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Abstract The Morales-Ramis theory provides an effective and powerful non-integrability criterion for complex

analytic Hamiltonian systems via the differential Galoisian obstruction. In this paper, we give a new Morales-

Ramis type theorem on the meromorphic Jacobi non-integrability of general analytic dynamical systems. The

key point is to show that the existence of Jacobian multipliers of a nonlinear system implies the existence of

common Jacobian multipliers of Lie algebra associated with the identity component. In addition, we apply our

results to the polynomial integrability of Karabut systems for stationary gravity waves in finite depth.
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1 Introduction

The fundamental problem in the field of dynamical systems is to detect whether a given system is

integrable or not. Roughly speaking, a system is called integrable if it has a number of invariant tensors

(for example, first integrals, symmetry fields or Jacobian multipliers) such that it can be solved by

quadrature or in a closed form. The integrability structure of a system provides us its general solutions

in an “explicit” way, and helps us obtain the global dynamics, the topological structure or the final

evolution of phase curves for the considered system [15,18,28,29,49]. On the contrary, non-integrability

of a system pushes us to expect that the system admits chaotic phenomena or complex dynamical

behavior [9, 10,47].

It should be pointed out that there is no unique definition of integrability for dynamical systems. In

terms of Hamiltonian systems, the integrability is well defined in the Liouville sense, i.e., an n-degree-of-

freedom Hamiltonian system is integrable if and only if it has n functionally independent first integrals
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in involution. In terms of general non-Hamiltonian systems, there exist several different definitions of

integrability as follows.

Let us recall some basic notions and facts concerning integrability of general non-Hamiltonian systems.

Consider a general analytic system of differential equations

ẋ = F (x), x = (x1, . . . , xn) ∈ Cn (1.1)

with smooth right-hand sides F = (F1, . . . , Fn). Denote by LF the Lie derivative associated with the

system (1.1). A differential tensor field T (x) is called an invariant tensor of the system (1.1) if LF (T ) = 0.

Three typical invariant tensors are first integrals, the symmetry field and the invariant n-form. More

precisely, a scalar function Φ(x) is a first integral of (1.1) if and only if LF (Φ) := ⟨∂xΦ, F ⟩ = 0, where

∂xΦ is the gradient of Φ and ⟨·, ·⟩ denotes the inner product in Cn. An n-dimensional vector function

V (x) is a symmetry field of (1.1) if and only if LF (V ) := [V, F ] = 0. Clearly, the system (1.1) always has

a trivial symmetry field, i.e., itself V = F . An n-form Ω = J(x)dx1 ∧ · · · ∧ dxn is an invariant n-form

of (1.1) if and only if LF (Ω) := div(JF )dx1 ∧ · · · ∧ dxn = 0, where the scalar function J(x) is called a

Jacobian multiplier of (1.1).

System (1.1) is completely integrable if it admits (n − 1) functionally independent first integrals

Φ1, . . . ,Φn−1. Clearly, the orbits of a completely integrable system are contained in the curves

Sc1···cn−1 = {x | Φ1(x) = c1, . . . ,Φn−1 = cn−1}.

Let us mention that the system with (n−1) Cr first integrals is orbitally equivalent to a linear differential

system in a full Lebesgue subset [30].

Another definition of integrability is due to the classic work of Lie, who proved that the system

admitting n linearly independent and commuting symmetries V1 = F , V2, . . . , Vn is integrable by

quadrature [24]. Correspondingly, the system (1.1) is called integrable in the Lie sense if it has n linearly

independent symmetries V1 = F , V2, . . . , Vn such that [Vi, Vj ] = 0 for any 1 6 i, j 6 n.

Doing a careful analysis of the concept of the Liouville integrability of Hamiltonian systems,

Bogoyavlenskij [8] proposed a new definition of integrability for non-Hamiltonian systems, which is

regarded as a generalization of the Liouville integrability. More precisely, the system (1.1) is integrable in

the Bogoyavlenskij sense if for some k ∈ {0, 1, . . . , n− 1}, it has k functionally independent first integrals

Φ1, . . . ,Φk and n− k linearly independent vector fields V1 = F, . . . , Vn−k such that

[Vi, Vj ] = 0 and ⟨∂xΦl, Vj⟩ = 0 for 1 6 l 6 k, 1 6 i, j 6 n− k.

Similar to the case of Hamiltonian systems, if the system (1.1) is integrable in the Bogoyavlenskij sense,

then the invariant sets associated with first integrals are generically diffeomorphic to tori, cylinders or

planes inside the phase space [8]. Obviously, complete integrability and Lie integrability are special cases

of Bogoyavlenskij integrability, corresponding to k = 0 or n− 1, respectively.

The next definition of integrability is due to Jacobi [17], and is widely applied to nonholonomic

mechanical systems [19,24]. System (1.1) is called integrable in the Jacobi sense if it has n−2 functionally

independent first integrals Φ1, . . . ,Φn−2 and a Jacobian multiplier J(x). The integrability in terms of

the existence of n− 1 Jacobian multipliers was studied in [16,48].

In 2013, Kozlov [25] combined the above definitions and proposed the Euler-Jacobi-Lie integrability:

if the system (1.1) has k functionally independent first integrals Φ1, . . . ,Φk, (n − k − 1) independent

symmetry fields V1 = F, V2, . . . , Vn−k−1 generating a nilpotent Lie algebra of the vector fields, and an

invariant volume n-form Ω = J(x)dx1 ∧ · · · ∧ dxn such that

LVi
(Φj) = 0, LVi

(Ω) = 0, 1 6 i 6 n− k − 1, 1 6 j 6 k,

then the system (1.1) can be integrated by quadrature. To summarize, all the above accepted definitions

of the integrability follow the same philosophy: the existence of some invariant tensors, including first

integrals, symmetry fields and Jacobian multipliers, whose total number is equal to the dimension n of

the dynamical system (see Table 1).
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Table 1 Summary of integrability for differential systems in terms of invariant tensors

Integrability First integrals Symmetry fields Jacobian multipliers

Complete integrability n− 1 1 0

Lie integrability 0 n 0

Bogoyavlenskij integrability k n− k 0

Jacobi integrability n− 2 1 1

Integrability in [16,48] 0 1 n− 1

Euler-Jacobi-Lie integrability k n− 1− k 1

There are few effective methods to decide whether a system is integrable or not. At the end of

the 20th century, a significant development, called the Morales-Ramis theory, was made by Morales-

Ruiz [37], Morales-Ruiz and Ramis [38], Morales-Ruiz and Simó [39], Baider et al. [6] and Churchill et

al. [13], who used the properties of the differential Galois group of variational equations to give strong and

effective necessary conditions for the Liouville integrability of Hamiltonian systems. This theory has been

applied successfully to a number of nonlinear physical models such as the N-body problem [1, 44], Hill’s

problem [40], problems with homogeneous potentials [31, 32], geodesic motion [34] and other physical

problems [2,35,43]. In the recent decades, inspired by the works of Morales-Ruiz and Ramis [37,38], the

differential Galoisian approach has been applied to studying the integrability of non-Hamiltonian systems.

In 2010, Ayoul and Zung [5] used the cotangent lifting trick to naturally extend the Morales-Ramis

theory into non-Hamiltonian systems, and gave necessary conditions for meromorphic integrability in the

Bogoyavlenskij sense. The necessary conditions for the complete integrability are proposed in [27, 36],

which are expressed in terms of finiteness of the differential Galois group. Based on the Malgrange

pseudogroup and the Artin approximation, Casale [11] showed that if a rational vector field is rationally

integrable in the Jacobi sense on an algebraic variety, then identity components of Galois groups of

variational equations are solvable and their first derived Lie algebras are abelian (see [33, 41] for more

details on Jacobi non-integrability).

Our main results of this work are summarized as follows.

