
SCIENTIA SINICA Chimica

www.scichina.com chem.scichina.com

评述

有机半导体与有机发光专刊

亚铜配合物的光致发光与电致发光研究

刘小琛, 刘志伟*, 卞祖强, 黄春辉

北京分子科学国家实验室;稀土材料化学及应用国家重点实验室;北京大学化学与分子工程学院,北京 100871 *通讯作者,E-mail: zwliu@pku.edu.cn

收稿日期: 2012-12-05; 接受日期: 2013-01-21; 网络版发表日期: 2013-02-01 doi: 10.1360/032013-34

摘要 亚铜[Cu(I)]配合物因其低廉的价格、多样化的结构和独特的光物理性质一直备受关注.本文综述了常见磷光 Cu(I)配合物[Cu(NN) $_2$]⁺、[Cu(NN)(PP)]⁺和(CuX) $_m$ L $_n$ (其中 NN 表示双齿二胺配体, PP 表示二膦配体, X 表示卤素, L 表示含 N 或 P 配体)的光致发光与电致发光研究,揭示配合物结构与光学性质的关系,探讨近年来 Cu(I)配合物在有机发光二极管(OLED)领域的应用研究新进展.

关键词 亚铜配合物 光致发光 电致发光 有机发光二极管

1 引言

1987 年 Tang 等^[1]首次报道了亮度高、工作电压低的有机发光二极管(organic light emitting diode, OLED). 由于 OLED 具有对比度高、超薄、视角广、响应速度快、色彩绚丽、柔性等特征,因此被视为最新一代的"绿色节能"显示技术. 此外,研究结果表明,OLED 也适用于照明领域,是最具竞争潜力的新一代固态光源^[2-4]. 目前,全世界 20%的发电量用于照明,然而现有照明技术的电光转换效率非常低. 例如,广泛应用的白炽灯泡和荧光灯管仅分别把 5%和 20%的电能转换成光能. 为节约能源及减少环境污染,美国、日本、韩国等许多国家大力研发新一代高效、节能的固态光源作为 21 世纪的照明系统. 因此,OLED 作为高效的电光转换技术,成为未来新型显示和照明领域的重要发展方向.

在 OLED 的发展中,值得一提的是 1998 年 Baldo^[5] 及马於光^[6]的工作,他们将磷光配合物作为发光材料引入 OLED 的发光层,由于可以同时利用单重激发态和三重激发态的能量,器件的理论最大内量子效率(internal quantum efficiency, IQE)由原来荧光材料的 25%提高到磷光材料的 100%,从而开辟了磷光

OLED 研究的新领域.

为了制备高效率OLED,大量过渡金属配合物^[7],如铱(Ir)^[8]、铂(Pt)^[9]、锇(Os)^[10]、金(Au)^[11]等的配合物被合成并研究.到目前为止,基于贵金属 Ir 配合物发光的磷光 OLED 具有最高的发光性能,达到甚至超过了无机发光二极管(LED)^[12].然而, Ir 在自然界中的储量很低,价格昂贵,严重制约了高效率 OLED在显示与照明领域的应用,尤其是后者的商业化推广.因此,开发高效、廉价的新型磷光材料作为OLED发光材料已成为全球性的研究热点.

与 Ir 配合物相同, Cu(I)配合物作为磷光材料,应用于 OLED 也具有理论上 100%的最大 IQE. 此外,由于 Cu 在自然界含量高、廉价、环境友好,因此 Cu(I)配合物是 OLED 最理想的发光材料. 然而,长期以来 Cu(I)配合物的研究仅局限于光致发光,很少涉及电致发光,主要因为早期研究的 Cu(I)配合物的光致发光效率(photoluminescence quantum yield, PLQY)很低,理论上不能制备高效率 OLED. 直到近期,高 PLQY的 Cu(I)配合物相继被开发出来并应用于制备 OLED,显现出 Cu(I)配合物在 OLED 中应用的巨大潜力.本文就目前已报道的常见 Cu(I)配合物的光致发光性能进行归纳阐述,并结合我们课题组的研究,综述了

Cu(I)配合物在 OLED 领域的研究进展.

2 亚铜配合物的光致发光

Cu(I)的核外电子构型为 d^{10} , 这种全满的 d 轨道 使电子电荷的排布趋于对称. 为了使配体相互远离 并降低静电排斥, Cu(I)配合物倾向于四面体的立体 构型. Cu(I)配合物具有丰富的化学结构,包括单核和 多核 Cu(I)配合物. 早在 20 世纪 50 年代, 以二胺为配 体的单核 Cu(I)配合物[Cu(NN)₂]⁺(NN表示双齿二胺 配体,一般是 1,10-邻菲罗啉及其衍生物)的光致发 光性质就开始被研究, 然而这些配合物的 PLQY 非 常低[13~18]. 为了提高 Cu(I)配合物的 PLQY, 人们在 [Cu(NN)₂]⁺的基础上逐渐发展出以二胺、双膦及氮膦 为配体的[Cu(NN)(PP)]+ (PP 表示双齿二膦配体或两 个单齿膦配体)和[Cu(PN)(PP)] (PN 表示双齿氮膦配体) 配合物. 作为多核配合物, 卤化亚铜配合物(CuX)"L" $(X 代表卤素 Cl^-、 Br^-或 l^-, L 代表含 N 或 P 配体)因其$ 化学结构多变、发光颜色可调、效率高等优点而被广 泛研究.

