level. Each abstract service is 
attached with an instance pool including all instances of the abstract service to facilitate 
fail-over and dynamic compositions.  

Keywords: web service, instance pool, abstract service, ontology, dynamic composition. 

1  Introduction 

Recent advance on web services computing enables building business processes and 
systems through the discovery and integration of the existing services. The increasing 
number of web services available on the Internet not only facilitates such new technology, 
but also poses new challenges on how to support collaboration and orchestration of these 
services for business applications, especially real-time enterprises.  

Currently, web services are typically described in terms of atomic and composite web 
services, using languages like BPEL[1,2] or OWL-S[3,4] which provide mechanisms for 
web service compositions. However, the processes of web service compositions tend to 
be static in the sense that these processes are normally generated off-line. Any changes to 
the part of a process may result in the reconfiguration of the whole process. It lacks the 
support of the capability of fail-over and dynamical redesign. This is especially critical 
for real-time enterprises since the systems cannot afford stopping, reconfiguring, and 
restarting. If some web services of a composition fail or the requirements change, the 
system needs to be able to change locally and reconfigure on-the-fly. For example, cus- 
tomers can have a stock trading service, which involves obtaining relevant quotes and 
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performing transactions. If one specific quoting service fails, the whole process can still 
proceed by switching to another quoting service. 

Among the numerous available web services, many of them provide similar services. 
Even with different implementations, most of them present a similar interface to the end 
user. For example, there are several different on-line venders, such as Yahoo and MSN, 
which provide weather forecast service. Although they may have a different way to in-
voke the service, they all typically have an operation that accepts zip code and returns the 
weather information. However, there is currently little effort on abstracting these similar 
services into high-level common services. Although the OWL-S language provides a way 
to describe the hierarchical relationship between services, the recommended ontology 
framework is still limited to one root-level abstract service. Raising the level of abstrac-
tion and capturing similar services as a service pool are important, especially for dealing 
with fail-over and dynamic redesign in real-time enterprises and e-business. 

In this paper, we propose an extension to the ontology framework based on OWL-S, 
which enables defining the composite services at the abstract service level. We provide 
new constructs to specify such higher level of abstraction. Our approach also includes a 
service instance pool that allows filtering and plugging in candidate services at runtime. 
In addition, we offer a planner prototype based on Java Theorem Prover (JTP) [5] that can 
automatically generate the composition processes on-the-fly. To illustrate our approach, 
we also provide a case study related to air travel itinerary.  

The rest of this paper is structured as follows. Section 2 gives an overview of our ap-
proach. Section 3 defines our extension to the OWL-S Ontology Framework. We de-
scribe a case study to illustrate our approach in section 4. The last two sections present 
the related work and conclusions. 

2  Overview 

In this section, we first give a brief introduction to the OWL-S language and the rec- 
ommended ontology framework. We then present a motivating example followed by the 
high-level architecture of our approach.   

2.1  OWL-S language and ontology framework 

OWL-S is an OWL-based Web Service Ontology that evolves from DARPA Agent 
Markup Language[6]. OWL-S defines a core set of markup language constructs for de-
scribing web services. Additionally OWL-S proposes a recommended ontology frame-
work to facilitate the definition of web service. In this framework, each service has three 
sets of information: Profile, Process and Grounding. All these three pieces are connected 
together by the service ontology as shown in Fig. 1. Profile describes the semantic prop- 
erties and capabilities of a service; Process represents the actual composition logic; and 
Grounding provides the physical binding information for runtime invocation, which also 
has a link to the WSDL file for that service. 

The OWL-S Ontology Framework allows us to define a concrete web service. The 
Advertisement and Discovery information can be found in Profile. Process is used for 
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complex service composition logic. Grounding provides the detailed invocation access 
information. 

 
Fig. 1.  OWL-S Upper Ontology. 

2.2  A motivating example 

Although OWL-S and its recommended ontology support the service hierarchy, they 
mainly focus on the definition of concrete web services. Each OWL-S service is mapped 
either to one physical concrete web service or to a fixed composition of a set of physical 
concrete web services, which is still one concrete (although not physical) web service 
looking from outside. All OWL-S classes, such as “Profile” (the child class of “Service-
Profile”), “Process” (the child class of “ServiceModel”) and “Grounding”, contain dif-
ferent parts of the information about the concrete service. In reality, an abstract service is 
as important as a concrete service, and can be even more valuable for a huge otology of 
services. Current OWL-S cannot represent a virtual abstract service. An abstract service 
may have multiple composition logics as the implementation, while one OWL-S web 
service normally has only one composition process. An abstract service usually repre-
sents a collection of similar concrete services, while an OWL-S service maps to only one 
concrete web service at runtime. Although the Grounding information can be bound to 
any WSDL allowing OWL-S to dynamically change the service instance, it does not have 
the dynamic customization information. Without such information, one has no clue 
whether the new service instance can fit for this OWL-S service.  