(i) Instead of the tools of the Malgrange pseudogroup and the Artin approximation used in Casale’s

proof, we provide an elementary proof of necessary conditions for the Jacobi integrability in the category

of meromorphic functions. Indeed, we show that if the system (1.1) has k ∈ [0, n− 2] meromorphic first

integrals Φ1, . . . ,Φk and n− 1− k meromorphic Jacobian multipliers J1, . . . , Jn−k−1 such that

Φ1, . . . ,Φk,
J2
J1
, . . . ,

Jn−1−k

J1

are functionally independent, then the identity component of the differential Galois group of the normal

variational equations along a particular solution is abelian (see Theorem 3.7). Our proof strategy can be

used to investigate necessary conditions for other integrability via differential Galoisian methods.

(ii) Based on Theorem 3.7, we study the polynomial integrability of Karabut systems for stationary

gravity waves in finite depth. Witting [46] proposed a new formal series solution to the water waves

problem when he studied the solitary wave in a fluid of finite depth. Then Karabut [20–22] showed

the problem of exact summation of Witting’s series can be reduced to solving or integrating some

homogeneous ordinary differential equations, called Karabut systems. We show that the 3-dimensional

Karabut system is integrable and admits infinitely many Hamilton-Poisson realizations and a Lax

formulation (see Propositions 4.1–4.3), and also show that the 5-dimensional Karabut system has two

and only two functionally independent polynomial first integrals (see Theorem 4.4), which answers the

question by Karabut [22] and improves the result in [12] from the point of view of partial integrability.

The rest of this paper is organized as follows. In Section 2, we introduce some preliminary notions and

results on the differential Galois theory and Jacobian multipliers. In Section 3, we formulate a general

theorem which provides necessary conditions for the existence of k first integrals and n− 1− k Jacobian

multipliers satisfying compatibility conditions. In Section 4, we apply our results to studying integrability
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of 3-dimensional and 5-dimensional Karabut systems.

2 Preliminary results

2.1 Differential Galois theory

Differential Galois theory is a generalization of the classic Galois theory from polynomial equations to

linear differential equations, which is also called the Picard-Vessiot theory. Here, we only review some

parts of the differential Galois theory (see, for more details, [37, 45] and the references therein).

Consider the linear homogeneous differential equations on a differential field (K, ∂):

Y ′ = AY, A ∈ Mat(K, n), (2.1)

where Mat(K, n) denotes the ring of n × n matrices with entries in K. Recall that a differential field is

a pair (K, ∂) consisting of a field K and a derivative ∂, where the derivative ∂ is an additive mapping

∂ : K → K satisfying ∂(ab) = ∂(a)b+a∂(b), a, b ∈ K. We also write a′ instead of ∂(a). The set of elements

of K for which ∂ vanishes is called the field of constants of K, denoted by Const(K) := {a ∈ K | a′ = 0}.
In practical applications, K is the field of meromorphic functions on a Riemann surface endowed with a

meromorphic vector field and the field of constants becomes the field of complex numbers C.
A differential field extension, denoted by L/K, is a field extension such that L is also a differential field

and the derivations on L and K coincide on K, i.e., ∂L |K = ∂K, where ∂L and ∂K are the derivations of

L and K, respectively. Now we introduce two important differential field extensions. The first one is the

Liouvillian extension.

Definition 2.1. The differential field extension L/K is called a Liouvillian extension if Const(L)
= Const(K) and there exists a tower of extensions K = L0 ⊂ L1 ⊂ · · · ⊂ Lm = L such that for

i = 1, . . . ,m, Li = Li−1(ai), and one of the following cases holds:

(1) a′i ∈ Li−1, and in this case, ai is called an integral element of Li−1;

(2) ai ̸= 0 and a′i/ai ∈ Li−1, and in this case, ai is called an exponential integral element of Li−1;

(3) ai is algebraic over Li−1.

Remark 2.2. Roughly speaking, the fact that L/K is a Liouvillian extension means that each element

of L can be built up from K by algebraic operations and taking exponentials or indefinite integrals.

The second one is the Picard-Vessiot (P-V) extension which is associated with a linear system of the

differential equations (2.1).

Definition 2.3. The differential field extension L/K is a Picard-Vessiot (P-V) extension for the linear

system (2.1) if and only if it satisfies the following three conditions:

(1) Const(L) = Const(K);

(2) there exists a fundamental matrix Φ ∈ GL(L, n) for the linear homogeneous differential

equations (2.1);

(3) L is generated over K as a differential field by the entries of the fundamental matrix Φ.

Remark 2.4. Roughly speaking, the P-V extension is the smallest differential extension such that

it contains n linearly independent solutions of (2.1) and no new constants are added. In addition, it

is known that if the constant subfield of the differential field (K, ∂) is characteristic zero, for example

Const(K) = C, then (2.1) can admit a Picard-Vessiot extension which is unique up to isomorphism [45].

Fix a P-V extension L/K and the fundamental matrix Φ, and all the differential K-automorphisms

(σ : L → L, σ(a′) = (σ(a))′, ∀ a ∈ L and σ(a) = a, ∀ a ∈ K) of L are called the differential Galois group

of (2.1) and denoted by Gal(L/K). Let Φ(t) be a fundamental-solution matrix of (2.1). Note that for

any σ ∈ Gal(L/K), we see that σ(Φ) is also a fundamental matrix of (2.1). Therefore, σ(Φ) = ΦMσ

with Mσ ∈ GL(C, n), which gives a faithful representation of the group of K-automorphisms of L on the

general linear group as

ρ : Gal(L/K) → GL(C, n), σ 7→Mσ.
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Hence, the differential Galois group Gal(L/K) can be regarded as a subgroup ofGL(C, n). In what follows,

we will be dealing with either the differential Galois group G := Gal(L/K) or its matrix group ρ(G).

Moreover, G is a linear algebraic group [45], and is a union of a finite number of disjoint connected

components. Then the differential Galois group G has a unique maximal connected subgroup G0

containing the identity element of the group, called the identity component of G. We say that a group G

is solvable if and only if there exists a chain of normal subgroups e = G0 ▹ G1 ▹ · · · ▹ Gn = G such that

the quotient Gi+1/Gi is abelian for i = 0, . . . , n− 1.

The following fundamental theorem concerns the deep relation between the solvability of the linear

differential equations and that of the corresponding differential Galois group.

Theorem 2.5. Let L/K be a P-V extension for (2.1). Then the linear system (2.1) is solvable by

quadrature, i.e., L/K is a Liouvillian extension if and only if the identity component Gal(L/K)0 of the

differential Galois group Gal(L/K) is solvable. In particular, if the identity component Gal(L/K)0 is

abelian, (2.1) is solvable by quadrature.

In general, for an n-dimensional linear differential system, it is difficult to compute or analyze the

properties of the corresponding differential Galois group. When the (normal) variational equations can

be reduced into a second-order linear differential equation with rational coefficients, the so-called Kovacic’s

algorithm [23] can help us calculate effectively the solvability of the differential Galois group.

Lemma 2.6 (See [23]). The differential Galois group G of

d2χ

dt2
= r(t)χ, r(x) ∈ C(t) (2.2)

with C(t) being the rational function field on C can be classified into the following four cases:

Case 1. G is conjugate to a subgroup of the triangular group

C∗ nC+ =

{(
c 0

b c−1

) ∣∣∣∣∣ b ∈ C, c ∈ C∗

}
. (2.3)

Then (2.2) has a solution of the form e
∫
ωdt with ω ∈ C(t).

Case 2. G is not of Case 1, but is conjugate to a subgroup of the infinite dihedral group

D =

{(
c 0

0 c−1

) ∣∣∣∣∣ c ∈ C∗

}
∪

{(
0 c

−c−1 0

) ∣∣∣∣∣ c ∈ C∗

}
.

Then (2.2) has a solution of the form e
∫
ωdt with ω algebraic over C(t) of degree two.

Case 3. G is not of Cases 1 and 2, but is a finite group. Then all the solutions of (2.2) are algebraic

over C(t).
Case 4. G = SL(2,C), where SL(2,C) is the group of 2 × 2 matrices with elements in C and

determinants one. Then (2.2) is not integrable in the Liouville sense.

Proof. See [23, Lemma 1.4].

