SCIENTIA SINICA Physica, Mechanica & Astronomica

phys.scichina.com



## 论文

# 超重核 Z=117 同位素链的 $\alpha$ 衰变性质

张鹏<sup>®</sup>, 张鸿飞<sup>®\*</sup>, 高远<sup>®</sup>, 李君清<sup>®®</sup>, 刘圳<sup>®</sup>

- ① 兰州大学核科学与技术学院, 兰州 730000;
- ② 中国科学院近代物理研究所, 兰州 730000
- \*联系人, E-mail: zhanghongfei@lzu.edu.cn

收稿日期: 2011-08-18;接受日期: 2012-03-26; 网络出版日期: 2012-07-09 国家自然科学基金(批准号: 10775061, 10975064, 11175074, 11105035)和兰州大学创新创业行动计划项目资助

摘要 运用推广的液滴模型结合 WKB 方法对新合成超重核 <sup>293</sup>117 和 <sup>294</sup>117 及其α衰变链中各核素的半衰期进行系统性分析,理论计算得到的超重核半衰期与实验值符合得非常好. 说明推广的液滴模型可以成功研究超重核的半衰期. 本文还预测了 Z=117 同位素链上尚未合成的超重核的α衰变半衰期. 计算结果表明在 Z=117 同位素链中存在比已合成的 <sup>293</sup>117 和 <sup>294</sup>117 更稳定、寿命更长的超重核.

关键词  $\alpha$ 衰变,超重核,推广的液滴模型,半衰期

**PACS:** 23.60.+e, 27.90.+b, 21.60.Ev, 21.10.Tg

doi: 10.1360/132011-1162

从原子核的 $\alpha$ 衰变现象发现到 20 世纪 30 年代,  $\alpha$  衰变理论已经基本建立,人们知道 $\alpha$ 衰变现象是典型的量子位垒穿透问题,在理论上可以采用 WKB 方法较好的解决. 20 世纪 60 年代考虑了原子核壳模型预言了在电荷数 Z=114-126,中子数 N=184 附近存在一片寿命较长的核素,就是超重元素稳定岛[1].几十年来,在该领域不断地取得进展,不但合成了 110, 111和 112号元素,而且将超重元素的合成推到了 113—116[2-5],以及 118[6]号元素,而且最近合成 117[7]号元素。值得注意的是对 Z=117号超重核的合成截面,在实验之前已经作了系统地理论研究[8],对该实验起了很好的指导作用。对这些新合成超重核的性质进行详细的理论研究[9-12],一方面可以检验这些实验结果,另一方面通过理论计算与实验的对照比较,可以

完善现有的原子核理论模型. 该文运用推广的液滴模型(GLDM)结合 WKB 方法研究超重核的半衰期,在理论上合成超重核 <sup>293</sup>117 和 <sup>294</sup>117 的实验进行确认,判断推广的液滴模型研究超重核的可行性与合理性. 并在此基础上运用推广的液滴模型结合 WKB 方法预测 117 号元素α衰变链中各同位素半衰期,寻找该同位素链中长寿命核位置.

## 1 理论模型

## 1.1 推广的液滴模型

对于α衰变,有两种不同的观点. 一种是预形成结团模型(Preformed Cluster Model)<sup>[13]</sup>,另一种是超非对称裂变模型(Supersymmetric Fission Model)<sup>[14-16]</sup>.

引用格式: 张鹏, 张鸿飞, 高远, 等. 超重核 Z=117 同位素链的α衰变性质. 中国科学: 物理学 力学 天文学, 2012, 42: 941–947

Zhang P, Zhang H F, Gao Y, et al. Alpha decay properties of the Z=117 isotopes (in Chinese). Sci Sin-Phys Mech Astron, 2012, 42: 941–947, doi: 10.1360/132011-1162

最近的研究表明重核的 $\alpha$ 衰变过程倾向于第一种衰变模式 $^{[17]}$ ,即 $\alpha$ 粒子在母核内有一定预形成几率、接着以零点振动频率撞击位垒,最终有一定几率穿过位垒发生 $\alpha$ 衰变.

20 世纪 80 年代,法国核物理学家 Royer 提出准分子形状,在 $\alpha$ 衰变过程中引入了亲合能. 在原子核液滴模型的基础上考虑准分子形状机制和亲合能的贡献,就是推广的液滴模型(Generalized Liquid Drop Model)<sup>[18–20]</sup>.

在推广的液滴模型中,原子核的总能量表示为

$$E = E_{\rm V} + E_{\rm S} + E_{\rm C} + E_{\rm prox}, \tag{1}$$

式中  $E_V$ ,  $E_S$  和  $E_C$  分别是原子核的体积能、表面能和库仑能,  $E_{prox}$  是亲合能.