For example, assume we build a hierarchy for a TV domain including the brand, 
screen type and size of a TV set. Fig. 2 presents an example of the TV concrete services, 
such as the Sony TV Service, Sony Flat TV Service, Sony 40″ Flat TV Service, and Sony 
40″ Bravia TV Service1), which are defined as concrete services using the recommended 
OWL-S ontology framework. There are typically two levels: root level OWL-S ontology 
framework and concrete OWL-S services. The root level defines a recommended ontol-
ogy framework which is discussed in the previous section. At the concrete service level,  
                    

1) Note that the Sony TV Service, Sony Flat TV Service, Sony 40″ Flat TV Service, and Sony 40″ Bravia TV 
Service refer to the corresponding services that produce the Sony TV Service, Sony Flat TV Service, Sony 40″ Flat 
TV Service, and Sony 40″ Bravia TV, respectively. For simplicity, we use the “TV service” and the “service that 
produces a TV” interchangeable in the rest of this paper, so do the “flight service” and the “service that checks flight 
information”. 

 



846  Science in China Series F: Information Sciences 

 
Fig. 2.  An example of current OWL-S hierarchy. 

 
only the Service allows a multi-level inheritance hierarchy where the children may indi-
rectly reuse their ancestors (in addition to their direct parent). The concrete services can 
only directly inherit from the Profile, Process, and Grounding. It is normally impossible 
to have multi-level inheritance hierarchy besides the Service. This may cause some 
problems when we want to define a Sony Flat TV abstraction that can have multiple ser-
vice instances to produce it. For instance, a Sony Flat TV abstraction may have instances 
whose brand is Sony with a flat screen, so do the Sony 40″ Flat TV Service and Sony 40″ 
Bravia TV Service. Currently, the profiles of all these three concrete services are the di-
rect children of the Root Profile Class. In this case, the Sony 40″ Bravia TV Service Pro-
file has no relation to the Sony 40″ Flat TV Service Profile (although they may share 
some common parameters), so do the corresponding Processes and Groundings. The fact 
that they are both the children of the Sony Flat TV abstract Profile is not captured. Simi-
larly, all the three concrete Processes are the direct children of the Root Process Class. 
They are not related to each other and to the Sony Flat TV abstract Process. Thus, the 
knowledge that an abstract Sony Flat TV Process can have different kinds, i.e., it can be 
built in different sizes and ways, is lost. Furthermore, the Grounding can only map one 
instance to a concrete service. Using the current OWL-S, an abstract Sony Flat TV ser-
vice can be defined such that it can only be grounded to one instance. In practice, an ab-
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stract service may have multiple instances. For example, a weather forecast service may 
contain the instances such as Yahoo and MSN. 

2.3  Architecture overview 

Fig. 3 presents an architecture overview of our approach that focuses on the definition 
of abstract services based on both existing web service instances and the user’s expected 
goals. This architecture contains a web-based composer, a backend standalone utility and 
an extended OWL-S services ontology. Users can specify their goals via the web-based 
composer that can generate the result service using the extended OWL-S Service ontol-
ogy. The result service may be added back to ontology if it is brand new. The standalone 
utility is responsible for updating the instance pool information of service ontology if 
new concrete services detected.  

 
Fig. 3.  Architecture overview. 