2.1 [Cu(NN)₂][†]和[Cu(NN)(PP)][†]的光致发光

[Cu(NN)₂]⁺配合物是最早被研究的 Cu(I)配合物 之一, 其典型代表是 Cu(I)-邻菲罗啉配合物(图 1). 通 过对一系列[Cu(NN):][†]配合物结构与光学性质的系统 研究, McMillin 研究组^[19]推测[Cu(NN)₂]⁺配合物从基 态到激发态时中心铜离子的价态由+1 变为+2, 配合 物构型也由 Cu(I)的四面体变为 Cu(II)的平面四边形, 易与亲核试剂(如溶剂分子或配合物阴离子)形成具 有五配位结构的激发态络合物, 加速非辐射跃迁进 程,降低配合物发光效率. 伴随着密度泛函理论计算 (density functional theory)与时间分辨 X 射线吸收光 谱 (laser-initiated time-resolved X-ray absorption spectroscopy)等测试技术的发展,上述超快过程的假 设也获得证实^[20]. 因此, 提高[Cu(NN)₂][†]配合物 PLQY 的有效途径是增加 1,10-邻菲罗啉的 2 位和 9 位基团 (图 1 中 R)的位阻, 阻碍配合物激发态的形变. 然而, 修饰后[Cu(NN)2]⁺配合物的 PLQY 依然普遍偏低, 尤 其是在亲核溶剂中通常难以检测到配合物的发光. 其中, 发光效率最高的[Cu(NN)2]*配合物的 PLQY 也 仅有约1%.

[Cu(NN)(PP)]⁺配合物是用二膦配体取代[Cu(NN)₂]⁺

中的一个二胺配体. 通过优化二胺及二膦配体的结构, McMillin 研究组^[21]在 2002 年获得了 PLQY 为 16%的 [Cu(NN)(PP)][†]配合物[Cu(dpb)(pop)]BF₄ (图 2, **1**). 该配合物发光性能的增强主要来自三个方面: 一是采用

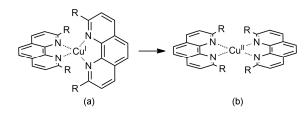


图 1 $[Cu(NN)_2]^+$ 配合物基态(四面体(a))与激发态(平面四边形(b))的构型

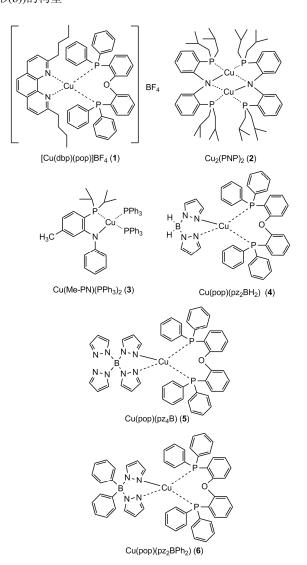


图 2 [Cu(NN)(PP)]⁺类配合物 1~6 的结构式

2,9-位具有位阻基团的 NN 配体; 二是采用螯合的二齿膦配体. 上述两种配体的引入可以有效地阻碍 Cu(I)配合物激发态的形变, 降低非辐射跃迁. 三是 具有拉电子效应 PP 配体的引入, 减弱了 Cu(I)向 NN 配体给电子能力, 导致配合物金属到配体电荷转移 跃迁(metal to ligand charge transfer, MLCT)光谱蓝移, 因此相对于[Cu(NN)₂]⁺配合物, [Cu(NN)(PP)]⁺不易发生非辐射跃迁.

随后, [Cu(NN)(PP)]⁺配合物因为具有高的 PLQY 而被广泛研究,同时也促进了高效率[Cu(PN)(PP)]配合物的发展. 2005 年, Peters 研究组^[22]以刚性、大体积的氮膦为桥连配体,合成了在溶液中 PLQY 高达 65%的 Cu(I)配合物 Cu₂(PNP)₂ (图 2, 2). 在此基础上,他们又利用氮膦配体 PN 及双膦配体 PP 合成了一系列[Cu(PN)(PP)]配合物^[23],这些配合物普遍具有较高的发光效率(溶液中 PLQY 为 16%~70%),同时最大发射波长也随配体结构的不同而变化(最大发射波长500~550 nm),其中配合物 Cu(Me-PN)(PPh₃)₂ (图 2, 3)在苯溶液中最大发射波长为 498 nm,具有最高的PLQY,为 70%.

2011年, Yersin 研究组^[24]通过设计不同 NN 配体结构, 系统研究了[Cu(NN)(PP)]配合物结构与光学性质的关系, 同时得到了 PLQY 高达 90%的蓝光 Cu(I)配合物. 他们合成的三个配合物 Cu(pop)(pz₂BH₂) (图 2, 4)、Cu(pop)(pz₄B) (图 2, 5)和 Cu(pop)(pz₂BPh₂) (图 2, 6)在不同介质中的最大发射波长及 PLQY 见表 1. 配合物4 在粉末、PMMA(聚甲基丙烯酸甲酯)薄膜和二氯甲烷溶液中的最大发射波长分别为436、462和535 nm,这种明显的光谱红移现象也伴随着配合物 PLQY的显著降低,相似的情况也同样出现在配合物5和6中.上述现象是由于配合物 MLCT激发态分子构型的改变而导致.在例性较大的介质,如粉末或薄膜中,

表 1 [Cu(NN)(PP)]类配合物 Cu(pop)(pz₂BH₂)(**4**), Cu(pop) (pz₄B) (**5**)和 Cu(pop)(pz₂BPh₂)(**6**)在不同介质中的发光性能

介质	4		5		6	
	$\lambda_{\max}^{a)}$ (nm)	PLQY b) (%)	$\lambda_{\max}^{a)}$ (nm)	PLQY b) (%)	$\lambda_{\max}^{a)}$ (nm)	PLQY b) (%)
Powder	436	45	447	90	464	90
PMMA	462	35	457	30	466	41
CH_2Cl_2	535	9	500	2	498	8

a) λ_{max} 为最大发射波长(误差 = ± 2 nm); b) PLQY 为荧光量子产率(相对误差 5%)

这种形变会得到显著抑制,从而降低非辐射跃迁. 降低激发态形变还可以通过改变配体的空间位阻来 实现.例如,配合物 4 在粉末、PMMA 薄膜和二氯 甲烷溶液中的发射波长发生较大程度的红移,而在 具有较大体积 NN 配体的配合物 5 和 6 中,红移的幅 度明显降低(表 1).但是需要指出的是,大体积配体 引起空间位阻的增加,并不能完全消除激发态形变 的产生.

