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Let M be a compact n-dimensional Cm Riemannian manifold without boundary ( n > 1 ) . 
Denote by x all C1 vector fields on M.  Denote by x ' all the systems X E x satisfying the follow- 
ing property: X has a neighborhood ,u in x such that each Y E  (*. has only finitely many singulari- 
ties and at most countably many periodic orbits (or equivalently, all singularities and periodic or- 

bits of each Y € w are hyperbolic (see refs. [ 1.21 ). Denote by x * all the systems X E x ' satisfy- 
ing the following property: X has a neighborhood in x ' such that for each Y E W ,  Y is a Kup- 

ka-Smale system. In particular, the stable manifolds and unstable manifolds of singularities and 
periodic orbits of Y are all transversal. Denote by Ob(X)  the obstruction set of X E  x (see ref. 
[3]  or the following for the definition of O b ( X ) ) .  The main results of this paper are the follow- 
ing theorems. 

TheoremA. I f s E X * ,  t h e n O b ( S ) = @ .  
As a consequence, we generalize a result of Liao in reference [3] .  

Theorem B. If S x , then the following conditions are equivalent : 
( i )  S is C' structurully stable. 

(ii) s E X S .  
(iii) Ob( S )  U I ( S ) = 0. ( I ( S )  denotes the interior of the set of al l  singularities of S )  . 
(iv) S satisfies the Axiom A and the strong transversality condition. 
Proof. (i)*(ii) is proved by ~ o b i n s o n ' ~ ' .  For S E x # , obviously, I ( S ) = 8. There- 

fore, according to Theorem A we have (ii)*(iii) . For (iii)*(iv) see ref. [3]  . (iv)*(i) is the 

classical structural stability theorem (for a proof see reference [5 ] ) .  
If dim M = 2, the above theorem is a consequence of ref. [6]  . If dim M = 3 , 4  and S has no 

singularities, the theorem is shown in Chapter 8 of reference [3] .  
The implication (i)-(iv) is the famous stability conjecture for flows, which is a long stand- 

ing problem. It was first formulated in ref. [7], and many people have contributed to the prob- 
lem. Liao proved the conjecture under some restricted condition for dimM = 3 in ref. [2].  As a 
consequence he proved the conjecture for two-dimensional diffeomorphisms, which is reproved in 
ref. [8] by a relatively different method. Along this line ~ a n i .  at last proved the conjecture for 
diffeomorphisms of general dimensions in ref. [9]. ~ a n n a m i " ~ ]  also proved this result in dimM = 
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2.  Starting from the extended form of the technique used in ref. [9 ] ,  Hu proved the conjecture 

for dimM = 3 in ref. [I1 1 .  Also, Liao proved the conjecture for dimM = 3 in ref. [12] by using 

obstruction sets, a method created by himself in ref. [13] ,  and developed in ref. (141 (see also 

ref. [ 3 ] ) .  A great breakup in proving the conjecture came up recently with the C' connecting 

lemma of ~ a ~ a s h i ' " ~ .  Wen and ~ i a ' )  have a nice simple proof for the C' connecting lemma. Con- 

sequently, Hayashi and Wen proved this conjecture in refs. [15, 161, respectively, in a similar 

way by extending the method in ref. [ 9 ] .  In this paper, we prove the conjecture by following the 

way in reference [12] .  

1 Obstruction set and minimal rambling set 

In the following we briefly introduce the concept of obstruction sets (for the details, see ref. 

[3]  ) . Let S € x . Then S induces one-parameter transformation groups on M, the tangent bun- 

dle TM and the conjugate bundle 9 of S, respectively: 

$ , : M - +  M9 - m < t < m ,  

@ , : T M + T M ,  - m < t < a ,  

+,:9-+9, - 0 3  < t < 0 0 .  

For any u E 9, 1 1  u 1 1  # O ,  denote by + , ( u )  theorthogonal projectionof u on 9. For any u E 
9, ( x  E M' = M - Sing( S )  ), denote by @ u the ( n - 2)-dimensional linear subspace of 9,, 

consisting of all the vectors orthogonal to u , i. e. 

@ u . =  { v E 9 , :  ( u , v )  = 0 l .  

For any t E R, there exists a unique vector Y, ( u ) € 9+t(,, , Y, ( u ) 1 +, (@ u ) and 

+ , ( u )  - Y * ( u )  E +*(@ u ) .  

This gives a one-parameter transformation group 

Y*:9+ 9, t E R. 
This transformation group can be uniquely extended to (still denoted by PI) 

Y , : 9 "  + 9', 

where 9' is the closure of 9 in TM. The obstruction set of S is defined as 

O b ( S )  = Is E M: 3 u € 9" fl TM,such that 11 u ( I  = 1 = inf ~ ~ Y t ( u ) ~ ~ ~ .  
r e ( - m . m )  

This is a closed subset of M.  
Definition 1 .1 .  A subset A of M is called the rambling set of S, if A is closed in M ,  in- 

variant under $, ( - < t < co ) and 

n n OMS) # 0. 
A rambling set of S is called minimal, if each of its proper subset is never a rambling set of S.  