 
We define an extension to the OWL-S recommended ontology framework for this 

purpose. We first define an abstract service hierarchy by grouping the available concrete 
services into different categories based on their functional characteristics, such as input 
and output, and specific nonfunctional service parameters. As shown in Fig. 4, for exam-
ple, multiple-level inheritance hierarchy is enabled to represent the hierarchical relation-
ships among these abstract services. A concrete service (existing OWL-S service) can be 
plugged into an appropriate level. For example, the Sony 40” Bravia service is a type of 
the abstract Sony Flat TV service, which is in turn a type of the abstract Sony TV service 
and the abstract TV service. Similarly, the concrete Sony TV service shown in Fig. 2 can 
be the instance of the abstract Sony TV service in Fig. 4. Since there are thousands of 
web services already deployed in the Internet and new services available every day which 
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may not be aware of the abstract service hierarchy, we develop a backend utility program 
to register a concrete service into a domain service hierarchy and dynamically update the 
service ontology when detecting a change. The newly introduced abstract service layer 
does not require the concrete service to completely conform to the definition of abstract 
service because our backend utility can automatically detect the equivalent relation be-
tween semantic concepts. If one specific TV abstract service has a “maximumWeight” 
serviceParameter and a concrete Sony TV service has a “weightLimit” serviceParameter, 
our utility program considers it a match if the “sameas” relationship has been defined for 
the “maximumWeight” and “weightLimit” serviceParameters in the ontology. In this pa-
per, we assume that all concrete services of the same abstract service share the same in-
terface information, i.e., they all have the same IOPE parameters, so that we can focus on 
the abstract service hierarchy. We plan to address different interface mapping in the fu-
ture. 

 
Fig. 4.  An example for extended OWL-S hierarchy. 

 
If a composition of services is requested for business or enterprise applications, either 

an existing abstract service can be matched or a new abstract service is defined with its 
Profile section containing the input/output and the semantic properties. The Process and 
new Instance sections can be generated by our composition planner in two steps. First, 
based on the ontology hierarchy of all available abstract services for existing services and 
the definition of the user’s goals including both the functional requirement and nonfunc- 
tional service parameters, we can obtain the composition process (the Process section of 
the abstract service that satisfies the user’s goals) using our composition planner based on 
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JTP [5]. This generated composite service matches all the input/output and flow-related 
semantic requirements. This can narrow down the candidate scope by filtering out all 
other unrelated web services. Second, other functional service parameters describing the 
user’s goals are recorded in the Profile section of the abstract service. They are used to 
identify the actual candidate service pool for composite service and filled in the new In-
stance section if a direct concrete service candidate is found. 

3  Extension to OWL-S ontology framework 

In this section, we describe our proposed extension to the OWL-S recommended 
framework. This extension includes the information on the input/output, flow control, 
semantic property, and candidate instance pool of the abstract service in the ontology 
hierarchy.  This new ontology framework contains the following features: 

A new “Instance” section is added to the OWL-S recommended ontology framework. 
This new section provides the information about the candidate concrete service instances 
for this abstract service. These service instances can be a standard web service, an 
OWL-S or a BPEL service. This Instance section is different from the Grounding section 
since it does not provide a binding to a physical web service. Instead, it contains a collec- 
tion of references to the available candidate service instances, and in turn to the candidate 
service’s “Grounding”.  “Instance” and “Grounding” are mutually exclusive. Only ab- 
stract service has “Instance”, which means it is an abstraction of a group of candidate 
services. “Grounding” is defined in current OWL-S to describe the access information of 
a concrete service. If the Instance section of an abstract service is not empty, there is at 
least one concrete service available for direct invocation. We call all these available con- 
crete services the instance pool of the corresponding abstract service. At runtime, the 
system can pick up a candidate service from the pool and invoke it via its own binding 
information (like Grounding in OWL-S or WSDL in standard web service). If an abstract 
service does not have any candidate service instance, it may obtain its instance(s) from 
the Process section at runtime. For example, a young customer may want a service called 
a “Scooter TV” service that allows him to both ride a scooter and watch TV. Since this is 
not a typical service available, the Instance section of the “Scooter TV” abstract service 
is empty. The Process section of “Scooter TV” can specify that the flow of “Scooter TV” 
is just a “Scooter” service plus a “TV” service. Suppose both “Scooter” and “TV” have a 
number of candidate services in their Instance sections. In this way, a composite concrete 
service for the abstract service “Scooter TV” can be obtained by picking one candidate 
service instance from the instance pool of “Scooter” and another from that of “TV”. The 
new Instance section and its relationships to other sections are illustrated in Fig. 4. More 
details about the Instance section is presented in section 3.2. 