2.2 (CuX)_mL_n的光致发光

(CuX)_mL_n 配合物的研究最早可追溯至 100 年前^[25],然而其光致发光性质引起人们的关注却是在 1973 年 Hardt 等^[26]发表的工作,他们发现,(CuI)_m(py)_n (py 代表吡啶)固态样品的发射光谱随温度的变化而出现明显的改变,并将这一行为定义为"热致变色".

图 3 所示为(CuX)"L, 配合物的三种常见结构示 意图. 当 Cu:X:L 的摩尔比为 1:1:1 时, 最常见的结构 是"立方烷"构型(图 3(a), Cu₄X₄L₄): 构成四面体构型 的 4 个 Cu 原子处于由 4 个 X 原子构成的更大的四面 体中,每个 Cu 原子拥有四个配位点,包含三个 X 原 子和一个配体 L, Cu 原子之间一般有较短的距离 (< 2.8 Å), 存在相互作用; 其次是类似"阶梯"的无限 链状结构(图 3(b), (CuXL)。): Cu 原子同样处于四面体 配位环境,包括三个 X 原子和一个配体 L,不同的是 这种结构形成无限链状,同时 Cu 原子之间的距离一 般大于 2.8 Å, 不存在相互作用. 当 Cu:X:L 的摩尔比 为 1:1:2 时, 最常见的结构是 Cu₂X₂构成菱面体, Cu 剩余的两个配位点被配体L所占据(图 3(c), Cu₂X₂L₄). 一般地, 在溶液中(CuX)"L,通常是不稳定的, 各种结 构在一定条件下可以相互转换, 形成的配合物构型 由热力学而非动力学控制. Ford 课题组^[27]研究结果表 明, 合成(CuX)"L, 配合物时析出固体的结构主要取 决于反应时原料的化学计量比.

(CuX)"L,配合物的结构非常丰富,因此其发光

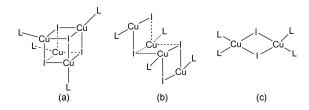
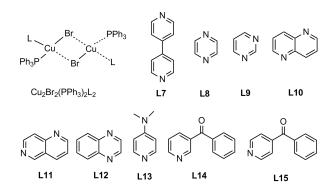


图 3 (CuX)_mL_n配合物的常见结构示意图

性质也异常复杂. 主要原因是(CuX)_mL_n 配合物的发光不仅与配体的化学/电子结构有关,同时还与形成配合物本身的结构有关. 例如, CuI 与同一配体吡啶形成三种常见配合物 $Cu_4I_4(py)_4$ 、[CuI(py)]_∞和 $Cu_2I_2(py)_4$. 在室温下及紫外灯照射下,它们的固体粉末分别发射橙光(580 nm)、蓝光(437 nm)和绿光(517 nm)^[28]. 鉴于此,接下来我们主要从三种常见结构探讨(CuX)_mL_n配合物的光致发光性质.

 $Cu_4X_4L_4$ (L 为吡啶衍生物)配合物一般有两个发射带,分别是高能量(high energy, HE)和低能量(low energy, LE),这两个发射带的相对强度会随温度的变化而改变^[28]. 例如, $Cu_4I_4(py)_4$ 在室温(294 K)时的最大发射波长为 580 nm, LE 占优势;而在低温(77 K)时 $Cu_4I_4(py)_4$ 的最大发射波长为 438 nm,以 HE 发射为主.需要指出的是,在 Cu_4I_4 配合物中,不仅可以利用低温来调控 HE 发射占优势,同样也可以利用配体的刚性来实现常温时也具有很强的 HE 发射^[29].

根据量子化学计算以及实验验证,在低温占主导的 HE 发射来源于卤素到配体的电荷转移跃迁 (halide to ligand charge transfer, XLCT)或 MLCT; 而在室温下占优势的 LE 发射,是由卤素到金属的电荷转移跃迁(halide to metal charge transfer, XMCT)以及金属簇中心的电荷转移跃迁(cluster centered charge transfer, CC)引起. 高能量的 XLCT/MLCT 发射存在的前提条件是配体 L 必须有 π 轨道,而 CC 的存在主要取决于铜原子之间的距离,当 Cu-Cu 间距小于 Cu 原子轨道相互作用半径 2.8 Å 时,才能允许 CC 跃迁的存在[30].


与大多数 Cu(I)配合物相似,激发态刚性大小是影响(CuX)₄L₄ 配合物发光性质的重要因素之一.以Cu₄L₄(py)₄ 为例,当配合物从固态变成溶液状态时,CC 发射会产生明显的红移(580 nm 到 694 nm),同时伴随 PLQY 的下降.量子化学计算和实验结果表明,Cu₄L₄(py)₄ 的 CC 激发态相对于基态和 XLCT/MLCT 激发态有很大的形变.引起这种形变的原因可以归结为 CC 激发态的刚性以及电子转移所需的较大的重组能^[31].

(CuXL)∞配合物的发光性质相对简单.在配合物(CuXL)∞中,由于Cu-Cu的间距一般大于2.8 Å,因此(CuXL)∞配合物的发光主要来自于 XLCT/MLCT 跃迁,没有 CC 跃迁.尽管在有些(CuXL)∞配合物中观察到较短的 Cu-Cu 距离(2.65~2.8 Å)^[29],但是也并不

能说明存在 Cu-Cu 键, 因此(CuIL)。配合物主要以高能量的 XLCT/MLCT 跃迁为主.