Remark 2.7. Kovacic [23] presented a complete algorithm to analyze which cases the differential

Galois group G of the system (2.2) falls into. Due to Lemma 2.6, there exist four cases in Kovacic’s

algorithm. We can obtain the Liouvillian solutions of (2.2) in Cases 1–3, but for Case 4 this system has

no Liouvillian solutions. In addition, Kovacic’s algorithm gives us only one solution ξ1 in Cases 1–3, and

the second independent solution ξ2 can be obtained by

ξ2 = ξ1

∫
dt

ξ21
.

Remark 2.8. For a general second-order linear differential equation

d2ξ

dt2
+ a(t)

dξ

dt
+ b(t)ξ = 0, a(t), b(t) ∈ C(t), (2.4)
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we can make a well-known change of the variable

ξ = χ exp

(
− 1

2

∫ t

t0

a(s)ds

)
,

and get the reduced form of (2.4), i.e.,

d2χ

dt2
= r(t)χ, r(t) =

a2

4
+

1

2

da

dt
− b. (2.5)

It should be pointed out that the identity component of (2.4) is solvable if and only if that of (2.5) is

solvable, since the above transformation does not affect the Liouvillian solvability of (2.4).

The next lemma is due to the work of Singer and Ulmer [42], which provides a more precise

characterization of Case 1 of Lemma 2.6.

Lemma 2.9. Assume that the differential Galois group G of (2.2) is conjugate to a subgroup of the

triangular group. Then

Subcase 1.1. G is conjugate to a subgroup of the diagonal group{(
c 0

0 c−1

) ∣∣∣∣∣ c ∈ C∗

}
.

In this subcase, the system (2.2) has two independent solutions ξ1 and ξ2 such that ξ′i/ξi ∈ C(t), i = 1, 2.

Subcase 1.2. G is conjugate to the group{(
c 0

b c−1

) ∣∣∣∣∣ b ∈ C, cm = 1 with an m ∈ N

}
,

which is a proper subgroup of the group C∗nC+. In this subcase, the system (2.2) has only one solution ξ

(up to constant multiples) such that ξ′/ξ ∈ C(t), andm is the smallest positive integer such that ξm ∈ C(t).
Subcase 1.3. G is conjugate to the group C∗ n C+. In this subcase, the system (2.2) has only one

solution ξ (up to constant multiples) such that ξ′/ξ ∈ C(t), and ξm /∈ C(t) for any positive integer m.

Proof. See [42, Proposition 4.2].

Remark 2.10. Based on the above results, let us point out that

(1) the identity component G0 associated with (2.2) is not solvable if and only if G belongs to Case 4;

(2) the identity component G0 associated with (2.2) is not abelian if and only if G belongs to either

Subcase 1.3 or Case 4.

Acosta-Humánez and Blázquez-Sanz [3] gave a complete classification of the differential Galois group

of a second-order differential equation with polynomial coefficients.

Lemma 2.11 (See [3]). Let Q(t) ∈ C[t]/C be a polynomial of degree k > 0. The differential Galois

group G of
d2χ

dt2
= Q(t)χ, Q(t) ∈ C[t]/C

is either SL(2,C) or C∗ nC+, and in particular is non-abelian.

In applications, the next two results can help us reduce the dimension of linear differential equations.

Lemma 2.12 (See [14]). Consider the differential Galois group G of the linear differential system

d

dt

(
X1

X2

)
=

(
A 0

B C

)(
X1

X2

)
, A ∈ Mat(K,m), C ∈ Mat(K, l). (2.6)

The following statements hold:



Huang K Y et al. Sci China Math July 2023 Vol. 66 No. 7 1479

(i) If the identity component of G is solvable (abelian), then the identity component of the differential

Galois group of the subsystem

d

dt
X1 = AX1 (2.7)

is also solvable (abelian).

(ii) Suppose B = 0. Then the system (2.6) is the direct sum of two subsystems (2.7) and

d

dt
X2 = CX2. (2.8)

The identity component of G is solvable (abelian) if and only if the identity components of the differential

Galois groups of both subsystems (2.7) and (2.8) are solvable (abelian).

The next result is a variant of the well-known Ziglin lemma [50] for which the meromorphic functions

are replaced by C2 functions, but it is very useful to reduce the dimension of linear differential equations.

Lemma 2.13. Assume that ψ(t) is a particular solution of the nonlinear system (1.1). If a C2 function

Φ(x) is a first integral of the nonlinear system (1.1), then the function G(t, ξ) = ⟨∇Φ(ψ(t)), ξ⟩ is either

a constant or a time-dependent linear first integral of the variational system

dξ

dt
= A(t)ξ, A(t) =

∂F

∂x

∣∣∣∣
x=ψ(t)

. (2.9)

Proof. By definition, we have dΦ(x(t))/dt = 0 for all the solutions x(t) of (1.1), i.e.,

⟨∂xΦ(x), F (x)⟩ =
∑
j

Fj
∂Φ

∂xj
≡ 0. (2.10)

Taking the derivative of (2.10) with respect to xi, we have

∑
j

(
Fj

∂2Φ

∂xj∂xi
+
∂Φ

∂xj

∂Fj
∂xi

)
≡ 0, i = 1, . . . , n.

Then

dG

dt
=
∂G

∂t
+
∑
j

∂G

∂ξj

dξj
dt

=
∑
i

(
Fj

∂2Φ

∂xj∂xi

)
ξi +

∑
j

(
∂Φ

∂xj

∑
i

(
∂Fj
∂xi

ξi

))

=
∑
i

(∑
j

(
Fj

∂2Φ

∂xj∂xi
+
∂Φ

∂xj

∂Fj
∂xi

))
ξi

= 0,

which completes the proof.

2.2 (Generalized) Jacobian multipliers and the characterization

The first result is due to the classic work of Poincaré, which gives an equivalent characterization of

Jacobian multipliers. For a proof, please see [49, Proposition 2.2].

Lemma 2.14. Let J(x) be a non-zero continuously differentiable function. Then the following

statements are equivalent:

(i) J(x) is a Jacobian multiplier of the system (1.1), i.e.,

div(JF ) = J(x)∇x · F (x) + ⟨∂xJ, F ⟩ ≡ 0.
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(ii) For any flow ϕt(t0, x0) of (1.1) satisfying ϕt0(t0, x0) = x0, we have

J(x0) = J(ϕt) det ∂x0(ϕt), ∀ t > t0.

(iii) For any bounded region D0, the integral

V (t) =

∫
Dt

J(y)dy

is independent of the time t, where Dt = {y | y = ϕt(t0, x0), x0 ∈ D0} is the evolution of D0 under the

flow ϕt.

Next, we discuss the relationship between Jacobian multipliers of equivalent differential systems.

Lemma 2.15. Assume that x = G(y) is a continuously differentiable and invertible transformation. If

J(x) is a Jacobian multiplier of the system (1.1), then Ĵ(y) := J(G(y)) det ∂yG(y) is a Jacobian multiplier

of the system ẏ = (∂yG)
−1F (G(y)).

Lemma 2.15 can be easily proved by using the definition of Jacobian multipliers or using the invariant

of the integral V (t); for a detailed proof, we refer to [49, Proposition 2.3].

Now we introduce the notion of time-dependent Jacobian multipliers for non-autonomous differential

systems.

Definition 2.16. A non-zero continuously differentiable function J(t, x) is called a Jacobian multiplier

of the non-autonomous differential system

ẋ = F (t, x), x ∈ Cn, (2.11)

if

∂tJ(t, x) + J(t, x)∇x · F (t, x) + ⟨∂xJ, F ⟩ ≡ 0.

If we set ω = t and rewrite (2.11) as an autonomous differential system

ẋ = F (ω, x), ω̇ = 1,

then the above definition coincides with the usual Jacobian multiplier of autonomous differential systems.

Furthermore, as two corollaries of Lemmas 2.14–2.15, we immediately obtain the following results.

Lemma 2.17. Let J(t, x) be a non-zero continuously differentiable function. Then J(t, x) is a Jacobian

multiplier of the system (2.11) if and only if for any flow ϕt(t0, x0) of (2.11) satisfying ϕt0(t0, x0) = x0,

we have

J(t0, x0) = J(t, ϕt) det ∂x0(ϕt), ∀ t > t0.