New constructs are added to the Process section of the recommended framework. In 
the Process section of the current OWL-S framework, each OWL-S service can only be 
an Atomic process, a Simple process, or a Composite process. No matter which type of 
service it is, it can only contain one work flow logic. We define a new “Abstract Process” 
type, which has an “abstractComposedOf” attribute to specify all possible composition 
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processes it can have. Only Abstract Service can have “Abstract Process” since it may 
have multiple implementation ways. It is purely a supplement to support the abstract ser-
vice. For concrete services, the process type is still one of the atomic, simple and com-
posite processes. In our approach, we can define a collection of atomic/simple/composite 
processes containing multiple work flow logics in the new abstract service. For example, 
the work flow logics of both Sony and GE TV services are included in the new abstract 
TV service. Either can be used to fulfill a TV service. More details are presented in sec-
tion 3.3. 

An abstract service does not contain the Grounding information since it is not mapped 
to any physical service. Instead, it gets the candidate instance from its Instance section 
which is like a resource pool.  

In the existing OWL-S ontology framework, each service in the hierarchy is still a 
concrete service. With the above two framework extensions, we can define an abstract 
service layer, shown in Fig. 4, so that future service compositions can be made at the ab-
stract level.  

From software architecture and design perspective, our approach defines a service ar-
chitecture that has more complex structure than the simple “subClassOf” relationship in 
the current OWL-S framework. With the support of abstract services, it is possible to 
define more complex service structures based on, e.g., inheritance, information sharing, 
and polymorphism. Therefore, the Profile, Process or Instance of an abstract service is 
the subclass of the Profile, Process or Instance of its parent service shown in Fig. 4. In 
the following sections, we present more details of our extension. 

3.1  Extension to root level OWL-S 

In order to connect the Instance section to its Service, a new predicate “implement-
edBy” is introduced to the root level OWL-S ontology framework. This links an In-
stance.owl to its Service.owl. The Instance.owl contains the instance pool information for 
the abstract Service. Additionally, some new constructs (see section 3.3) are introduced in 
ServiceModel which is the parent class of the Process. The Service.owl file with our ex-
tension is shown as follows. Fig. 5 shows the visual RDF schema of the Service.owl1), 
where our extensions are marked. 
<!-- Service Implementation --> 
<owl:Class rdf:ID="ServiceInstance"> 
    <rdfs:label>ServiceInstance</rdfs:label> 
    <rdfs:comment> this class contains the candidate pool information for abstract ser-
vice</rdfs:comment> 
</owl:Class> 
     
<!-- Being implemented by an instance  --> 
<owl:ObjectProperty rdf:ID="implementedBy"> 

                    

1) In the remainder of this paper, we only show the visual RDF schema without the corresponding RDF file to 
save space and for better visualization. 
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    <rdfs:domain rdf:resource="&service;#Service"/> 
    <rdfs:range rdf:resource="&service;#ServiceInstance"/> 
    <owl:inverseOf rdf:resource="&service;#implements"/> 
</owl:ObjectProperty> 
     
<owl:ObjectProperty rdf:ID="implements"> 
    <rdfs:domain rdf:resource="&service;#ServiceInstance"/> 
    <rdfs:range rdf:resource="&service;#Service"/> 
               <owl:inverseOf rdf:resource="&service;#implementedBy"/> 
</owl:ObjectProperty> 

 
Fig. 5.  Visual RDF Schema for extended OWL-S upper ontology. 

 
● ServiceInstance: the root class that represents the instance pool of an abstract ser-

vice shown in Fig. 5. Its subclass, like “Sony_TV_Instance” shown in Fig .6, contains all 
 



852  Science in China Series F: Information Sciences 

reference information of the candidate instances for that particular abstract service, e.g., 
“Sony_TV_Service”. 

● implementedBy: An object property extended for a Service class as shown in Fig. 
5. The resource of this property points to a ServiceInstance. Fig. 6 presents an example of 
a visual definition of the abstract service “Sony_TV_Service”. implementedBy is used to 
connect the “Sony_TV_Service” and “Sony_TV_Instance”. 

● implements: An object property of a ServiceInstance class. It is an inverse prop-
erty of implementedBy.  

 
Fig. 6.  Visual RDF Schema for Sony_TV_Service. 

3.2  Instance.owl 

As discussed previously, the Instance class has a brand new set of information intro-
duced to describe the information of the instance pool of the available concrete service 
for the corresponding abstract service. It is a subclass of “ServiceInstance” shown in Fig. 
5. Fig. 7 shows the visual RDF schema for the Instance class: 

● Instance: A subclass of the ServiceInstance shown in Fig. 5. It is the root class for 
all abstract service “Instance”. Fig. 8 presents an example of “Sony_TV_Instance” which 
is a subclass of Instance. The “Sony_TV_Instance” abstract service contains two con-
crete services in the instance pool. The overall relationship to other ontology framework 
objects can be found in Fig. 6. 