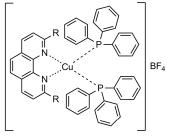
Cu₂X₂L₄配合物发光性质主要涉及 XLCT/MLCT 跃迁, 文献中对这些配合物的研究基本上是通过改 变配体的电子结构来调控配合物的发光颜色与效率. 2005年, Sasaki 研究组[32]研究了具有不同电子结构的 胺配体对 Cu₂X₂L₄配合物发光性能的影响. 考虑到直 接合成 Cu₂X₂L₄ 比较困难, 他们利用三苯基膦(PPh₃) 作为辅助配体, 合成了一系列具有 Cu₂X₂(PPh₃)₂L₂结 构的配合物(卤素为 Br 的配合物及配体结构见图 4, 这些配合物在常温下固体的最大发射波长分别是 7: 595 nm; **8**: 707 nm; **9**: 579 nm; **10**: 616 nm; **11**: 633 nm; 12: 644 nm; 13: 450 nm; 14: 579 nm; 15: 689 nm). 结 果表明,这些配合物在常温及低温都具有强的磷光 XLCT/MLCT 发射,发射波长从 450 nm(配体结构为 L13 对应的配合物 13)到 707 nm(配体结构为 L8 对应 的配合物 8), 涵盖整个可见区. 此外, 配合物的发射 波长与所用胺配体的还原电位具有对应关系, 说明 可以通过调节胺配体的电子结构来调控配合物的发 光颜色.

2012 年, Brase 研究组^[33]利用 PN 双齿配体合成了一系列 $Cu_2X_2L_3$ 配合物(配合物及配体结构见图 5,这些配合物在常温下固体的最大发射波长及 PLQY 值分别是 **16**: 537 nm (81%); **17**: 481 nm (48%); **18**: 553 nm (59%); **19**: 605 nm (6%); **20**: 572 nm (33%); **21**: 657 nm (16%); **22**: 713 nm (3%); **23**: 558 nm (70%); **24**: 546 nm (94%); **25**: 523 nm (70%); **26**: 546 nm (51%); **27**: 509 nm (74%); **28**: 497 nm (96%); **29**: 522 nm (96%); **30**: 507 nm (96%); **31**: 545 nm (60%)). 通过比较发现, $Cu_2X_2L_3$ 配合物的发光颜色同样可以通过改变配体 L的电子结构,实现从蓝光到红光(从 481 nm 到 713 nm)

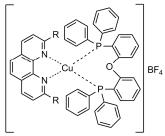
图 4 Cu₂Br₂(PPh₃)₂L₂ 类配合物 7~15(配合物 7 指 Cu₂Br₂(PPh₃)₂L₂中L配体为L7,下同)及其配体的结构式

图 5 $Cu_2I_2L_3$ 类配合物 16~31(配合物 16 指 $Cu_2I_2L_3$ 中配体 L 为 L16,下同)及其配体的结构式

的发射, 其中配合物 28、29 和 30(配体 L28 对应的 Cu₂I₂L₃配合物为 **28**, 下同)的 PLQY 均高达 96%. DFT 计算表明, 这些配合物的最高占据分子轨道(highest occupied molecular orbital, HOMO)主要分布于 Cu₂X₂, 而最低未占据分子轨道(lowest unoccupied molecular orbital, LUMO)则集中在桥连 PN 配体上. 鉴于此, 配体 PN的修饰主要改变配合物的LUMO,而其HOMO则几 乎保持不变. 因此, 当配体 L 取代基团具有给电子效应 时,配合物的发射产生蓝移.例如,配合物 $17(\lambda_{max} =$ 481 nm), $25(\lambda_{max} = 523 \text{ nm})$, $27(\lambda_{max} = 509 \text{ nm})$, **28**($\lambda_{\text{max}} = 497 \text{ nm}$), **29**($\lambda_{\text{max}} = 522 \text{ nm}$) $\neq 10$ **30**($\lambda_{\text{max}} = 10$ 507 nm)相对于母体配合物 **16**(λ_{max} = 537 nm)的发射 光谱都有蓝移, 尤其是强给电子基团二甲氨基的引 入, 使得配合物 17 的发射光谱蓝移最大(56 nm). 相 反地, 当取代基团具有拉电子效应或增大配体吡啶共 轭体系时,可以明显地观察到配合物发射波长的红移. 例如,配合物 **18**(λ_{max} = 553 nm)、**21**(λ_{max} = 657 nm)和 **23**(λ_{max} = 558 nm)相对于母体配合物 **16**(λ_{max} = 537 nm) 都有发射光谱红移现象.


3 亚铜配合物的电致发光

早在1999年,马於光等^[34]就将Cu(I)配合物作为发光材料制备OLED. 虽然器件的性能较差,例如,其启亮电压高达12 V,在电流密度为20 mA/cm²时的亮度仅为50 cd/m², 外量子效率(external quantum efficiency, EQE)低于0.1%等,但是该研究开拓了廉价磷光Cu(I)配合物在OLED中的新应用. 经过十几年的研究和发展,如今Cu(I)配合物发光OLED的性能有了明显的提高. 此部分将以发光材料的类型及时间为顺序,对近十几年Cu(I)配合物的电致发光研究进行简要介绍.


3.1 [Cu(NN)₂][†]和[Cu(NN)(PP)][†]的电致发光

研究表明,发光材料高的 PLQY 是制备性能优异 OLED 的必要条件. $[Cu(NN)_2]^+$ 配合物的 PLQY 普遍不高,因此这类配合物在 OLED 中的应用并没有受到关注. 直到具有高 PLQY 的 $[Cu(NN)(PP)]^+$ 配合物的诞生,Cu(I)配合物在磷光 OLED 中的应用才逐渐受到重视.