Lemma 2.18. Assume that x = G(t, y) is a continuously differentiable and invertible transformation

for any fixed t. If J(t, x) is a Jacobian multiplier of the system (2.11), then

Ĵ(t, y) := J(t, G(t, y)) det ∂yG(t, y)

is a Jacobian multiplier of the system

ẏ = F̂ (t, y) = (∂yG)
−1(F (t, G(t, y))− ∂tG(t, y)).

3 Necessary conditions for Jacobi integrability of analytic differential sys-
tems

Let ψ(t) be a non-equilibrium analytic solution of the system (1.1). Linearization of (1.1) around ψ(t)

yields the variational equations of the following form:

dξ

dt
= A(t)ξ, A(t) =

∂F

∂x

∣∣∣∣
x=ψ(t)

∈ Mat(K, n), (3.1)
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where elements of the field K are meromorphic functions on the phase curve Γ = {ψ(t)}. Note that ψ̇(t) is

a nontrivial solution of the system (3.1) due to ψ(t) being a non-equilibrium solution of the system (1.1).

Using this fact, we can reduce the dimension of (3.1) by one.

Indeed, making a change of variables

ξ = P (t)η,

where P (t) = (P 1, . . . , Pn−1, ψ̇(t)) is a non-singular matrix with its components in K, we see that (3.1)

becomes the following equivalent form:

dη

dt
= B(t, η) := P (t)−1(A(t)P (t)− Ṗ (t))η =

(
C(t) θ

α(t)T 0

)
η, (3.2)

where θ denotes the (n− 1)-dimensional zero vector and η = (ζ, η1)
T. Therefore, we obtain a subsystem

of (3.2), i.e.,

dζ

dt
= C(t)ζ, C(t) ∈ Mat(K, n− 1), (3.3)

which is the so-called normal variational equations of (1.1) along Γ.

Equations (3.1)–(3.3) are linear differential equations. Then we can associate the differential Galois

theory with them. Let us mention that the choice of P (t) is not unique, and both (3.1) and (3.2)

have the same differential Galois group of equations since they have the same P-V extension. Denote

by G the differential Galois group of the normal variational equations (3.3). Recall that G is a linear

algebraic group, thus in particular a Lie group, and one can consider its Lie algebra which reflects only

the properties of the identity component G0 of the group. We denote by G ⊂ gl(n,C) the Lie algebra

of G. Then an arbitrary element Y ∈ G can be viewed as a linear vector field: x → Y (x) := Y · x for

x ∈ Cn, and eY t ∈ G for all t ∈ C.
The next result goes back to Ziglin [50] and plays a critical and fundamental role in the non-integrability

approach (see [37, Chapter 4] for a proof).

Proposition 3.1. Assume that the system (1.1) has k (k > 1) functionally independent meromorphic

first integrals in a neighborhood of Γ. Then

(i) the normal variational equations in (3.3) have k (k > 1) functionally independent first integrals

which are rational functions in ζ;

(ii) each element of Lie algebra G, as a linear vector field, has k (k > 1) functionally independent

rational first integrals.

Let us give some remarks on Proposition 3.1. Observing that the dimension of (3.3) is n − 1, some

readers may doubt the correctness of Proposition 3.1 in the case of k = n−1. Indeed, for an n-dimensional

general differential system ẋ = f(x, t), the maximal number of autonomous functionally independent first

integrals is n − 1, whereas that of time-dependent functionally independent first integrals is n (see [4,

Chapters 10.5–10.7]). Equation (3.3) is an (n− 1)-dimensional differential system and may have (n− 1)

functionally independent first integrals. To further illustrate Proposition 3.1, we give two examples with

k = n− 1.

Example 3.2 (n = 2 and k = 1). Consider a two-dimensional system

ẋ = xy, ẏ = −y2 − x+ 1, (3.4)

which has a first integral Φ(x, y) = −3x2 +2x3 +3x2y2 and a non-equilibrium solution ϕ(t) = (0, tanh t).

The variational equations along ϕ(t) read(
ξ̇

η̇

)
=

(
tanh t 0

−1 tanh t

)(
ξ

η

)
, (3.5)

and consequently, the normal variational equations read

ξ̇ = a(t)ξ = tanh t ξ,
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which has a first integral Φ̃(t, ξ) = (tanh t2 − 1)ξ2.

Example 3.3 (n = 3 and k = 2). Consider a three-dimensional system

ẋ = −x+ yz, ẏ = −y − xz, ż = −z + xy, (3.6)

which has two first integrals Φ1 = (x2+y2)/(x2−z2) and Φ2 = (y2+z2)/(x2−z2) and a non-equilibrium

solution ϕ(t) = (0, 0, e−t). The normal variational equations along ϕ(t) are given by(
η̇1

η̇2

)
=

(
−1 e−t

−e−t −1

)(
η1

η2

)
. (3.7)

One can check that the system (3.7) has two functionally independent first integrals

Φ̃1(η1, η2, t) = et sin(e−t)η1 − et cos(e−t)η2,

Φ̃2(η1, η2, t) = et cos(e−t)η1 + et sin(e−t)η2.

In what follows, we aim to establish results analogous to Proposition 3.1 for which the choice of

invariant tensors is changed from first integrals to n-forms (or Jacobian multipliers).

Lemma 3.4. Assume that the system (1.1) has a meromorphic Jacobian multiplier J(x) in a

neighborhood of Γ. Then the variational equations in (3.1) have a time-dependent Jacobian multiplier

JV E(t, ξ), which is a rational function with respect to ξ.

Proof. Let ξ(t) = x− ψ(t), which satisfies

dξ

dt
= F̂ (t, ξ) := F (ξ + ψ(t))− F (ψ(t)). (3.8)

By Lemma 2.18, the system (3.8) has a Jacobian multiplier Ĵ(t, ξ) = J(ξ + ψ(t)), which is meromorphic

with respect to ξ. By definition, we have

∂tĴ + Ĵ∇ξ · F̂ + ⟨∂ξĴ , F̂ ⟩ ≡ 0. (3.9)

Observing Ĵ(t, ξ) = P (t, ξ)/Q(t, ξ) for certain functions P and Q, which is holomorphic with respect to ξ,

we can rewrite (3.9) into

Q∂tP − P∂tQ+ ⟨Q∂ξP − P∂ξQ, F̂ ⟩+ PQ∇ξ · F̂ ≡ 0. (3.10)

We expand functions P and Q in the neighborhood of Γ:

P = Pm(t, ξ) +O(∥ξ∥m+1), Q = Qk(t, ξ) +O(∥ξ∥k+1), Pm ̸= 0, Qk ̸= 0, (3.11)

where Pm and Qk are the leading terms of P and Q, i.e., the lowest-order nonvanishing terms of

expansions, and Pm (or Qk) are homogenous polynomials of degree m (or k) with respect to ξ. Similarly,

we expand the vector field F̂ as

F̂ = A(t)ξ +O(∥ξ∥2) (3.12)

in the neighborhood of Γ, where A(t) is defined in (3.1). Substituting (3.11)–(3.12) into (3.10) and

comparing the terms of the lowest order m+ k, we get

Qk∂tPm − Pm∂tQk + ⟨Qk∂ξPm − Pm∂ξQk, A(t)ξ⟩+ PmQktr(A(t)) ≡ 0, (3.13)

or equivalently,

∂t

(
Pm
Qk

)
+

⟨
∂ξ

(
Pm
Qk

)
, A(t)ξ

⟩
+

(
Pm
Qk

)
tr(A(t)) ≡ 0, (3.14)

where tr is the trace of a matrix, i.e., the sum of the entries on the diagonal. It follows from (3.14) that

the variational equations in (3.1) admit a Jacobian multiplier JV E(t, ξ) = Pm/Qk, which is a rational

function with respect to ξ.
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Lemma 3.5. Assume that the variational equations in (3.1) have a time-dependent Jacobian multiplier

JV E(t, ξ), which is a rational function with respect to ξ. Then the normal variational equations in (3.3)

have a time-dependent Jacobian multiplier JNVE(t, ζ), which is a rational function with respect to ζ.