在通常的液滴模型中, 位能包括体积能  $E_V$ 、表面能  $E_S$  和库仑能  $E_C$ . 表面能  $E_S$  仅考虑表面张力的效应, 而不包括在脖子区或两个碰撞核之间、或两个分开碎片之间吸引核力的贡献. 引入亲和力就是要考虑这些附加的表面效应. 要强调的是在 GLDM 中, 亲和力考虑了脖子区域表面核子之间的强相互作用, 它与核的形状有关. 所以, 亲和能可以表示为

$$E_N = E_{\text{prox}} = 2\gamma \int_{h_{\text{min}}}^{h_{\text{max}}} \phi(D/b) 2\pi h dh, \qquad (2)$$

h为横向距离, D为脖子区子核表面和 $\alpha$ 粒子表面之间的距离, b 为面的宽度, 一般取 0.99 fm.  $\phi$ 为 Feldmeier函数<sup>[21]</sup>, 表面参数 $\gamma$ 为两个核表面参数的几何平均:

$$\gamma = 0.9517\sqrt{(1-2.6I_1^2)(1-2.6I_2^2)}$$
 MeV fm<sup>-2</sup>, (3)  
在两个核的接触点处,亲和能达到最大,在接触点的  
两侧迅速减小为零.

对于α衰变, 亲合能的表达式可以写为[21]

$$E_{\text{prox}} = 4\pi \gamma e^{-x} \left[ aA^{2/3} - \left( \frac{0.172}{A^{1/3}} + bA^{1/3} \right) r - cA^{1/3} r^2 + dr^3 \right], \tag{4}$$

式中 x=1.38r+ $R_a$ + $R_d$ , a=0.6584, b=0.4692, c=0.02548, d=0.01762, 其中 A 为母核质量数, r 为 $\alpha$ 粒子与子核质心距离.

在 $\alpha$ 衰变过程中,由于体积守恒, $E_V$ 不影响势垒.引入亲和力后,库仑力和亲和力之间的平衡控制着位垒的高度和位置,可以降低位垒的高度并移动其位置,所以亲和力的引入对正确描述 $\alpha$ 衰变位垒非常关键.推广的液滴模型考虑了精确的原子核半径、质

量和电荷的不对称性、形变、亲和力等因素, 所以它能够描述原子核的裂变、熔合、α衰变、质子发射以及集团放射性<sup>[22–24]</sup>.

#### 1.2 结合 WKB 方法计算衰变半衰期

原子核的α衰变常数定义为

$$\lambda = P_0 v_0 P,\tag{5}$$

其中  $v_0$  是零点振动频率, $v_0 = \frac{1}{2R} \sqrt{\frac{2E_\alpha}{M}}$ ; R 为母核的

半径,  $E_{\alpha}$ 为 $\alpha$ 粒子的能量, M为 $\alpha$ 粒子的质量. P是穿透位垒的几率, 按照量子力学中的 WKB 近似,  $\alpha$ 粒子的势垒贯穿概率为

$$P = e^{-G}, (6)$$

$$G = \frac{2}{\hbar} \int_{R}^{R_{\text{out}}} \sqrt{2B(r)(E(r) - E_{\text{sphere}}))} dr, \tag{7}$$

子核和 $\alpha$ 粒子分开之前,核的变形能(以球形核的能量为零点)比较小.同时做了以下近似:

$$R_{\rm in} = R_d + R_\alpha, \tag{8}$$

$$B(r) = \mu, \tag{9}$$

其中 $\mu$ 是子核和 $\alpha$ 粒子的约化质量,  $R_{\text{out}}$ 为 $\frac{e^2 Z_{\alpha} Z_{d}}{Q_{-}}$ .  $R_{\alpha}$ 

和  $R_d$  是在保证衰变过程中原子核体积守恒条件下 $\alpha$  粒子与子核的半径,分别取:

$$R_{J} = R_{0} (1 + \beta^{3})^{-1/3}, \tag{10}$$

$$R_{\alpha} = R_0 \beta (1 + \beta^3)^{-1/3}, \tag{11}$$

其中

$$\beta = \frac{1.28A_{\alpha}^{1/3} - 0.76 + 0.8A_{\alpha}^{-1/3}}{1.28A_{\alpha}^{1/3} - 0.76 + 0.8A_{\alpha}^{-1/3}},$$
(12)