2004 年, 马东阁研究组^[35]合成了一系列 [Cu(NN)(PP)]BF₄配合物(图 6, **32~37**). 将这些配合物掺杂在 PMMA (20 wt%)中,发现配合物在固态薄膜中的

 $[Cu(phen)(PPh_3)_2]BF_4$, R = H (32) $[Cu(dmp)(PPh_3)_2]BF_4$, R = CH₃ (33) $[Cu(dnbp)(PPh_3)_2]BF_4$, R = n-Bu (34)

 $[Cu(phen)(DPEphos)]BF_4$, R = H (35) $[Cu(dmp)(DPEphos)]BF_4$, R = CH₃ (36) $[Cu(dnbp)(DPEphos)]BF_4$, R = n-Bu (37)

图 6 [Cu(NN)(PP)] BF₄类配合物 32~37 的结构式

PLQY 要高于其在溶液中的 PLQY^[21, 36]. 这是由于在固态时,不存在溶剂诱导的激发态络合物的猝灭过程^[13, 37, 38]. 通过比较发现,配合物 **37** 在这些配合物中具有最高的 PLQY (69%),最大发射波长为 519 nm. 将配合物 **37** 以最佳浓度 23 wt%掺杂于 PVK(聚乙烯咔唑)制备 OLED,器件发射绿光,最大亮度为 1484 cd/m²,最高电流效率为 11.0 cd/A,但是启亮电压却高达 13 V.

2006 年,李文连研究组^[39, 40]先后制备了分别以 [Cu(DPEphos)(DPPZ)]BF₄ (图 7, 38)、[Cu(DPEphos) (Dicnq)]BF₄ (图 7, 39)为发光材料的 OLED. 其中以配合物 38 为发光材料的 OLED 是首次报道的基于 Cu(I) 配合物发光的红光器件,器件最大发射波长 621 nm, 启亮电压是 11 V,在 21 V 时达到最大亮度 582 cd/m². 在配合物 39 的器件制备过程中发现,当配合物的掺杂浓度从 2%逐渐变化到 25%时,器件的发射波长相应地从 558 nm 红移到 615 nm, 实现了黄绿光 OLED 到橙红光 OLED 的调控. 然而,伴随着发光颜色的变化,器件的效率也出现先增加后降低的过程. 当配合物掺杂浓度为 6%时,器件具有最高电流效率 11.3 cd/A,最大亮度为 2132 cd/m²,启亮电压只有 4 V.

[Cu(DPEphos) (DPPZ)] BF_4 (38)

[Cu(DPEphos) (Dicnq)]BF₄ (39)

图 7 [Cu(DPEphos)(DPPZ)]BF₄ (38) 和 [Cu(DPEphos) (Dicnq)]BF₄ (39)的结构式

2010 年, Peters 研究组[41]合成了 Cu(I)配合物 [Cu(PNP-tBu)]2 (图 8, 40). 这种以刚性、大体积的胺 为桥连配体的配合物, 在溶液中的 PLQY 已高达 57%, 与之前报道的类似配合物[Cu(PNP)]2 (图 2, 2, PLOY 为 68%)[22]相当. 研究表明, 配合物的发光来 自单重态和三重态,常温以单重态发光为主,而低 温时则只有三重态发光,属于E型延迟荧光材料.将 配合物 40 以真空热蒸镀的方式制备 OLED, 器件的 最高 EOE 达到 16.1%, 电流效率为 47.5 cd/A, 是当 时 Cu(I)配合物 OLED 报道的最高效率. 器件的高效 率主要来自两方面: 一是作为 E 型延迟荧光材料, 配合物(40)不仅仅局限于单重态发光,还充分利用 了三重态激子的能量, 具有理论最大 100%的内量子 效率; 二是由于该材料热稳定性好, 可以采用真空 热蒸镀的方式制备 OLED, 利于器件结构优化, 提高 器件效率.

2011年,王利祥研究组^[42]分别将中性 Cu(I)配合物 Cu(qbm)(DPEphos) (图 9, 41)以及与其相对应的离子型配合物[Cu(Hqbm)(DPEphos)]BF₄ (图 9, 42)作为发光材料,用旋涂的方法制备 OLED. 结果表明,以中性配合物 41 为发光材料的 OLED 最大发射波长为555 nm,电流效率为 8.87 cd/A;以离子型配合物 42 为发光材料的 OLED 最大发射波长为562 nm,电流效率为 5.58 cd/A. 说明以中性 Cu(I)配合物制备的OLED 具有蓝移的发射光谱和更高的器件效率. 光谱的蓝移可以解释为 Cu(I)配合物的中性 NN 配体芳香性的增加以及接受电子能力的降低. 器件性能的提高说明中性 Cu(I)配合物更适合作为磷光 OLED 的发光材料.

3.2 (CuX)_mL_n的电致发光

从 $(CuX)_mL_n$ 的光致发光综述部分可以看出,

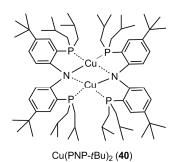
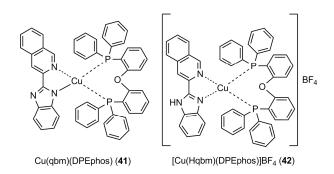



图 8 [Cu(PNP-tBu)]₂ (40)的结构式

(CuX)_mL_n 配合物具有优异的光物理性质. 例如,通过调节配体的电子结构可以使配合物的发光颜色涵盖整个可见区,同时也可以获得接近 100%的 PLQY,是 OLED 的理想发光材料. 然而,(CuX)_mL_n配合物在制备 OLED 时可操作性较差,包括大多数配合物热稳定性差、溶解性不好等,因此难以用传统的真空热蒸镀或旋涂方法制备 OLED. 虽然基于(CuX)_mL_n配合物发光 OLED 报道并不多,但是该系列材料均显示出优异的性能.