Proof. Due to Lemma 2.18, the system (3.2) has a time-dependent Jacobian multiplier

ĴV E(t, η) := JV E(t, P (t)η)detP (t),

which is a rational function with respect to η = (ζ, η1). Hence, by definition we have

∂tĴV E + ∂η1 ĴV E⟨α(t), ζ⟩+ ⟨∂ζ ĴV E , C(t)ζ⟩+ ĴV Etr(C(t)) ≡ 0, (3.15)

where we use tr(B(t)) = tr(C(t)). From the proof of Lemma 3.4, we see that ĴV E(t, η) = P̂m(t, η)/Q̂k(t, η)

for certain functions P̂m and Q̂k, which are polynomials of degreesm and k with respect to η, respectively.

Hence, (3.15) becomes

Q̂k∂tP̂m − P̂m∂tQ̂k + (Q̂k∂η1 P̂m − P̂m∂η1Q̂k)⟨α(t), ζ⟩

+ ⟨Q̂k∂ζP̂m − P̂m∂ζQ̂k, C(t)ζ⟩+ P̂kQ̂mtr(C(t)) ≡ 0. (3.16)

We write

P̂m =

m1∑
j=0

Pm,j(t, ζ)η
j
1, m1 6 m, Pm,m1 ̸= 0 (3.17)

with Pm,j being polynomials of degree m− j with respect to ζ. Similarly, we also write

Q̂k =

k1∑
j=0

Qk,j(t, ζ)η
j
1, k1 6 k, Qk,k1 ̸= 0 (3.18)

with Qk,j being polynomials of degree k− j with respect to ζ. Substituting (3.17)–(3.18) into (3.16) and

comparing the terms of the highest order m1 + k1 with respect to η1, we get

∂t

(
Pm,m1

Qk,k1

)
+

⟨
∂ζ

(
Pm,m1

Qk,k1

)
, C(t)ζ

⟩
+

(
Pm,m1

Qk,k1

)
tr(C(t)) ≡ 0, (3.19)

i.e., the normal variational equations in (3.3) admit a Jacobian multiplier JNVE(t, ζ) = Pm,m1/Qk,k1 ,

which is a rational function with respect to ζ.

Lemma 3.6. Assume that the normal variational equations in (3.3) have a time-dependent Jacobian

multiplier JNVE(t, ζ), which is a rational function with respect to ζ. Then each element of the Lie algebra

G of the identity component G0 of the differential Galois group G for (3.3), as linear vector fields, has a

common rational Jacobian multiplier.

Proof. Fixing t0, for any x ∈ Cn−1 we consider the solution ϕt(t0, x0) of (3.3). Thanks to Lemma 2.17,

we have

JNVE(t0, x0) = JNVE(t, ϕt(t0, x0)) det ∂x0ϕt(t0, x0), ∀ t > t0. (3.20)

Let Φ(t) be the fundamental-solution matrix of the normal variational equations (3.3) satisfying detΦ(t0)

= Id. Then we have ϕt(t0, x0) = Φ(t)x0 and (3.20) becomes

JNVE(t0, x0) = JNVE(t,Φ(t)x0) detΦ(t), ∀ t > t0. (3.21)

For any σ ∈ G, we have its representation Mσ through σ(Φ(t)) = Φ(t)Mσ. Furthermore, taking the

group action σ on both sides of (3.21) yields

JNVE(t0, x0) = σ(JNVE(t,Φ(t)x0) detΦ(t))
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= σ(JNVE(t,Φ(t)x0)) · σ(det(Φ(t)))
= JNVE(t, σ(Φ(t))x0) · det(σ(Φ(t)))
= JNVE(t,Φ(t)Mσx0) · det(Φ(t)Mσ)

= JNVE(t0,Mσx0) · det(Mσ).

Define Jgal(x) = JNVE(t0, x). Based on the above discussions, we see that the rational function Jgal(x)

satisfies

Jgal(x) = Jgal(Mσx) det(Mσ), ∀x ∈ Cn−1, ∀Mσ ∈ G. (3.22)

On the other hand, recall that the arbitrary element Y ∈ G can be viewed as a linear vector field:

x → Y (x) := Y x for x ∈ Cn−1, and eY t ∈ G0 for all t ∈ C. It follows from (3.22) that Jgal(x)

= Jgal(e
Y tx) det(eY t) for any Y ∈ G, which means that Jgal(x) is a common Jacobian multiplier of a

family of linear vector fields {ẋ = Y x, Y ∈ G}.
Now we can state our main results.

Theorem 3.7. Let ψ(t) be a non-equilibrium analytic solution of an n-dimensional analytic

system (1.1) of differential equations. If the system (1.1) has k ∈ [0, n] meromorphic first integrals

Φ1(x), . . . ,Φk(x) and n− 1− k meromorphic Jacobian multipliers J1(x), . . . , Jn−1−k(x) such that

Φ1, . . . ,Φk,
J2
J1
, . . . ,

Jn−1−k

J1

are functionally independent of a neighborhood of Γ, then the following statements hold:

(i) The identity component of the differential Galois group of the normal variational equations along

ψ(t) is abelian.

(ii) The identity component of the differential Galois group of the variational equations along ψ(t) is

solvable.

Proof. We first show that Ji/J1 (i = 2, . . . , n− 1− k) are first integrals of the system (1.1). Indeed, by

definition we have

Ji(x)∇ · F (x) + ⟨∂xJi, F ⟩ ≡ 0, (3.23)

J1(x)∇ · F (x) + ⟨∂xJ1, F ⟩ ≡ 0. (3.24)

Eliminating the divergence term ∇ · F (x) from (3.23)–(3.24) yields

J1⟨∂xJi, F ⟩ − Ji⟨∂xJ1, F ⟩ ≡ 0,

which can be rewritten as ⟨
∂x

(
Ji
J1

)
, F

⟩
≡ 0.

Furthermore, Ji/J1 cannot be constants, and otherwise Φ1, . . . ,Φk, J2/J1, . . . , Jn−1−k/J1 will be

functionally independent. Hence, Ji/J1 (i = 2, . . . , n− 1− k) are first integrals of the system (1.1).

Since (1.1) has n− 2 meromorphic first integrals Φ1, . . . ,Φk, J2/J1, . . . , Jn−1−k/J1, by Proposition 3.1

the differential Galois group G of the normal variational equations (3.3) has n − 2 rational invariants,

and then its Lie algebra G has n− 2 rational first integrals, denoted by I1, . . . , In−2. Let U ⊂ Cn−1 be a

neighborhood of 0 such that I1, . . . , In−2 are functionally independent of it. Set the level surface

Hc = {η | Ii(η) = ci, η ∈ Cn−1, i = 1, . . . ,m},

where ci ∈ C are constants such that Hc is regular and Hc ∩ U ̸= ∅. Obviously, Hc is a one-dimensional

manifold, and for any fixed point x ∈ Hc, the tangent space of Hc corresponding to x is a one-dimensional

linear space containing Vx = {Y (x) | Y ∈ G}. Therefore, there exists a non-trivial element Y0 ∈ G
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such that for any linear vector field Y ∈ G, there exists a one-to-one rational function a(x) such that

Y = a(x)Y0.

Similarly, since (1.1) has a meromorphic Jacobian multiplier J1, by Lemma 3.6, the elements Y (x) of

the Lie algebra G have the common rational Jacobian multiplier Jgal(x), i.e.,

Jgal∇ · Y + ⟨∂xJgal, Y ⟩ = Jgal(⟨∂xa, Y0⟩+ a∇ · Y0) + a⟨∂xJgal, Y0⟩ ≡ 0. (3.25)

In particular, for a(x) = 1, we also have

Jgal∇ · Y0 + ⟨∂xJgal, Y0⟩ ≡ 0. (3.26)

Combining (3.25) and (3.26) yields Y0(a) := ⟨∂xa, Y0⟩ = 0, i.e., a(x) is a rational first integral of the

linear vector field Y0.