 $P_0$  是 $\alpha$ 粒子在原子核内的预形成几率,采用最新拟合的解析公式<sup>[25]</sup>:

$$\log P_0 = a + b(Z - Z_1)(Z_2 - Z) + c(N - N_1)(N_2 - N) + dA,$$
(13)

其中 Z为电荷数, N为中子数, A 为母核质量数,  $Z_1$ 和  $Z_2$  为质子幻数( $Z_1$ <Z< $Z_2$ ),  $N_1$  和  $N_2$  为中子幻数( $N_1$ < $N_2$ ), a-d 为参数, 由原子核的微观结构决定, 如下表 1 所示.  $\alpha$ 粒子在母核内预形成机制的研究, 原则上应该从核多体理论出发, 目前还没有很好解决, 很难给出预形成因子的定量结果. 本课题组近期拟合实验提取的预形成因子而得到了(13)式所示的经验公式, 是母核的质子数 Z 和中子数 N 的函数. 在拟合参数时发

| Table 1 The paramete | i table mai calculated the pi                                                                                   | erormation ractor through eq                                           | . (13)                                       |                    |
|----------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------|--------------------|
|                      |                                                                                                                 | Odd-A nucleus                                                          |                                              |                    |
|                      | 50 <z<82< th=""><th>82<z< th=""><th>82<z< th=""><th>82<z< th=""></z<></th></z<></th></z<></th></z<82<>          | 82 <z< th=""><th>82<z< th=""><th>82<z< th=""></z<></th></z<></th></z<> | 82 <z< th=""><th>82<z< th=""></z<></th></z<> | 82 <z< th=""></z<> |
|                      | 82 <n<126< th=""><th>82&lt;<i>N</i>&lt;126</th><th>126&lt;<i>N</i>&lt;152</th><th>152&lt;<i>N</i></th></n<126<> | 82< <i>N</i> <126                                                      | 126< <i>N</i> <152                           | 152< <i>N</i>      |
| a                    | 6.194819                                                                                                        | -17.70253                                                              | 9.584417                                     | -1196.707          |
| b                    | 0.005354                                                                                                        | 0.091751                                                               | 0.147407                                     | -5.273438          |
| c                    | 0.006363                                                                                                        | 0.004019                                                               | 0.020438                                     | -5.003726          |
| d                    | -0.069859                                                                                                       | 0.059800                                                               | -0.076871                                    | 5.103626           |
| $\sqrt{\sigma^2}$    | 0.670                                                                                                           | 0.850                                                                  | 1.608                                        | 1.601              |
|                      |                                                                                                                 | Odd-odd nucleus                                                        | S                                            |                    |
| а                    | 12.18941                                                                                                        | -50.85612                                                              | 22.07726                                     | -9157.626          |
| b                    | -0.006942                                                                                                       | 0.136975                                                               | 0.357635                                     | -38.89009          |
| С                    | -0.002655                                                                                                       | 0.013371                                                               | 0.027708                                     | -39.16380          |
| d                    | -0.084889                                                                                                       | 0.205916                                                               | -0.146806                                    | 39.09218           |
| $\sqrt{\sigma^2}$    | 0.696                                                                                                           | 0.811                                                                  | 1.876                                        | 1.409              |

表 1 采用公式(13)计算预形成因子的参数表

Table 1. The parameter table that calculated the preferencian factor through as (12)

现, 若采用统一的参数(即对所有原子核, 参数 a-d 取 相同数值), 很难符合从实验提取的原子核的预形成因 子. 后来采用对不同质量区域原子核采用不同参数时, 得到了与实验提取的预形成因子符合很好的结果[25]. 该分区是依据原子核的质子与中子幻数进行的(质子 幻数取为 Z=50,82, 中子幻数为 N=50,82,126 和 152; 在 Z=82 或者 N=152 后进一步假定核子幻数, 例如: Z=114, N=184 时, 不会给出更好的拟合结果). 一方面 说明了预形成因子与原子核的微观结构紧密相关. 另 一方面也表明从微观理论自洽计算阿尔法粒子预形成 因子的复杂性. 由于该公式的参数拟合了合成 Z=117 号元素以前所有重核以及超重核的实验结果, 预期对 超重核 Z=117 号超重核同位素链上原子核的 $\alpha$ 粒子预 形成因子能够给出合理的结果.