● preferenceOrder: A data property of the Instance class. It specifies the user’s 
preference when choosing the candidate service. It currently has four possible values: 
Sequential, RoundRobin, Random and PriorityCode. As an example in Fig. 8, the  
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“Sony_TV_Instance” has the “Random” as the value of preferenceOrder, which means 
the system randomly picks up a candidate service at runtime. 

● ProcessCandidate: A class that represents an implementation instance. Each Proc-
essCandidate points to a real web service in the Internet, such as the 
“Sony_Bravia_38_processCandidate” or “Sony_Bravia_40_processCandidate” in the 
example in Fig. 8. 

● businessOwner: a data property of the ProcessCandidate class that specifies the 
owner of concrete web service. Fig 8 shows “Sony_TV” as the business owner of this 
Instance class. 

● priorityCode: a data property of the ProcessCandidate class that specifies the pri-
orityCode assigned. The value of priorityCode is greater than or equal to 0 with 0 being 
the highest priority. If the value of preferenceOrder is set to PriorityCode, the system 
takes this property value to determine which candidate will be chosen at runtime. 

● processRefID: a data property of the ProcessCandidate class that specifies the id of 
a concrete web service. It is an optional reference to the physical web service. 

● serviceType: a data property of the ProcessCandidate class. Currently three types 
exist: Simple, BPEL and OWL-S. As defined in Fig. 8, for instance, 
“Sony_Bravia_40_processCandidate” is an OWL-S service. 

● AccessPoint: A class that represents the access method of a concrete web service. 
protocolType: a  data property of the AccessPoint class. The possible value can be 

“HTTP”, “FTP”, and etc. 
● accessLocation: a data property of the AccessPoint class that specifies the access 

address of a concrete web service. For example, the accessLocation for the 
“Sony_Bravia_38_accesspoint” is “http://www.sony.com/service/bravia38/”. The system 
can use this location to retrieve the detailed information of a concrete service. 

● processCandidate: An object property for an Instance Class. The resource of this 
property points to a ProcessCandidate class. 

● accessPoint: An object property for a ProcessCandidate class. The resource of this 
property points to an AccessPoint class.  

3.3  New Constructs in Process.owl 

For each abstract service, the composition logic may not be unique. Suppose a traveler 
who wants to schedule a flight from New York to San Francisco. There can be a number 
of different itineraries, like a direct flight from New York to San Francisco, a connection 
flight of New York – Chicago – San Francisco, or a connection flight of New York – 
Denver – San Francisco. Thus, the abstract service needs to have the capability to repre-
sent multiple composition logics, which is not possible with the current “Process” class. 
Therefore, we introduce a new “AbstractProcess” class in the Process section as marked 
in Fig. 9. This class provides a collection of Process logics, like different itineraries from 
New York to San Francisco. It has an “abstractComposeOf” property which maps to a 
ControlConstruct. The ControlConstruct maintains a collection of available composition 
solutions, which can be one process (like an AtomicProcess, a SimpleProcess or a Com-
positeProcess) or a combination of processes and control constructs. 
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Fig. 9.  Visual RDF schema for “Process” ontology. 

 
● AbstractProcess: A class represents the possible composition logics. In current 

OWL-S framework, an actual Process is a subclass of the union of AtomicProcess, Sim-
pleProcess and CompositeProcess. With the introduction of this new AbstractProcess, we 
are able to describe multiple composition solutions in the Process section of an abstract 
service.  

● abstractComposedOf: an object property for AbstractProcess. A collection of 
ControlConstructs are linked to an AbstractProcess via this abstractComposedOf.  

ControlConstruct: relocated from the CompositeProcess of the existing OWL-S 
Framework which can be used to describe a composition flow for one unique solution. 
Moving this construct from CompositeProcess to here allows us to describe a collection 
of possible solutions. In the “New York to San Francisco” Process, for example, it may 
use a sequence list (one subclass of ControlConstruct) to contain all possible itineraries. 