2007 年,Tsuboyama 等^[43]合成了一系列单核及双核(CuX)_mL_n 配合物,并以其中具有最高 PLQY (80%)的双核配合物 $Cu_2I_2(dppb)_2$ (图 10, **43**)为发光材料制备 OLED. 器件最大发射波长为 562 nm,亮度为1700 cd/m²,电流效率是 10.4 cd/A,EQE 为 4.8%. 近期,Adachi研究组^[44]同样利用配合物 **43** 作为发光材料,但是选择三重态能级更高的主体材料和电子传输材料将激子限制在发光层,器件的最大发射波长蓝移至517 nm,性能也得到了大幅度的提高:最大亮度为14400 cd/m²,电流效率是 30.6 cd/A,EQE 为 9.0%.

2011 年, Osawa 研究组^[45]将配合物(dtpb)CuBr (图 10, 44)作为发光材料制备 OLED, 器件发射出 517 nm 的绿光,最大电流效率和 EQE 分别达到 65.3 cd/A

图 9 Cu(qbm)(DPEphos)(**41**)和[Cu(Hqbm)(DPEphos)]BF₄(**42**)的结构式

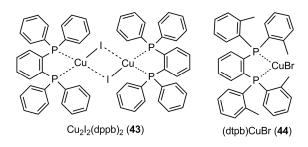


图 10 Cu₂I₂(dppb)₂ (43)和(dtpb)CuBr (44)的结构式

和 21.3%, 启亮电压只有 2.7 V; 器件性能已经接近 Ir 配合物 OLED 性能, 预示着 Cu(I)配合物在 OLED 领域及其商业化应用方面的巨大潜力.

针对大多数(CuX)_mL_n 配合物具有优异的光致发光性能但难以通过传统的方法制备 OLED 的难题, 刘志伟等^[46]报道了共蒸原位反应的方法: 在真空腔体内共蒸卤化亚铜 CuX 和既是配体又是主体材料的 L, 控制二者比例获得(CuX)_mL_n 配合物掺杂于 L 的发光薄膜, 并应用于制备 OLED. 以配体 L = mCPy 为例, 共蒸反应生成的发光配合物具有[CuI(mCPy)₂]₂ 结构(图 11, 45), 发射出最大波长位于 530 nm 的绿光. 制备的简单三层 OLED 的最大电流效率和 EQE 分别达到 13.8 cd/A 和 4.4%.

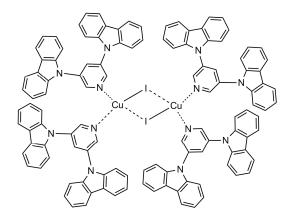


图 11 [CuI(mCPy)₂]₂ (45)的结构式

共蒸原位反应技术为热稳定性差的(CuX)_mL_n配合物在 OLED 中的应用提供了一种全新的思路,不仅极大地拓展了材料的选择范围,而且显著降低了配合物合成及纯化的成本.目前,我们课题组正在深入研究该技术,包括如何通过外加条件调控生成配合物的结构以及反应成膜动力学机理;如何通过改变配体/主体材料化学/电子结构,调控配合物发光颜色、效率以及器件性能等.初步研究结果表明,以该技术制备的绿光 OLED 在 100 cd/m²的亮度下电流效率和 EQE 可以分别超过 45 cd/A 和 15%,与 Ir(III)配合物 OLED 性能相当,显示出优良的前景.

4 总结和展望

经过十几年的发展, Cu(I)配合物的光致发光和电 致发光性能得到了显著提高: 光致发光从小于 1%的 PLQY 提高到接近 100%; 电致发光也由原来的 EQE 低于0.1%提高到21.3%, 接近理论最大值. 然而, Cu(I) 配合物在 OLED 领域的应用还存在很多问题: 首先,目前报道的大多数高效率 Cu(I)配合物 OLED 主要是绿光发射,如何开发高效率蓝光和红光 Cu(I)配合物 OLED 亟待解决. 这不仅需要利用化学合成手段开发高发光效率、不同发光颜色 Cu(I)配合物,同时也要利用器件物理的知识优化器件结构; 其次,高效率 Cu(I)配合物的报道远比 Cu(I)配合物 OLED 多,主要原因是

大多数 Cu(I)配合物在制备 OLED 时可加工性较差,难以用传统的真空热蒸镀或旋涂方法制备 OLED,如何发展新型技术,拓展 Cu(I)配合物的选择范围,是深入研究 Cu(I)配合物结构与 OLED 性能关系的关键;最后,Cu(I)配合物 OLED 的稳定性有待进一步研究. 虽然初步的研究结果表明 Cu(I)配合物 OLED 具有比 Ir配合物 OLED 更好的稳定性^[46],但是更详细、深入的研究是考察廉价 Cu(I)配合物 OLED 是否能在显示与照明领域应用的前提.

致谢 本工作得到国家高技术研究发展计划(863 计划,2011AA03A407)和国家自然科学基金(20971006,90922004,21201011)的支持,特此一并致谢.