通过(5)式可以算出λ,利用

$$T_{1/2} = \frac{\ln 2}{\lambda},\tag{14}$$

计算出 $\alpha$ 衰变的半衰期. 平均寿命为

$$\tau = \frac{T_{1/2}}{\ln 2}.\tag{15}$$

## 2 理论计算结果与分析

## **2.1** <sup>293</sup>**117** 与 <sup>294</sup>**117** 衰变链上核的α衰变平均寿命

运用 GLDM 方法计算得到的理论平均寿命与利 用密度依耐的 M3Y 模型(DDM3Y)计算得到的平均寿 命及实验值的比较列在表 2 中, 第 1 列和第 2 列分别 为 $\alpha$ 衰变链的质量数和质子数、第3列和第4列分别为  $\alpha$ 衰变链上 $\alpha$ 粒子动能与衰变能的实验值. 第 5 列, 第 6 列和第 7 列分别是平均寿命的实验值、运用密度依 赖的 M3Y(DDM3Y)模型[26]及推广的液滴模型计算得 到的平均寿命.

对表2中不同模型(M3Y与GLDM)计算得到的平 均寿命比较分析可以发现, 推广的液滴模型计算值对 衰变能的变化敏感程度与 DDM3Y 对衰变能变化的敏 感程度相似,说明 $\alpha$ 衰变能对确定原子核 $\alpha$ 衰变半衰期 至关重要.

另外, GLDM 的计算结果在整体上和已知的理论 预测值[27](\*表示)符合的很好,特别对奇 A 核的理论计 算几乎完全再现了实验结果.衰变能为 9.74 MeV 时对 <sup>285</sup>113 的计算结果与实验符合很完美, 与 DDM3Y 的 理论计算符合也很好. 从表 2 中质子数 Z= 109-117 号 元素中相应核素的半衰期的实验值和理论预测值的大 小变化可以看出, 在 Z=113 附件可能存在超重核的稳 定岛,说明我们的理论计算非常接近真实数据.但 <sup>282</sup>111 的计算所得平均寿命远远大于实验观察值, 从 模型对衰变能的敏感程度来看,可能衰变能的取值需 要在实验上进一步更精确地测量. 而 278109 的计算结 果却远小于实验观测值, 却和 DDM3Y 理论的计算结 果符合的很好,可能有同核异能素的存在,需要进一 步的理论探索与实验验证.

整体来看,推广的液滴模型计算得到的平均寿命 与实验值较 DDM3Y 更加吻合, 可见 GLDM 用于研究 超重核的衰变是十分成功的.

表 2 293117 和 294117 及其衰变链中各核的平均寿命与实验值的比较

**Table 2** Comparisons between observed  $(\tau^{\text{expt}})^{[7]}$  and theoretical  $\alpha$ -decay lifetimes  $(\tau^{M3})^{\gamma}$ ,  $\tau^{\text{GLDM}}$ ) using measured and calculated  $Q_{\alpha}$ 

| 母核 A | 母核 $Z$ | $E_{\alpha}^{\exp t}$ (MeV) | $Q_{\alpha}  ({ m MeV})$ | $	au^{\mathrm{exp}t}$ | $	au^{M3Y}$                            | $	au^{	ext{GLDM}}$                          |
|------|--------|-----------------------------|--------------------------|-----------------------|----------------------------------------|---------------------------------------------|
| 293  | 117    | 11.03(8)                    | 11.19(8)                 | 21 ms                 | 4.1 <sup>+2.3</sup> <sub>-1.5</sub> ms | 46.0 <sup>+27.1</sup> <sub>-16.9</sub> ms   |
| 293  | 117    | *11.26                      | 11.42                    | *10 ms                | 1.2 ms                                 | 13.0 ms                                     |
| 289  | 115    | 10.31(9)                    | 10.46(9)                 | 0.32 s                | $65^{+47}_{-27} \text{ ms}$            | $0.82^{+0.63}_{-0.35} \ s$                  |
| 289  | 115    | *10.48                      | 10.63                    | *0.22 s               | 23 ms                                  | 0.29s                                       |
| 285  | 113    | 9.48(11)                    | 9.62(11)                 | 7.9 s                 | $3.0^{+3.4}_{-1.6}$ s                  | 47.13 <sup>+55.34</sup> <sub>-25.18</sub> s |
| 285  | 113    | 9.74(8)                     | 9.89(8)                  | 7.9 s                 | $530^{+366}_{-213} \text{ ms}$         | $7.4^{+5.3}_{-3.0}$ s                       |
| 285  | 113    | *9.96                       | 10.11                    | *1.2 s                | 0.13 s                                 | 1.7 s                                       |
| 294  | 117    | 10.81(10)                   | 10.97(10)                | 112 ms                | $52^{+46}_{-23} \text{ ms}$            | 34.5 <sup>+28.1</sup> <sub>-15.3</sub> ms   |
| 294  | 117    | *11.00                      | 11.16                    | *45 ms                | 18 ms                                  | 11.3 ms                                     |
| 290  | 115    | 9.95(40)                    | 10.10(10)                | 0.023 s               | $2.43^{+33.18}_{-2.24} \text{ s}$      | $2.4^{+2.3}_{-1.2} \text{ s}$               |
| 290  | 115    | *10.23                      | 10.38                    | *1.0 s                | 0.40 s                                 | 0.39 s                                      |
| 286  | 113    | 9.63(10)                    | 9.77(10)                 | 28.3 s                | $4.2^{+4.0}_{-2.0} \text{ s}$          | $6.2^{+6.2}_{-3.0} \text{ s}$               |
| 286  | 113    | *9.56                       | 9.7                      | *16 s                 | 6.7 s                                  | 10.1 s                                      |
| 282  | 111    | 9.00(10)                    | 9.13(10)                 | 0.74 s                | $70.1^{+77.3}_{-35.9} \text{ s}$       | $165.6^{+186.3}_{-86.6}\mathrm{s}$          |
| 282  | 111    | *9.43                       | 9.57                     | *8.1 s                | 3.4 s                                  | 6.9 s                                       |
| 278  | 109    | 9.55(19)                    | 9.70(19)                 | 11.0 s                | $0.3^{+0.8}_{-0.2}$ s                  | $0.87^{\tiny{+2.0}}_{\tiny{-0.6}}~\text{s}$ |
| 278  | 109    | *9.14                       | 9.28                     | *13 s                 | 5.0 s                                  | 14.6 s                                      |
| 274  | 107    | 8.80(10)                    | 8.94(10)                 | 1.3 min               | $11.3^{+12.1}_{-5.9}$ s                | $44.6^{+49.2}_{-23.2} \text{ s}$            |
| 274  | 107    | *8.43                       | 8.56                     | *7.4 min              | 3.02 min                               | 13.5 min                                    |