According to Zorn's lemma, the following is easily deducedt3]. 

Proposition 1 . 1 .  Every rumbling set of S contains a t  least one minimal rambling set. 

For the convenience of discussion, minimal rambling sets are classified into two classes. 

Bf in i t ion  1.2. A minimal rambling set A is called simple, if it satisfies the following con- 

dition ( i )  or (ii):  

( i )  A contains no ordinary point of S, or 

( ii) A contains an ordinary point a E Ob( S )  such that both the w-limit set w ( a  ) and the a -  

1)  Wen, 1.. , Xia, Z . ,  The C1 connecting lemma, Preprint, 1995. 
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limit set a ( a ) o f  the orbit Orb( u ) = 1 8, ( u ) I t E ( - m, ) 1 are proper subsets o f  A . Other- 

wise, A will be called non-simple. 

The  following theorem gives a relatively complete description for simply minimal rambling 

sets. 

Theorem 1 . 1 .  Let A be u simply minimal rambling set of S .  Then A consists of exactly 

one point i f  and only i f  this point is a nonhyperbolic singularity. Let A contain more than two 

points. Then S has an ordinary point a A n Ob( S )  with the following properties : 

( i )  h t h  the w-limit set w ( a )  and the a-limit set a ( a )  of the orbit P ( a )  = 1 # , ( a )  1 t € 
( - ", 00 ) 1 of S have hyperbolic structures. 

( i i )  A = P ( a ) U w ( a ) U a ( a )  and ( w ( u ) U  a ( a ) ) n o b ( S ) = @ .  Hence A n O b ( S )  is 

contained in a finite arc-orbit of P ( a ) . 
( i i i )  d i m ( D - ( a )  + D +  ( a ) ) <  n - 1, where 

D- ( a )  = i u € 9, I I im$ , (u )  = 01,  D+ ( a )  = 1 u E 9, I lim $ , ( u )  = 01.  
t - m  

Hence dim((@D..(a))n(@~+(a)))21. 

( i v )  Either w ( a ) consists of only one singularity of  S , or w ( a ) C M . In the latter cuse, 

there exist numbers p<O and d >O such that 

11 qj3+,(u)  11 < 11 $ s ( u >  11  e x p ( p t )  for u € D -  ( a ) ,  s 2 0  and t 2 d ,  

11  qj,+,(u) 11  >, 11 qj,(u> 11 exp( -  p t )  for u EO D- ( a ) ,  s 2 0  and t 2 d ,  

and dimD. ( x ) = d i m D - ( a )  f o r x E w ( a ) .  

( v )  ALSO, either a ( a  ) consists only one singular point of S ,  or a ( a ) C M . In the latter 

case, there exist numbers ,u'<O und d'  >O such that 

11  +,+,(u> 11  < 11 +,(u) 11  exp( -  ,u't) f o r u  E D+ ( a ) ,  s GO a n d t  <- d ' ,  

11  ( o ,+ , (u )  11  2 11 q ja (u )  11  e x p ( p P t )  for u €63 D+ ( a ) ,  s GO and t <- d ' ,  

and d i m D - ( x ) = d i m ( @ D + ( a ) )  f o r x € a ( a ) .  

Definition 1 .3 .  Let A be a connected hyperbolic set o f  S . Denote 

IndA = I n d d  = dimF ( x ) ,  

where x € A ,  and 

F -  ( x )  = ju E TM,: l imQj , (u )  = 01 
I -  -., 

Obviously, the value IndA is independent o f  x . 

2 c'-connecting lemma and the proof of the main result 

T o  prove Theorem A, we also need Hayashi's C' connecting The  following 

strong version is taken from reference [ 161 ') . 
Theorem 2 .1 ' ' .  Let M be a compact n-dimensional Cm Riemannian munifold without 

boundary. Let X € x , which induces a flow $, = $X, . Assume z € M ,  which is not a singular- 

ity of X or a point on uny periodic orbit of X .  For any C' neighbourhd w of X in X ,  there ex- 

ist p > 1, T > 1 and 60 >O such that for any 0< &<ao and any  two points x , y outside the tube 

A =  U , E  B ( $ .  , ( z ) ,  6 )  i f  the positive X-orbit of s und the negative X-orbit of y hit B ( x ,  
6 / p ) ,  then there exists Y ct,, such that Y E X  outside A and y is on the positive Y-orbit of x .  

This theorem is summarized from the linear version below. W e  state it as follows. 