3.4  Planner Prototype 

In order to facilitate the generation of different composite processes, we develop a 
web-based composer. It utilizes the J2EE web architecture and the Embedded JTP server.  
Fig. 10 displays a screen shot of the system. This tool can be used to generate the result-
ing abstract OWL-S files. Users can load their special ontology while the default OWL-S 
ontology is automatically loaded in the planner. If an OWL-S service is specified by 
checking the “OWL-S Service” checkbox (see Fig. 10), the composer fetches the corre-
sponding Profile, Process and Instance files if available. The customer’s goals are con-
verted into RDF entries and fed into the JTP inference engine. Consequently, the detailed 
inference steps are shown on the screen, and the resulting service files are generated 
when the user finishes the query and clicks the “Generate Result Service” button. Our 
prototype tool can be used for other service compositions, although we show flight 
service composition as an example in this paper. 

One of the main differences between our extension and the original OWL-S is that we  
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Fig. 10.  Composer Prototype. 

 
propose abstract service layers.  Each specific abstract service needs to connect to its 
own profile, process and instance while maintaining the inheritance relationship with its 
parent class. To maintain the correct relationship for different parts of the same service, 
each abstract service uses the “someValuesFrom” “allValuesFrom” and “hasValue” re-
strictions. Like the following example, AA-Flight_Service is connected to 
AA-Flight_Profile, instead of the Root level Profile Class. 
 <owl:Class rdf:about="#AA-Flight_Service"> 
    <rdfs:subClassOf> 
        <owl:Restriction> 
            <owl:someValuesFrom> 
                <owl:Class rdf:about="#AA-Flight_Profile"/> 
            </owl:someValuesFrom> 
            <owl:onProperty rdf:resource="http://www.daml 
            .org/services/owl-s/1.1/Service.owl#presents"/> 
        </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
        <owl:Restriction> 
            <owl:onProperty rdf:resource="http://www.daml 
           .org/services/owl-s/1.1/Service.owl#presents"/> 
            <owl:allValuesFrom> 
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                <owl:Class rdf:about="#AA-Flight_Profile"/> 
            </owl:allValuesFrom> 
        </owl:Restriction> 
    </rdfs:subClassOf> 
    …….. 

Similarly, we use these restrictions to specify the IOPE for the profile and process of 
each abstract service. For instance, the profile of “AA-Flight_Service” in Section 4 can 
be defined with a “hasValue” restriction that sets the serviceParameter property to 
“aaServiceParameter”, which means AA-Flight_Profile has a non-functional service pa-
rameter that is set to American Airlines. Likewise, “JFK-ORD-Flight_Profile” in Section 
4 may have a “hasInput” property with the “hasValue” restriction set to airport “JFK” and 
a “hasOutput” property with the “hasValue” restriction set to “ORD”. 

Our planner prototype converts the user’s goals into backend JTP query string and 
generates the Process based on the query result. The “and” and “or” operators are used on 
different levels to combine each JTP query string. Currently the prototype tool specifies 
three levels where level 1 is the top level. Fig. 10 shows an example of the functional 
requirement of the user’s goal to get an abstract service which has the departure airport 
“JFK” (input) and the arrival airport “ORD” (output). The non-functional requirements 
of the user’s goal are that the flight service belongs to American Airlines and has either 
BusinessCabin or CoachOnlyCabin. The following is the generated JTP queries: 

 

(and  
   (|http://www.daml.org/services/owl-s/1.1/Process.owl#|::|hasInput|  
      ?myFlight |http://127.0.0.1:8080/Parameters.owl#|::|JFK|)    
   (|http://www.daml.org/services/owl-s/1.1/Process.owl#|::|hasOutput|  
      ?myFlight |http://127.0.0.1:8080/Parameters.owl#|::|ORD|)  
   (|http://www.daml.org/services/owl-s/1.1/Profile.owl#|::|servicePara 
      meter| ?myFlight 
      |http://127.0.0.1:8080/Parameters.owl#|::|aaServiceParameter|) 
   (or  
      (|http://www.daml.org/services/owl-s/1.1/Process.owl#|::|servicePa 
          rameter| ?myFlight |http://127.0.0.1:8080/Parameters.owl#| 
          ::|businessCabin|) 
      (|http://www.daml.org/services/owl-s/1.1/Process.owl#|::|servicePa 
          rameter| ?myFlight |http://127.0.0.1:8080/Parameters.owl#| 
          ::|coachOnlyCabin|) 
   ) 
) 
 

Users can keep refining their requirements by adding/modifying their goals via our 
prototype tool. The query results are shown on the screen for review.  When users are 
satisfied with the result, the files containing the final result OWL-S service are generated 
and added back to the ontology. 