<sup>\*</sup>表示数据采用的是新元素合成前 Sobiczewski<sup>[27]</sup>所做的理论预测值

#### 2.2 对 Z=117 同位素链半衰期的理论预言

通过推广的液滴模型可以对尚未合成的超重核的半衰期进行预测. 本文对 Z=117 同位素链的半衰期做了理论预言,衰变能  $Q_{\alpha}$ 采用不同模型[MS], [M]与[KUTY]数据<sup>[28]</sup>. 值得注意的是 $\alpha$ 衰变能是原子核 $\alpha$ 衰变性质中最为重要的物理量.  $\alpha$ 衰变能随同位素链的变化规律直接反映原子核的微观结构性质.  $\alpha$ 衰变半衰期对衰变能非常敏感,对同一原子核其他物理因素完全相同的情况下,衰变能相差 1 MeV 时,半衰期相差一千倍左右. 最近文献[28]的系统计算表明,由 Muntian-Patyk-Hofmann-Sobiczewski(简称[M]数据)、Myers-Swiatecki(简称为[MS]数据)以及 Koura-Tachibana-Uno-Yamada (简称为[KTUY]数据)给出的原子核 $\alpha$ 衰变能,在重核以及超重核区,能够与实验结果系统符合,所以将采用这几种模型给出的 $\alpha$ 衰变能来计算 Z=117 同位素链上原子核的 $\alpha$ 半衰期.

表 3 是运用推广的液滴模型计算得到的结果. 为了更直观的显示计算结果以便于观察推测, 将结果绘

制成图 1. 从图可以看到, 不同模型下的衰变能  $O_{\alpha}$ 值 随中子数 N 改变的变化趋势基本一致, 半衰期对数随 中子数增加的变化趋势也比较一致. 我们知道, 衰变 能较大的原子核更容易衰变, 因而其半衰期较小. 图 1 中 N=178(A=295)与 N=184(A=301)处半衰期相对较 大,均大于 <sup>293</sup>117 和 <sup>294</sup>117 的半衰期,且 N=184 前后 有显著的升降, 说明 Z=117 中存在更长寿命同位素. 根据核结构的壳模型的理论预言, N=184 是中子幻数, 此处的原子核比较稳定. 又原子核壳模型预言, 质子 数 Z=114 且中子数 Z=184 的原子核(A=298)是双幻核, 该核及其附件的一些核可能具有相当大的稳定性, 这 和我们的理论计算结果相符合. 另外, 图 1 中可以看 出中子数为偶数时的原子核衰变半衰期普遍大于相邻 的中子数为奇数时的半衰期. 对于目前已知的 259 种 稳定的核素统计结果中, 奇偶核占 19.31%, 奇奇核只 有 1.93%, 可见奇偶核较奇奇核更稳定, 这被当前 GLDM 的计算结果作了很好的印证. 另外, 采用 3 种 不同模型的 $\alpha$ 衰变能计算得到的半衰期尽管趋势一致, 但大小相差 2 个数量级以上. 充分说明非常有必要进

| 表 3 | 在不同 | 模型下 | 衰变能 | $Q_{\alpha}$ 值通 | 过 GLDM | [计算 | 得到的 | 的半衰期  | 月 |
|-----|-----|-----|-----|-----------------|--------|-----|-----|-------|---|
|     |     |     |     | GT D            | 0.1100 | 0 . |     | 11.00 |   |