Consider any two elements Y1 = a(x)Y0 and Y2 = b(x)Y0 of G with a(x), b(x) ∈ C(x). We have

Y0(a) = Y0(b) = 0. Then their Lie bracket

[Y1, Y2] = [aY0, bY0] = (aY0(b)− bY0(a))Y0 − ab[Y0, Y0] = 0,

which means that the Lie algebra G is abelian. Hence, the Lie group G0 is also abelian.

Finally, an abelian group is also a solvable group, and the identity component Ĝ0 of the variational

equations (3.2) is an extension of the identity component G0 of the normal variational equations (3.3) by

an algebraic group isomorphic to some additive group. This means that G0 is solvable if and only if Ĝ0

is solvable. We complete the proof.

Corollary 3.8. If the system (1.1) has n−1 functionally independent meromorphic Jacobian multipliers

J1(x), . . . , Jn−1(x), then the identity component of the differential Galois group of the normal variational

equations along ψ(t) is abelian, and that of variational equations along ψ(t) is solvable.

Proof. It follows from Theorem 3.7 and the fact that the functional independence of Ji (i = 1, . . . , n− 1)

implies the functional independence of Ji/J1 (i = 2, . . . , n− 1).

Corollary 3.9. Assume that the system (1.1) is divergence-free, i.e., div(F ) = 0. If the system (1.1)

has n − 2 functionally independent meromorphic first integrals Φ1(x), . . . ,Φn−2(x), then the identity

component of the differential Galois group of the normal variational equations along ψ(t) is abelian, and

that of variational equations along ψ(t) is solvable.

Proof. Recall that div(F ) = 0 means that the system (1.1) has a Jacobian multiplier J(x) = 1.

Remark 3.10. In practical applications, as pointed out in [37, Subsection 4.2] or [38, Subsection 5.2],

if the variational equations are non-Fuchsian, i.e., they have irregular singularities, one should extend Γ to

a new bigger Riemann surface Γ by adding possible equilibrium points and points at infinity, and should

treat the variational equations in a small field MΓ such as C(t). Then meromorphic non-integrability

near Γ gives rise to rational non-integrability near Γ.

At the end of this section, we provide two examples to further illustrate Theorem 3.7.

Example 3.11. Consider the integrable stretch-twist-fold flow

ẋ = −8xy, ẏ = 11x2 + 3y2 + z2 + βxz − 3, ż = 2yz − βxy, (3.27)

which is proposed to model the stretch-twist-fold mechanism of the magnetic field generation and

plays an important role in understanding the fast dynamo action for magnetohydrodynamics [7]. It

admits a polynomial first integral Φ = x3(x2 + y2 + z2 − 1)4 and a particular solution (x(t), y(t), z(t))

= (0,− tanh(3t), 0). Then the variational equations of the system (3.27) along this solution are given by
ξ̇

η̇

ζ̇

 =


8 tanh(3t) 0 0

0 −6 tanh(3t) 0

β tanh(3t) 0 −2 tanh(3t)



ξ

η

ζ

. (3.28)
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According to Theorem 3.7, the identity component of the differential Galois group of the variational

equations (3.28) along this solution is solvable, i.e., (3.28) can be integrable by quadrature. Indeed, one

can easily check that

x(t) = c1 cosh
8/3(3t), y(t) =

c2
cosh(6t) + 1

, z(t) =
c3

cosh2/3(3t)
+
c1β

10
cosh8/3(3t)

are the general solutions of (3.28).

Example 3.12. Theorem 3.7 can be applied to studying the non-existence of first integrals for some

high-dimensional divergence-free systems. As a simple example, consider a dynamical system with the

V4 symmetry group [26], i.e.,

ẋ = x− yz, ẏ = −2y + xz, ż = z − xy, (3.29)

which has a particular solution (x(t), y(t), z(t)) = (0, 0, et). The variational equations read
ξ̇

η̇

ζ̇

 =


1 −et 0

et −2 0

0 0 1



ξ

η

ζ

. (3.30)

The equations for (ξ, η) consist of a subsystem(
ξ̇

η̇

)
=

(
1 −et

et −2

)(
ξ

η

)
. (3.31)

We make a time variable change τ = et to transform (3.31) into

d

dτ

(
ξ

η

)
=

(
1
τ −1

1 − 2
τ

)(
ξ

η

)
, (3.32)

which is equivalent to the Bessel equation

τ2
d2ξ

dτ2
+ τ

dξ

dτ
+ (τ2 − n2)ξ = 0 (3.33)

with n = 1. It is well known that the Bessel equation (3.33) has Liouvillian solutions if and only if n+1/2

is an integer (see [37, Chapter 2.8.2]). Hence, we see that the identity is not solvable. Suppose that the

system (3.29) has a rational first integral. By Corollary 3.9, the identity component of the differential

Galois group of (3.30) and (3.33) is solvable. This leads to a contradiction. Therefore, the system (3.29)

has no rational first integrals.

4 An application to the stationary gravity wave problem in finite depth

Many studies have been devoted to the phenomenon of stationary gravity waves, which can lead to the

formation of various patterns such as solitary waves, star-shaped waves and hexagon waves. In particular,

Witting [46] proposed a new formal series solution of the water wave problem when he studied the solitary

wave in a fluid of finite depth. Witting’s method has the advantage of employing a systematic procedure

and can give rise to higher approximations for the water waves. Karabut [20–22] showed that the problem

of exact summation of this series can be reduced to solving or integrating some homogeneous ordinary

differential equations, called Karabut systems. The aim of this section is to study Karabut systems from

the integrability standpoint with the help of Theorem 3.7.
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4.1 The mathematical formulation

To motivate Karabut systems to be studied, we give a brief account of the modeling. Consider an

incompressible and irrotational stationary plane flow of a heavy fluid over a flat bottom. In the coordinate

system (X,Y ), the origin is located on the bottom, the X-axis is directed along the bottom from the left

to the right, the Y -axis is directed vertically upward and the free-surface equation is given by Y = η(X)

(see Figure 1). Without loss of generality, we assume the fluid flows from the left to the right. Then we

obtain the flow area

D1 = {Z = X + iY : −∞ < X < +∞, 0 6 Y 6 η(X)}.

Denote by Φ = Φ(X,Y ) the velocity potential and Ψ = Ψ(X,Y ) the streamline function. Then the

flow in the domain D is to be potential with the complex potential Λ = Φ + iΨ, where i =
√
−1 is the

imaginary unit. In addition, we also denote by u0 and h0 the velocity and the depth at some point of the

free surface, respectively. For a solitary wave problem, the point is located at infinity. For simplicity, we

make a dimensionless rescaling χ = ϕ+ iψ = θ(Φ + iΨ)/h0u0 in the strip

D2 = {χ = ϕ+ iψ : −∞ 6 ϕ 6 +∞, 0 6 ψ 6 θ}.

Here, the Stokes parameter θ is related to the Froude number Fr := u0/
√
gh0 via Fr =

√
tan θ/θ.

Now the water wave problem is reduced to finding an analytic function Z = h0f(χ)/θ, which maps

the domain D2 conformally onto the domain D1. Set the function f(χ) in the form f(χ) = χ +W (χ).

At the free surface Y = η(X), by the Bernoulli integral, we have

1

2

∣∣∣∣d(Φ + iΨ)

dZ

∣∣∣∣2 + gY =
1

2
u20 + gh0,

which is equivalent to ∣∣∣∣dWdχ + 1

∣∣∣∣2 =
1

1− 2νImW
for ψ = θ (4.1)

with ν = cot θ. At the flat bottom, we have

ImW = 0 for ψ = 0. (4.2)

Moreover, for the solitary wave, the boundary condition at infinity

lim
φ→−∞

ImW = lim
φ→+∞

ImW = 0 (4.3)

should be fulfilled. In a word, the mathematical statement of the bottom, sides and upper boundary

condition is given in (4.1)–(4.3).

X

Y

Y = η(X) 

g

Z = X + iY

(a) The physical flow region

χ = φ + iψ

ψ

φ

θ

(b) The plane of the complex potential X

Figure 1 Sketches of the flow and the complex potential
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The shallow-water theory shows that it is reasonable to consider W (ϕ + iψ) as a periodic function of

the variable ψ. For small-amplitude waves, one can consider the solution of (4.1)–(4.3) in the form

W =
∞∑
j=1

θ2jW (j)(χ) (4.4)

with W (j)(χ) being polynomials of cosh(χ/2)−2, which corresponds to the shallow-water expansion.