Currently, our planner prototype can only handle sequential compositions. When the 
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JTP queries the result for the service components that satisfy the user’s goals, the proto-
type will populate the Process abstractComposedOf property only with the “sequence” 
control construct. Suppose the user requests a flight service (JFK-LAX) from New York 
(JFK) to Los Angles (LAX), for instance, the “JFK-ORD” and “ORD-LAX” services are 
the query result. We will add support for the other control constructs in the future. 

4  Case study 

In this section, we describe a case study of a dynamic flight scheduling service. Cus-
tomers’ requirements can be specified in terms of the goals, such as departure/arrival city 
pair, airline preference, and desired cabin. Our approach and prototype tool can assist 
combining existing web services to satisfy the customer’s requirements.  

Consider a customer who wants to schedule a business trip from New York (JFK) to 
Los Angles (LAX). He prefers to take only one stop during the trip. Suppose the sched-
uled flight cannot depart as expected due to some reason. The airline company normally 
does not re-schedule the flight, which means the traveler is not automatically put on an-
other flight if his/her flight is canceled or delayed. Table 1 shows all available flight ser-
vices on a particular day. 

 
Table 1  Flight information 

Flight No. Company Has busi-
ness cabin City pair Departure time Arrival time Cost 

(US$) 
AA301 American yes JFK-ORD 8:00 am 9:20 am 200 

AA303 American yes JFK-ORD 9:00 am 10:20 am 200 

AA501 American no ORD-LAS 3:00 pm 4:30 pm 300 

AA503 American yes ORD-LAS 4:00 pm 5:30 pm 300 

AA505 American no ORD-LAS 4:50 pm 6:20 pm 300 

AA701 American yes LAS-LAX 6:00 pm 7:00 pm 200 

AA703 American no LAS-LAX 6:30 pm 7:30 pm 200 

DAL1001 Delta yes JFK-ORD 9:00 am 10:10 am 180 

DAL2001 Delta no ORD-LAX 4:00 pm 6:20 pm 650 

DAL3001 Delta yes LAS-LAX 4:00 pm 5:30 pm 200 

DAL4001 Delta no LAS-LAX 3:00 pm 4:30 pm 200 

 
Consider a simple ontology for all flight services. This sample ontology follows 

“Flight -> Airline Company / City pair / Available Cabin -> detailed category abstract 
flight services -> bottom level abstract flight services” criteria to make the hierarchy (see 
Fig. 11). All concrete flight services can be mapped to one or more abstract services. For 
example, AA301 is an instance of the abstract services “Business-JFKORD-AA-Flight”, 
and in turn the instance of “JFKORD-Flight”, “AA-Flight”, “Business-Flight” and their 
corresponding parent classes. With our extension on the abstract service level, web ser-
vice compositions can be conducted at the abstract service level, instead of accessing the 
huge number of concrete service instances. Based on the user’s goals, the following JTP 
query entries can be entered in the Goal section of our prototype tool shown in Fig. 10. 
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Subject           Predicate              Object 
- ?flight1           profile:hasInput          parameter:JFK 
- ?flight1          profile:hasOutput        ?tmpStopCity 
- ?flight2           profile:hasInput           ?tmpStopCity 
- ?flight2         profile:hasOutput       parameter:LAX 

               
The user’s goals include both functional goals, such as the “hasInput” and “hasOut-

put” properties, and non-functional goals, such as choices of airline companies and cabin 
restrictions. The backend JTP inference engine responses only one solution at the abstract 
service level in this case. The “superInstance” in the result is a special instance for ab-
stract service, which is used for inference purpose only. The following is the inference 
result. 

 
      Bindings 1: 
   ?tmpStopCity = |http://127.0.0.1:8080/Parameters.owl#|::|ORD| 
   ?flight1 = |http://127.0.0.1:8080/Flight#|::|superInstance-jfkord-flight_profile| 
   ?flight2 = |http://127.0.0.1:8080/Flight#|::|superInstance-ordlax-flight_profile| 
 

Using our prototype tool, we get a solution containing two abstract flight services, 
“JFKORD-Flight_Service” and “ORDLAX-Flight_Service”. Our prototype can generate 
the new composite service’s Process class by adding those two abstract services in the 
“Sequence” control construct. “JFKORD-Flight_Service” has three concrete services in 
its Instance Pool (dal1001, aa301, aa303). “ORDLAX-Flight_Service” has “dal3001” 
and “dal4001” in its Instance Pool. In total, we get 3 × 2 = 6 concrete solutions.  