**Table 3** Half-life calculated by GLDM of different  $Q_{\alpha}$  that under different models

|     |     | •                       | ~ u                      |                          |                          |                                        |                          |
|-----|-----|-------------------------|--------------------------|--------------------------|--------------------------|----------------------------------------|--------------------------|
| A   | N   | $Q_{th}^{MS}({ m MeV})$ | $T_{1/2}(S)$             | $Q_{th}^{M}(\text{MeV})$ | $T_{1/2}(S)$             | $Q_{th}^{\mathrm{KUTY}}(\mathrm{MeV})$ | $T_{1/2}(S)$             |
| 289 | 172 | 12.2                    | 2.81576×10 <sup>-4</sup> | 11.75                    | $2.60904 \times 10^{-3}$ | 11.155                                 | 6.51852×10 <sup>-2</sup> |
| 290 | 173 | 12.14                   | $4.71997 \times 10^{-5}$ | 11.61                    | $6.81868 \times 10^{-4}$ | 11.045                                 | $1.53883 \times 10^{-2}$ |
| 291 | 174 | 11.94                   | $7.68671 \times 10^{-4}$ | 11.58                    | $4.92068 \times 10^{-3}$ | 10.895                                 | $2.26659 \times 10^{-1}$ |
| 292 | 175 | 11.93                   | $1.34867 \times 10^{-4}$ | 11.42                    | $1.91648 \times 10^{-3}$ | 10.815                                 | $6.01944 \times 10^{-2}$ |
| 293 | 176 | 11.91                   | $7.03763 \times 10^{-4}$ | 11.53                    | $5.01978 \times 10^{-3}$ | 10.725                                 | $4.88536 \times 10^{-1}$ |
| 294 | 177 | 11.9                    | $1.47414 \times 10^{-4}$ | 11.43                    | $1.74633 \times 10^{-3}$ | 10.685                                 | $1.33400\times10^{-1}$   |
| 295 | 178 | 11.8                    | $8.65739 \times 10^{-4}$ | 11.4                     | $7.31973\times10^{-3}$   | 10.585                                 | $8.88457 \times 10^{-1}$ |
| 296 | 179 | 11.59                   | $7.34499 \times 10^{-4}$ | 11.26                    | $4.45731\times10^{-3}$   | 10.685                                 | $1.33503\times10^{-1}$   |
| 297 | 180 | 11.97                   | $2.76940 \times 10^{-4}$ | 11.38                    | $6.09758 \times 10^{-3}$ | 10.805                                 | $1.70560 \times 10^{-1}$ |
| 298 | 181 | 12.16                   | $4.18481\times10^{-4}$   | 11.36                    | $2.67152\times10^{-3}$   | 10.735                                 | $1.02344 \times 10^{-1}$ |
| 299 | 182 | 12.25                   | $5.46608 \times 10^{-5}$ | 11.35                    | $5.57905 \times 10^{-3}$ | 10.675                                 | $2.91562\times10^{-1}$   |
| 300 | 183 | 12.35                   | $1.84575 \times 10^{-5}$ | 11.31                    | $3.72342\times10^{-3}$   | 10.635                                 | $2.00623\times10^{-1}$   |
| 301 | 184 | 12.35                   | $2.70407 \times 10^{-5}$ | 11.29                    | $6.08474 \times 10^{-3}$ | 10.545                                 | $5.19478 \times 10^{-1}$ |
| 302 | 185 | 12.96                   | $1.31767 \times 10^{-6}$ | 12.34                    | $2.09464 \times 10^{-5}$ | 11.365                                 | $2.95466 \times 10^{-3}$ |
| 303 | 186 | 12.87                   | $2.06546 \times 10^{-6}$ | 12.08                    | $7.62090 \times 10^{-5}$ | 12.085                                 | $7.43930 \times 10^{-5}$ |

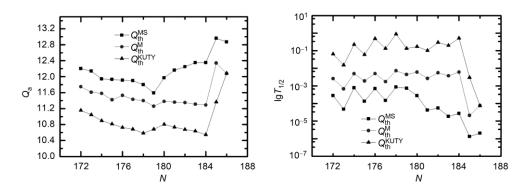



图 1 不同模型计算的衰变能  $Q_{\alpha}$ 及其对应半衰期  $T_{1/2}$  的对数随中子数 N 的变化

Figure 1 The Decay energy  $Q_a$  under different models and the corresponding half-life  $T_{1/2}$  with neutron number N.