Witting [46] proposed a new expansion parameter for solitary waves and constructed a solution of

(4.1)–(4.2) in the form

W =

∞∑
j=1

Ej(θ)ζ
j , ImEj = 0, ζ = eχ, (4.5)

which permits calculation to extremely high-order terms. When θ = π/n with n being an odd integer,

Karabut [20–22] introduced the new unknown functions

Pj(χ) =W (ζei(2j−2)θ), j = 1, 2, . . . , n

and proved that Pj (j = 1, 2, . . . , n) satisfy the following system of ordinary differential equations:(
dPj+1

dχ
+ 1

)(
dPj
dχ

+ 1

)
=

1

fj
, j = 1, 2, . . . , n, (4.6)

where Pn+1 = P1 and fj = 1 + iν(Pj+1 − Pj). Clearly, to solve the boundary-value problem (4.1)–(4.3)

in the form of the Witting series, one only needs to integrate the system (4.6) and to take W = P1.

Rewrite the equation (4.6) into the following equation with respect to the variables fj :

dfj
dχ

= iν

∏(n−1)/2
k=1 f[(2k+j−1) mod n]+1 −

∏(n−1)/2
k=1 f[(2k+j−2) mod n]+1√∏n

k=1 fk
, j = 1, 2, . . . , n. (4.7)

Making a time scale dt = iν/
√∏n

k=1 fkdχ and replacing fj with xj , we see that (4.7) becomes the

following equivalent homogeneous equations:

dxj
dt

=

(n−1)/2∏
k=1

x[(2k+j−1) mod n]+1 −
(n−1)/2∏
k=1

x[(2k+j−2) mod n]+1, j = 1, 2, . . . , n, (4.8)

which are called a Karabut system.

4.2 Integrability analysis of the 3-dimensional Karabut systems

For θ = π/3, we obtain the 3-dimensional Karabut system
ẋ1 = x3 − x2,

ẋ2 = x1 − x3,

ẋ3 = x2 − x1.

(4.9)

Obviously, the system (4.9) is a linear system of differential equations and one can get its general solutions,

which implies that the Witting series for θ = π/3 can be summed up exactly [20]. From the point of view

of integrability, we have the following three results.

Proposition 4.1. System (4.9) is completely integrable with two functionally independent first integrals

I1 = x1x2 + x2x3 + x3x1, I2 = x1 + x2 + x3.

Using first integrals I1 and I2, we can construct infinitely many Hamilton-Poisson realizations

(R3,Πa,b,Hc,d) of the system (4.9) parameterized by the group SL(2,C), which implies that the

system (4.9) is bi-Hamiltonian.
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Proposition 4.2. Let a, b, c, d ∈ R such that ad − bc = 1. For the system (4.9), there exist infinitely

many Hamilton-Poisson realizations (P,Πab,Hcd) such that

ẋ = Πa,b · ∇Hc,d, x = (x1, x2, x3)
T,

where the Poisson structure Πa,b and the Hamiltonian Hc,d are given by

Πa,b =


0 −b− ax1 − ax2 b+ ax1 + ax3

b+ ax1 + ax2 0 −b− ax2 − ax3

−b− ax1 − ax3 b+ ax2 + ax3 0

,
Hc,d = c(x1x2 + x2x3 + x3x1) + d(x1 + x2 + x3),

where a, b, c and d satisfy [ a bc d ] ∈ SL(2,R).
The next result shows that the 3-dimensional Karabut system admits a Lax formulation.

Proposition 4.3. The system (4.9) can be written in the Lax form L̇ = [N,L], where the matrices L

and N are, respectively, given by

L :=


0 −x3 x2

x3 0 −x1
−x2 x1 0

, N :=


0 −1− x3 1 + x2

1 + x3 0 −1− x1

−1− x2 1 + x1 0

.
4.3 Integrability analysis of the 5-dimensional Karabut systems

For θ = π/5, we obtain the 5-dimensional Karabut system

ẋ1 = x3x5 − x2x4,

ẋ2 = x4x1 − x3x5,

ẋ3 = x5x2 − x4x1,

ẋ4 = x1x3 − x5x2,

ẋ5 = x2x4 − x1x3.

(4.10)

Karabut [22] found two functionally independent polynomial first integrals of (4.10), i.e.,

Φ1 = x1 + x2 + x3 + x4 + x5, Φ2 = x21 + x22 + x23 + x24 + x25.

But as he said, it is not known whether the system has other polynomial integrals, so that he had to

study the system (4.10) by numerical methods. The goal of this subsection is to deal with this problem.

More specifically, we investigate its polynomial integrability, namely, what is the maximal number of

functionally independent polynomial first integrals that the system (4.10) can exhibit?

A nice result is due to Christov [12], in which he used a Morales-Ramis type theory on Bogoyavlenskij

integrability [5] and showed that the system (4.10) is not meromorphically integrable in the Bogoyavlenskij

sense. Since we do not know if (4.10) admits other symmetry fields besides the trivial symmetry field, we

can only conclude from Christov’s result that the number of functionally independent polynomial first

integrals of the system (4.10) is less than four. Otherwise, (4.10) has four independent polynomial first

integrals, so it is integrable in the Bogoyavlenskij sense, which yields a contradiction. For this corollary,

there is a simple proof: observing that the Karabut system is a quadratic homogeneous polynomial

differential system, we can get its Kovalevskaya exponents (−1, 1, 2, 3/2+
√
−7− 8i/2, 3/2−

√
−7− 8i/2)

corresponding to a balance c = (−i,−1, 1, i, 0), where i =
√
−1. Then by [15, Theorem 5.5], the

system (4.10) does not have four functionally independent polynomial first integrals. The non-rational

Kovalevskaya exponents also imply that the system (4.10) does not enjoy the Painlevé/weak-Painlevé

property. In addition, we mention that the analysis of differential Galois groups in Christov’s work [12]
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is obtained by computing local monodromy matrices. As our aim is to give a practical example to show

the effectiveness of Theorem 3.7, we provide a systematic procedure to analyze the differential Galois

group associated with Karabut systems with the help of Kovacic’s algorithm, which can be applied to

other high-dimensional systems.

Theorem 4.4. System (4.10) has two and only two functionally independent meromorphic first

integrals.

A direct consequence is that the system (4.10) has no additional polynomial first integrals which are

functionally independent of Φ1 and Φ2.

Proof of Theorem 4.4. The basic idea of our proof is to find an integrable invariant manifold N for

the 5-dimensional Karabut system (4.10), to reduce the (normal) variational equations along a solution

contained in N into a second-order equation with rational coefficients, and to prove that the identity

component of the differential Galois group associated with this second-order equation is not solvable.

System (4.10) admits an integrable invariant manifold defined by

N := {(x1, x2, x3, x4, x5) ∈ C5 : x1 + x4 = 0, x2 + x3 = 0, x5 = 0}.

Indeed, the system (4.10) restricted to N is given by

ẋ1 = x1x2, ẋ2 = −x21, (4.11)

which is completely integrable with a polynomial first integral Φ = x21 + x22. Given the initial condition

(x1(t0), x2(t0)) = (x10, x20) ̸= (0, 0), we get

x2 = ±
√
x210 + x220 − x21, ± dx1

x1
√
x210 + x220 − x21

= dt,

i.e.,

x1(t) =
4 exp( t+C2

C1
)

4 + C2
1 exp(

2t+2C2

C1
)
, x2(t) =

ẋ1
x1
,

or

x1(t) =
4 exp( t+C2

C1
)

C2
1 + 4 exp( 2t+2C2

C1
)
, x2(t) =

ẋ1
x1
,

where C1 = (x210 + x220)
−1/2 and C2 is an integration constant. For convenience, we set C1 = 1 and

C2 = 0 and get a non-equilibrium solution of the system (4.10), i.e.,

ϕ(t) =

(
4 exp(t)

exp(2t) + 4
,
4− exp(2t)

exp(2t) + 4
,
exp(2t)− 4

exp(2t) + 4
,− 4 exp(t)

exp(2t) + 4
, 0

)
.