Consider the customer chooses an itinerary of “aa301 --dal3001” initially. However, 
the flight “dal3001” is canceled when he/she arrives in Chicago. This is a typical 
real-time fail-over situation such that the customer cannot go back to New York to start a 
new trip. In our approach, the instance pool of the corresponding abstract service is 
searched first. Another possible substitution (dal4001) is found in this case to fail-over 
the problem. 

Consider another case when the customer wants to switch to the business cabin in the 
ORD-LAX flight segment when he/she arrives in Chicago. The same airline company’s 
service is also required to avoid checking in the baggage multiple times. This dynamic 
redesign requirement can be achieved by our planner with the following addition goals: 

 

Subject       Predicate              Object 
- ?flight1   profile:serviceParameter    ?tmpAirline 
- ?flight2     profile:serviceParameter   ?tmpAirline 
- typeOf     ?tmpAirline       parameter:AirlineServiceParameter 
-?flight2   profile:serviceParameter   parameter:businessCabin 

 

Now the solution turns to be “Business-JFKORD-DAL-Flight_Service” followed by 
“Business-ORDLAX-DAL-Flight_Service”. The corresponding concrete solution nar-
rows to “dal1001” -> “dal3001”. 
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5  Related work 

A number of languages/frameworks have been developed based on the standard W3C 
web service language[7,8]  to support web service composition. Among them, two major 
efforts are the BPEL4WS[1,2] and OWL-S[3,4] which define a standard for concrete com-
posite web services. Our work is an extension of OWL-S at the abstract service level. 

There are several different approaches in web service composition area. Rao et al.[9] 
proposed architecture for web service composition using the linear logic theorem proving. 
Both the service profile and customer goals are translated into the propositional linear 
logic and fed into the Jena planner[10]. The goal realization is based on the individual 
concrete web service. Similarly, Traverso et al. [11] used the EaGle language and the MBP 
Planner to generate composition result in π-calculus which was transformed to 
BPEL4WS. Mandell et al.[12] provided an automatic runtime discovery, composition and 
execution environment by integrating the BPEL4WS and OWL-S. These approaches fo-
cus on concrete web service composition; whereas our approach concentrates on the dy-
namic optimization and run-time fail over capability.  

A transactional approach for web service composition is proposed in [13], where the 
accepted termination states are defined to allow the user to specify the required failure 
atomicity level. In contract, our approach focuses on fail-over and dynamic composition 
instead of failure atomicity. 

WSMO (Web Service Modeling Ontology)[14] is another effort to address the semantic 
web services.  WSMO relies on four core components: Ontology, Web Services, Goals 
and Mediators. There are several differences between the OWL-S and WSMO[15], e.g., 
separation of viewpoints of provider and requester in WSMO and explicit use of media-
tors to link the loose coupling core components. WSMO also describes similar concepts 
of OWL-S. For example, the OWL-S service profile can be expressed by the combination 
of the WSMO goal, the WSMO Web Service capability, and the Web Service 
non-functional properties[15]. Based on WSMO, several implementations like WSMX[16] 
and IRS-II[17] provide an execution environment for semantic web service, which enable 
the service registration, client discovery and invocation. The service compositions in 
WSMO, however, are still at the concrete service level. In contrast, our approach focuses 
on abstract level for fail-over and dynamic optimization. 

6  Conclusions 

This paper has proposed an extension to the OWL-S ontology framework for dynamic 
web service composition at abstract service level. Rooted from OWL-S, our approach 
inherits the capability of semantic clarity. New abstract service concept is extended to the 
OWL-S. Each abstract service has an instance pool. Our planner prototype can take the 
user’s goals and the service ontology and feed them into the backend inference engine to 
generate the results that are abstract services instead of concrete services. Each of the 
resulting abstract services has an instance pool of all possible concrete service solutions. 
A case study illustrates the runtime fail-over and dynamic redesign using our approach. 
Our planner prototype is based on the embedded JTP, which has been developed for the 
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demonstration purpose. 
In the future, we aim to continue to enhance the OWL-S ontology framework to sup-

port more complex optimization. We also plan to explore more case studies related to 
both the abstract level and instance level semantic constraints, and the user’s goals with 
“must have” and “good to have” semantic constraints. Furthermore, we intend to inte-
grate our composer prototype with an existing ontology server. 
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