一步发展理论以更为准确可靠地给出原子核的α衰变能,从而更为合理地预言超重核的α衰变半衰期.

#### 3 结论

推广的液滴模型是 20 世纪 80 年代由法国核物理学家 Royer 提出的,它最初是用来研究原子核裂变的.在过去的一段时间,国内外核物理学家研究重核与超重核 $\alpha$ 衰变获得了成功.表明推广的液滴模型是研究 $\alpha$ 衰变非常有效的方法.本文通过对近年来新合成的超重核  $^{294}$ 117 和  $^{293}$ 117 其 $\alpha$ 衰变链中各核素的半衰期计算以及对 Z=117 同位素链上尚未合成的核素的半衰期的理论预测,得到了以下结论:

(i) 运用推广的液滴模型对超重核 <sup>294</sup>117 和 <sup>293</sup>117

及其α衰变链中的各核素的性质进行了研究, 计算了这些核的半衰期, 并与实验值进行了比较. 结果表明, 在考虑亲合能的情况下, 理论计算值与实验值符合得很好, 且总体上要比 DDM3Y 模型的计算结果好, 这说明推广的液滴模型能够成功研究超重核的α衰变性质.

(ii) 预测了 Z=117 同位素链上尚未合成的超重核的半衰期. 计算结果表明在 Z=117 中存在长寿命同位素, 可能位置在 N=178 或 N=184. 可以为实验核物理学家今后合成超重核提供一定理论参考.

通过上述的研究可以看出,作为宏观模型的推广的液滴模型没有考虑一些微观因素(如壳修正)对 $\alpha$ 衰变势垒的影响. 今后将考虑这些微观因素对原子核 $\alpha$ 衰变位垒的影响, 更为精确地研究原子核的 $\alpha$ 衰变性质.