Let Γ be the phase curve corresponding to the solution ϕ(t). Then the variational equations along Γ

read

d

dt
ξ = A(t)ξ, (4.12)

where

A(t) =



0 4 exp(t)
exp(2t)+4 0 exp(2t)−4

exp(2t)+4
exp(2t)−4
exp(2t)+4

− 4 exp(t)
exp(2t)+4 0 0 4 exp(t)

exp(2t)+4
4−exp(2t)
exp(2t)+4

4 exp(t)
exp(2t)+4 0 0 − 4 exp(t)

exp(2t)+4
4−exp(2t)
exp(2t)+4

exp(2t)−4
exp(2t)+4 0 4 exp(t)

exp(2t)+4 0 exp(2t)−4
exp(2t)+4

4−exp(2t)
exp(2t)+4 − 4 exp(t)

exp(2t)+4 − 4 exp(t)
exp(2t)+4

4−exp(2t)
exp(2t)+4 0


.

Since the system (4.10) has two first integrals Φ1 and Φ2, by Lemma 2.13, the system (4.12) has two

time-dependent first integrals

G1(t, ξ) = ξ1 + ξ2 + ξ3 + ξ4 + ξ5, G2(t, ξ) =
8 exp(t)

exp(2t) + 4
(ξ1 − ξ4) +

8− 2 exp(2t)

exp(2t) + 4
(ξ2 − ξ3). (4.13)
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Then by means of the change of the independent variable

t→ τ := exp(t)− 4 exp(−t), (4.14)

we transform (4.12) into the linear differential system with rational coefficients

d

dτ
ξ = B(τ)ξ, (4.15)

where

B(t) =



0 4
16+τ2 0 τ

16+τ2
τ

16+τ2

− 4
16+τ2 0 0 4

16+τ2 − τ
16+τ2

4
16+τ2 0 0 − 4

16+τ2 − τ
16+τ2

τ
16+τ2 0 4

16+τ2 0 τ
16+τ2

− τ
16+τ2 − 4

16+τ2 − 4
16+τ2 − τ

16+τ2 0


.

It should be pointed out that the transformation (4.14) does not change the identity component of the

differential Galois group (see [37, Theorem 2.5]). Make a linear transformation ξ = Pη with

P =



1 0 0 0 −1

0 1 0 −1 0

0 0 0 1 0

0 0 0 0 1

0 0 1 0 0


, (4.16)

and the system (4.15) becomes the following equivalent form:

d

dτ
η = C(t)η, (4.17)

where

C(t) =



τ
16+τ2

4
16+τ2

2τ
16+τ2 0 0

0 0 − 2τ
16+τ2 0 0

− τ
16+τ2 − 4

16+τ2 0 0 0
4

16+τ2 0 − τ
16+τ2 0 − 8

16+τ2

τ
16+τ2 0 τ

16+τ2
4

16+τ2 − τ
16+τ2


.

Then we obtain a 3-dimensional subsystem

d

dτ


η1

η2

η3

 =


τ

16+τ2
4

16+τ2
2τ

16+τ2

0 0 − 2τ
16+τ2

− τ
16+τ2 − 4

16+τ2 0



η1

η2

η3

. (4.18)

Due to (4.13) and (4.16), one can easily check that H(η1, η2, η3) = η1(t) + η2(t) + η3(t) is a first integral

of (4.18), i.e.,
d

dt
(η1(t) + η2(t) + η3(t)) = 0,

or η1(t) + η2(t) + η3(t) = constant. Let this constant be zero. Then by (4.18), we obtain

d

dτ

(
η1

η2

)
=

(
− τ

16+τ2
4−2τ
16+τ2

2τ
16+τ2

2τ
16+τ2

)(
η1

η2

)
. (4.19)
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From the first equation of (4.19), we have

η2 =
16 + τ2

4− 2τ

dη1
dτ

+
τη1

4− 2τ
. (4.20)

Substituting (4.20) into the second equation of (4.19), we can eliminate the variable η2 and get an

equivalent second-order equation

d2

dτ2
η1 + P (τ)

d

dτ
η1 +Q(τ)η1 = 0, (4.21)

where the coefficients are as follows:

P = − 2τ + 16

(τ − 2)(τ2 + 16)
, Q =

2τ3 − 14τ2 + 16τ − 32

(τ + 16)2(τ − 2)
.

Next, under the change of the dependent variable

η1 = χ exp

[
− 1

2

∫
Pdτ

]
,

(4.21) is converted to its reduced form

d2

dτ2
χ = r(τ)χ (4.22)

with

r =
3

4(τ − 2)2
− 11− 8i

16(τ + 4i)2
− 11 + 8i

16(τ − 4i)2
+

1

20(τ − 2)
− 8 + 59i

320(τ + 4i)
− 8− 59i

320(τ − 4i)
.

We claim that the identity component of the differential Galois group of the system (4.22) is not

solvable. To this end, we use the Kovacic’s algorithm [23]. Obviously, (4.22) is Fuchsian (see [37]) with

four regular singular points τ equaling 2, 4i, −4i and ∞, and all of them are of order two. For Case 1 in

Kovacic’s algorithm, by simple computations, we get

α±
∞ =

1

2
±

√
7i

2
, α+

2 =
3

2
, α−

2 =
1

2
,

α±
4i =

1

2
±

√
−7− 8i

4
, α±

−4i =
1

2
±

√
−7 + 8i

4
,

and then d := α±
∞ − α±

2 − α±
4i − α±

−4i ∈ C/R is not a non-negative integer, which means that Case 1 of

Lemma 2.6 is impossible. For Case 2, we can obtain the auxiliary sets Ei from Kovacic’s algorithm

E∞ = E4i = E−4i = {2}, E2 = {−2, 2, 6}.

Next, we should select elements e∞ ∈ E∞, e±4i ∈ E±4i and e2 ∈ E2 such that d := (e∞−e4i−e−4i−e2)/2
is a non-negative integer. There is only one possible choice of (e∞, e4i, e−4i, e2) = (2, 2, 2,−2) with d = 0.

We construct the rational function

θ(τ) =
−1

τ − 2
+

2τ

τ2 + 16
,

and check if there exists a monic polynomial P of degree zero satisfying the equation

P ′′′ + 3θP ′′ + (3θ2 + 3θ′ − 4r)P ′ + (θ′′ + 3θθ′ + θ3 − 4rθ − 2r′)P = 0. (4.23)

However,

θ′′ + 3θθ′ + θ3 − 4rθ − 2r′ =
8τ2 + 52τ + 224

(τ − 2)2(τ2 + 16)2
̸= 0.

Hence, Case 2 of Lemma 2.6 is also excluded. For Case 3, by [23, Theorem 2.1], it is also impossible

that the differential Galois group is finite since the necessary conditions cannot hold. In summary, the
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differential Galois group of (4.22) falls into Case 4 of Lemma 2.6 and is SL(2,C). In this case, the identity

component is also SL(2,C), which is not solvable.

Assume that the system (4.10) has three functionally independent meromorphic first integrals. Due to

Corollary 3.9, the identity component of the differential Galois group of (4.12), (4.15) or its equivalent

form (4.17) is solvable. Thanks to Lemma 2.12, the system (4.18) can be solved by quadrature. So the

system (4.21) is also solvable. Finally, note that (4.21) and (4.22) have the same Liouvillian solvability,

which implies that (4.22) is solvable, i.e., the identity component of (4.22) is solvable. This leads to a

contradiction.

Remark 4.5. Similar to 3D and 5D Karabut systems, Karabut systems with dimension n > 7 also

have two first integrals Φ1 = x1 + · · · + xn and Φ2 = x21 + · · · + x2n, but their integrability analysis is

still open. The main difficulty is to find an analytic particular solution lying in an integrable invariant

manifold. The numerical simulations in [22] inspire us to believe that Karabut systems with dimension

n > 7 are also not integrable either.
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