参考文献 -

- 1 Tang CW, Vanslyke SA. Organic electroluminescent diodes. Appl Phys Lett, 1987, 51: 913-915
- 2 Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B, Leo K. White organic light-emitting diodes with fluorescent tube efficiency. *Nature*, 2009, 459: 234–238
- 3 Kido J, Hongawa K, Okuyama K, Nagai K. White light-emitting organic electroluminescent devices using the poly(*H*-vinylcarbazole) emitter layer doped with three fluorescent dyes. *Appl Phys Lett.* 1994, 64: 815–817
- 4 Andrade BW, Esler J, Lin C, Adamovich V, Xia S, Weaver MS, Kwong R, Brown JJ. Realizing white phosphorescent 100l m/W OLED efficiency. *Proc Spie*, 2008, 7051: 70510Q
- 5 Baldo MA, O'Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR. Highly efficient phosphorescent emission from organic electroluminescent devices. *Nature*, 1998, 395: 151–154
- 6 Ma YG, Zhang HY, Shen JC, Che CM. Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes. *Synthetic Met*, 1998, 94: 245–248
- 7 Evans RC, Douglas P, Winscom CJ. Coordination complexes exhibiting room-temperature phosphorescence: Evaluation of their suitability as triplet emitters in organic light emitting diodes. *Coord Chem Rev*, 2006, 250: 2093–2126
- 8 Xiao L, Chen Z, Qu B, Luo J, Kong S, Gong Q, Kido J. Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv Mater, 2011, 23: 926–952
- 9 D'Andrade BW, Brooks J, Adamovich V, Thompson ME, Forrest SR. White light emission using triplet excimers in electrophosphorescent organic light-emitting devices. *Adv Mater*, 2002, 14: 1032–1036
- Tung YL, Wu PC, Liu CS, Chi Y, Yu JK, Hu YH, Chou PT, Peng SM, Lee GH, Tao Y, Carty AJ, Shu CF, Wu FI. Highly efficient red phosphorescent osmium(II) complexes for OLED applications. *Organometallics*, 2004, 23: 3745–3748
- 11 Tang MC, Tsang DPK, Chan MMY, Wong KMC, Yam VWW. Dendritic luminescent gold(III) complexes for highly efficient solution-processable organic light-emitting devices. *Angew Chem Int Ed*, 2013, 52: 446–449
- Helander MG, Wang ZB, Qiu J, Greiner MT, Puzzo DP, Liu ZW, Lu ZH. Chlorinated indium tin oxide electrodes with high work function for organic device compatibility. *Science*, 2011, 332: 944–947
- 13 McMillin DR, McNett KM. Photoprocesses of copper complexes that bind to DNA. Chem Rev, 1998, 98: 1201-1219
- 14 Horvath O. Photochemistry of copper(I) complexes. Coord Chem Rev, 1994, 135: 303-324
- 15 Kutal C. Spectroscopic and photochemical properties of d¹⁰ metal complexes. *Coord Chem Rev*, 1990, 99: 213–252
- Vogler C, Hausen HD, Kaim W, Kohlmann S, Kramer HEA, Rieker J. Copper(I)-assisted formation of an "organic" sandwich structure: Structural prerequisites for luminescence of the dinuclear complexes [(μ-bipyrimidine){Cu(PR₃)₂}₂]X₂. Angew Chem Int Ed, 1989, 28: 1659–1660
- 17 Sakaki S, Koga G, Ohkubo K. Successful photocatalytic reduction of methylviologen (MV^{2+}) with $[Cu(NN)(PPh_3)_2]^+$ (NN = 2,9-dimethyl-1,10-phenanthroline or 4,4',6,6'-tetramethyl-2,2'-bipyridine) upon near-UV-light irradiation and a novel solvent effect on its catalytic activity.*Inorg Chem*, 1986, 25: 2330–2333