#### 致谢 张鹏感谢杨少丹学长和李雪伊同学的热心帮助.

#### 参考文献

- 1 Sobiczewski A, Gareev F A, Kalinkin B N, et al. Closed shells for Z > 82 and N > 126 in a diffuse potential well. Phys Lett, 1966, 22(4): 500–502.
- 2 Oganessian Y T, Utyonkoy V K, Lobanov Y V, et al. Experiments on the synthesis of element 115 in the reaction <sup>243</sup>Am(<sup>48</sup>Ca,xn)<sup>291-x</sup>115. Phys Rev C, 2004, 69: 021601
- 3 Morita K, Morimoto K, Kaji D, et al. Experiment on the synthesis of element 113 in the reaction <sup>209</sup>Bi(<sup>70</sup>Zn, n)<sup>278</sup>113. J Phys Soc Jpn, 2004, 73: 2593–2596
- 4 Oganessian Y T, Yeremin A V, Popeko A G, et al. Synthesis of nuclei of the superheavy element 114 in reactions induced by <sup>48</sup>Ca. Nature, 1999, 400: 242–245
- 5 Oganessian Y T, Utyonkoy V K, Lobanov Y V, et al. Observation of the decay of 292116. Phys Rev C, 2000, 63: 011301
- 6 Oganessian Y T, Utyonkov V K, Lobanov Y V, et al. Synthesis of the isotopes of elements 118 and 116 in the <sup>249</sup>Cf and <sup>245</sup>Cm+<sup>48</sup>Ca fusion reactions. Phys Rev C, 2006, 74: 044602
- 7 Oganessian Y T, Abdullin F S, Bailey P D, et al. Synthesis of a new element with atomic number Z=117. Phys Rev Lett, 2010, 104: 142502
- 8 Liu Z H, Bao J D. Optimal reaction for synthesis of superheavy element 117. Phys Rev C, 2009, 80: 034601
- 9 Qian Y B, Ren Z Z, Ni D D. Calculations of α-decay half-lives for heavy and superheavy nuclei. Phys Rev C, 2011, 83: 044317
- 10 Pei J C, Xu F R, Lin Z J, et al. α-decay calculations of heavy and superheavy nuclei using effective mean-field potentials. Phys Rev C, 2007, 76: 044326
- 11 Zhang G L, Le X Y, Zhang H Q. Calculations of α preformation for nuclei near N=162 and N=184. Phys Rev C, 2009, 80: 064325
- 12 Zhang H F, Royer G. Theoretical and experimental  $\alpha$ -decay half-lives of the heaviest odd-Z elements and general predictions. Phys Rev C, 2007, 76: 047304
- 13 Malik S S, Gupta R K. Theory of cluster radioactive decay and of cluster formation in nuclei. Phys Rev C, 1989, 39: 1992-2000
- 14 Poenaru D N, Ivascu M. 5He radioactivity. J Phys (France), 1984, 45: 1099-1106
- 15 Poenaru D N, Greiner W, Depta K, et al. Calculated half-lives and kinetic energies for spontaneous emission of heavy ions from nuclei. Atom Data Nucl Data Tables, 1986, 34(3): 423–538
- 16 Poenaru D N, Schnabel D, Greiner W, et al. Nuclear lifetimes for cluster radioactivities. Atom Data Nucl Data Tables, 1991, 48: 231-327
- 17 Zhang H F, Royer G, Li J Q. Assault frequency and preformation probability of the α emission process. Phys Rev C, 2011, 84: 027303
- 18 Zhang H F, Zuo W, Li J Q, et al.  $\alpha$  decay half-lives of new superheavy nuclei within a generalized liquid drop model. Phys Rev C, 2006, 74: 017304
- 19 Royer G. Alpha emission and spontaneous fission through quasi-molecular shapes. J Phys G-Nucl Part Phys, 2000, 26: 1149-1170
- 20 Royer G, Gupta R K, Denisov V Y. Cluster radioactivity and very asymmetric fission through compact and creviced shapes. Nucl Phys A, 1998, 632(2): 275–284
- 21 Feldmeier H. Nuclear structure study by means of nuclear reactions. In: Proc. 12th Summer School on Nuclear Physics. Polan: Mikolajki, 1979
- 22 Chen B Q, Ma Z Y, Rong J, et al. Formation and Decay of Superheavy Elements (in Chinese). Nucl Phys Rev, 2003, 20(2): 102–110 [陈宝秋, 马中玉, 荣健, 等. 超重核的生成和衰变. 原子核物理评论, 2003, 20(2): 102–110]
- 23 Zhang H F, Dong J M, Royer G, et al. Preformation of cluster in heavy nuclei and cluster radioactivity. Phys Rev C, 2009, 80: 037307
- 24 Zhang H F, Royer G. α particle preformation in heavy nuclei and penetration probability. Phys Rev C, 2008, 77: 054318
- 25 Zhang H F, Royer G, Wang Y J, et al. Analytic expressions for alpha particle preformation in heavy nuclei. Phys Rev C, 2009, 80: 057301
- 26 Chowdhury P R. Gangopadhyay G, Bhattacharyya A. Stability against α decay of some recently observed superheavy elements. Phys Rev C, 2011, 83: 027601
- 27 Sobiczewski A. Predictions for nuclei of a new element 117. Acta Phys Pol B, 2010, 41: 157-164
- 28 Chowdhury P R, Samanta C, Basu D N. Nuclear half-lives for  $\alpha$ -radioactivity of elements with  $100 \le Z \le 130$ . Atom Data Nucl Data Tables, 2008, 94: 781–806

## Alpha decay properties of the Z=117 isotopes

ZHANG Peng<sup>1</sup>, ZHANG HongFei<sup>1\*</sup>, GAO Yuan<sup>1</sup>, LI JunQing<sup>1,2</sup> & LIU Zhen<sup>1</sup>

<sup>1</sup> School of Nuclear Sciences and Technology, Lanzhou University, Lanzhou 730000, China; <sup>2</sup> Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

With the Generalized Liquid Drop Model (GLDM) combined with WKB approximation, we give a systematic analysis for the half-lives of the newly observed superheavy nuclei  $^{293}117$  and  $^{294}117$  isotopes and  $\alpha$ -decay products. The calculated half-lives of superheavy nuclei coincide with the experimental data very well, implying the success of the Generalized Liquid Drop Model for studying the  $\alpha$ -decay properties of superheavy nuclei. We also predict the half-lives of superheavy nuclei of Z=117 isotopes which are not synthesized. The results show that in the Z=117 isotopes existing more stable superheavy nuclei than the observed  $^{293}117$  and  $^{294}117$ .

alpha decay, superheavy nuclei, generalized liquid drop model, half-life

**PACS:** 23.60.+e, 27.90.+b, 21.60.Ev, 21.10.Tg

doi: 10.1360/132011-1162