- 18 Kern JM, Sauvage JP. Photoassisted C–C coupling via electron transfer to benzylic halides by a bis(di-imine) copper(I) complex. *J Chem Soc: Chem Commun*, 1987, 8: 546–548
- 19 Everly RM, McMillin DR. Concentration-dependent lifetimes of Cu(Nn)²⁺ systems-exciplex quenching from the ion-pair state. *Photochem Photobiol*, 1989, 50: 711–716
- 20 Chen LX. Probing transient molecular structures in photochemical processes using laser-initiated time-resolved X-ray absorption spectroscopy. Annu Rev Phys Chem, 2005, 56: 221–254
- 21 Cuttell DG, Kuang SM, Fanwick PE, McMillin DR, Walton RA. Simple Cu(I) complexes with unprecedented excited-state lifetimes. *J Am Chem Soc*, 2002, 124: 6–7
- 22 Harkins SB, Peters JC. Highly emissive Cu₂N₂ diamond core complex supported by a [PNP] ligand. J Am Chem Soc, 2005, 127: 2030–2031
- 23 Miller AJM, Dempsey JL, Peters JC. Long-lived and efficient emission from mononuclear amidophosphine complexes of copper. *Inorg Chem*, 2007, 46: 7244–7246
- 24 Czerwieniec R, Yu J, Yersin H. Blue-light emission of Cu(I) complexes and singlet harvesting. *Inorg Chem*, 2011, 50: 8293–8301
- 25 Lloyd SJ. Some cuprous ammonia halides. J Phys Chem, 1908, 12: 398–403
- 26 Hardt HD, Pierre A. Fluorescence thermochromism of pyridine copper iodides and copper iodide. Z Anorg Allg Chem, 1973, 402: 107–112
- 27 Ford PC, Cariati E, Bourassa J. Photoluminescence properties of multinuclear copper(I) compounds. Chem Rev, 1999, 99: 3625–3647
- 28 Kyle KR, Ryu CK, Dibenedetto JA, Ford PC. Photophysical studies in solution of the tetranuclear copper(I) clusters Cu₄I₄L₄ (L = pyridine or substituted pyridine). *J Am Chem Soc*, 1991, 11: 2954–2965
- 29 Liu ZW, Djurovich PI, Whited MT, Thompson ME. Cu₄I₄ clusters supported by P^N-type ligands: New structures with tunable emission colors. *Inorg Chem*, 2012, 51: 230–236
- Rath NP, Holt EM, Tanimura K. Fluorescent copper(I) complexes: Correlation of structural and emission characteristics of [CuI(quin)₂]₂ and Cu₄I₄(quin)₄ (quin = quinoline). *J Chem Soc*: Dalton Trans, 1986, 11: 2303–2310
- Vitale M, Ford PC. Luminescent mixed ligand copper(I) clusters $(CuI)_n(L)_m(L) = pyridine$, piperidine): Thermodynamic control of molecular and supramolecular species. *Coord Chem Rev*, 2001, 219: 3–16
- Araki H, Tsuge K, Sasaki Y, Ishizaka S, Kitamura N. Luminescence ranging from red to blue: A series of copper(I)-halide complexes having rhombic $\{Cu_2(\mu-X)_2\}$ (X = Br and I) units with N-heteroaromatic ligands. *Inorg Chem*, 2005, 44: 9667–9675
- 33 Zink DM, Bächle M, Baumann T, Nieger M, Kühn M, Wang, C, Klopper W, Monkowius U, Hofbeck Y, Yersin H, Brase S. Synthesis, structure, and characterization of dinuclear copper(I) halide complexes with P^N ligands featuring exciting photoluminescence properties. *Inorg Chem*, 2012, DOI: 10.1021/ic300979c
- 34 Ma YG, Che CM, Chao HY, Zhou XM, Chan WH, Shen JC. High luminescence gold(I) and copper(I) complexes with a triplet excited state for use in light-emitting diodes. *Adv Mater*, 1999, 11: 852–857
- 35 Zhang QS, Zhou QG, Cheng YX, Wang LX, Ma DG, Jing XB, Wang FS. Highly efficient green phosphorescent organic light-emitting diodes based on CuI complexes. *Adv Mater*, 2004, 16: 432–436
- 36 Kuang SM, Cuttell DG, McMillin DR, Fanwick PE, Walton RA. Synthesis and structural characterization of Cu(I) and Ni(II) complexes that contain the bis[2-(diphenylphosphino)phenyl]ether ligand: Novel emission properties for the Cu(I) species. *Inorg Chem*, 2002, 41: 3313–3322
- 37 Scaltrito DV, Thompson DW, O'Callaghan JA, Meyer GJ. MLCT excited states of cuprous bis-phenanthroline coordination compounds. *Coord Chem Rev*, 2000, 208: 243–266
- 38 Armaroli N. Photoactive mono- and polynuclear Cu(I)-phenanthrolines. A viable alternative to Ru(II)-polypyridines. Chem Soc Rev, 2001, 30: 113–124
- 39 车广波, 苏子生, 李文连, 初蓓, 陈丽莉. 一种新型磷光铜(I)配合物及其红光 OLED. 液晶与显示, 2006, 21: 185-187
- 40 Che GB, Su ZS, Li WL, Chu B, Li MT, Hu ZZ, Zhang ZQ. Highly efficient and color-tuning electrophosphorescent devices based on CuI complex. Appl Phys Lett, 2006, 89: 103511
- 41 Deaton JC, Switalski SC, Kondakov DY, Young RH, Pawlik, TD, Giesen DJ, Harkins SB, Miller AJM, Mickenberg SF, Peters JC. E-type delayed fluorescence of a phosphine-supported Cu₂(μ-NAr₂)₂ diamond core: Harvesting singlet and triplet excitons in OLEDs. *J Am Chem Soc*, 2010, 132: 9500–9508
- 42 Min JH, Zhang QS, Sun W, Cheng YX, Wang LX. Neutral copper(I) phosphorescent complexes from their ionic counterparts with 2-(2'-quinolyl)benzimidazole and phosphine mixed ligands. *Dalton Transactions*, 2011, 40: 686–693
- 43 Tsuboyama A, Kuge K, Furugori M, Okada S, Hoshino M, Ueno K. Photophysical properties of highly luminescent copper(I) halide complexes chelated with 1,2-bis(diphenylphosphino)benzene. *Inorg Chem*, 2007, 46: 1992–2001

- 44 Zhang QS, Komino T, Huang SP, Matsunami S, Goushi K, Adachi C. Triplet exciton confinement in green organic light-emitting diodes containing luminescent charge-transfer Cu(I) complexes. Adv Funct Mater, 2012, 22: 2327–2336
- 45 Hashimoto M, Igawa S, Yashima M, Kawata I, Hoshino M, Osawa M. Highly efficient green organic light-emitting diodes containing luminescent three-coordinate copper(I) complexes. *J Am Chem Soc*, 2011, 133: 10348–10351
- 46 Liu ZW, Qayyum MF, Wu C, Whited MT, Djurovich PI, Hodgson KO, Hedman B, Solomon EI, Thompson ME. A codeposition route to CuI-pyridine coordination complexes for organic light-emitting diodes. J Am Chem Soc, 2011, 133: 3700–3703

Review on photoluminescence and electroluminescence study of copper(I) complexes

LIU XiaoChen, LIU ZhiWei*, BIAN ZuQiang, HUANG ChunHui

Beijing National Laboratory for Molecular Sciences; State Key Laboratory of Rare Earth Materials Chemistry and Applications; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China *Corresponding author (email: zwliu@pku.edu.cn)

Abstract: Copper(I) complexes have attracted considerable interest because of their rich photophysical properties and potential applications as inexpensive, abundant materials in organic light-emitting diode (OLED). Herein we review photoluminescence and electroluminescence study on several common copper(I) complexes $[Cu(NN)_2]^+$, $[Cu(NN)(PP)]^+$ and $(CuX)_mL_n$ (where NN indicates a chelating bisimine ligand, typically a substituted 1,10-phenanthroline; PP denotes a bisphosphine ligand; X means halide, such as I, Br, Cl and L equals a ligand that contains N or P coordination site). The relationship between structure and photoluminescence properties of copper(I) complexes and recent progress on copper(I) complexes based OLEDs are discussed.

Keywords: copper(I) complex, photoluminescence, electroluminescence, organic light-emitting diode (OLED)