1) See the footnote on page 1077. 
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Theorem 2.2') (The linear version of the C' connecting lemma). Let 1 V, 1 rZo be a se- 
quence of inner product spaces and let T, : V,+ V, - be a sequence of linear isomorphisms. For 

any E > O  there exist p a 1  and L € N such that : For any sequences I x, I:= 1 and ? y, 1:- 1 in Vo, 

with un order < defined on the union 

X = { x , , ~ , :  i = 1 , 2 , . . . , s ;  j = 1,2;..,tI 

as 

X l  < x2 < "' < x, < y, < yt-1 < "' < y1, 

there~isttwopoints~E~x~li=~nB(x,,~Ix,-y~I), y E l ~ ~ I ! = ~ n B ( ~ , , p I x , - y ~ l ) ,  k 2 O  
together with some ordered pairs I pi, qi 1 C X  n B ( x,, p I x, - y, I ) say, k of them, with the 
order 

x l  < pl < (I1 < p2< q2 < "' < p h ' <  qk' 

< x < y < Pk'+1 < q&'+l < "'Pk < qk < Y l r  

(O<k'<k ) satisfying the following conditions. 

( i )  There exists an  c-kernel transition from x to y of length L ,  supported in B(x , ,  p I x,  - 

Ytl).  
(ii) For any i = 1,2 ,  ..., k there exists an  €-kernel transition from pi to qi of length L,  sup- 

po r t ed inB(x , ,p lx , -y , I ) .  
(iii) Thesee ( k + 1 )  transitionsawid X -  [ x l , y l ]  - [ ~ ~ , ~ ~ l - . " - [ ~ ~ , ~ ~ l .  
(iv) These (k  + 1 )  transitions are mutually disjoint. 

Remark 2.1.  The existence of p and L in the above theorem is only dependent on E ,  { T,, I 
and 1 V, I . In other words in Theorem 2 . 1  p, L and 60 are only dependent on the tangent maps 
of f at Orb( z ) and the size of I'. This fact is very useful for the later application of Theorem 2.1.  

Write M '=M-Sing(S) .  F o r x E M ' d e n o t e 9 ,  = ? u  E TM,: ( u , S ( x ) )  = 01. Assume 

that A C M' is a compact invariant subset of S . Denote by 9A the restriction of the conjugate 
bundle 9 = UrEM'gr,  i. e. gA = U A2r .  For any Whitney sum 9,, = A_@ A+ with A -  and 

A +  invariant under S, we say S is contracting on A- if there exist t,1>0, T>O such that 1- ( t .  
A-  ( x ) ) <  - t?, for any x E  A and t > T ,  where 

for any linear subspace E C 9,. If - S is contracting on A +  then S is called expanding on A + . 
In the following we fix two numbers r] and ? and a neighbourhood for each S E x as in 

reference [ 3 ]  . 
A sequence 1 Xi, Pi 1 is called a fundamental p-sequence (of S ) ,  where Xi E ;I, Pi is a peri- 

odic orbit of Xi and p an integer (OG p G  n - l ) , if 
lim 11 Xi - S 11 1 = 0 and Indx,Pi = p ,  i = 1,2 ,3 , . . - .  
i-m 

Let a number f E (0, i )  and an integer p E (0, n - 1) be given. For S E ' , a point a E 
M is called a right ( f, p)-hunched point of S ,  if there exist a fundamental p-sequence I Xi, Pi I 
and points xi on Pi satisfying 

1) See the footnote on psge 1077. 
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and 

1 - C 1- ( x i *  D- ( x i ,  h i ( , i , ( x i ) ) ; T )  <- f; AT,- - l , - & +  I . . . . .  - 1  

for k=1 ,2 , . . . , q , ;  i = 1 , 2 , 3 , . . .  . 

limq, = 03 . 
t-m 

Denote by R ( f;, p ) the set of all right ( f;, p )-hunched points of S . A point a E M is called a left 
( f;, p)-hunched point of S E x if a is a right ( f;, n - 1 - p)-hunched point of - S (obviously, 

S E x implies - S also E x ) . Denote by L ( r, p )  the set of all left ( 5 ,  p )-hunched points. It 

is easy to know that R ( f;, p ) and L ( r ,  p ) are both closed subsets in M . 
The following theorem is a reformulation of Theorem 8 .3 .2  in reference[3] . 
Theorem 2.3[31. Let S E x * . If A is a nonsimply minimal rumbling set without singu- 

lurities, 1 Xi, P,  1 is a fundamental psequence and P, converges to A in the sense of Hausdorff, 

which gives a dominated splitting gA = A? @A$ , then S cannot be contracting on A- and S 
cannot be expanding on A+ . 

Also from ref. [3] we have 

Theorem 2.4I3]. Let S E x ' . Then S has no simply minimal rambling sets. 
Now we use C' connecting lemma to establish the following lemma. 

Lemma 2 .1 .  Let S E x ' . If A is a nonsimply minimal rambling set, then it contains no 
singularities . 

Proof. Suppose on the contrary that A is a nonsimply minimal rambling set and contains a 
singularity x . Assume b E A fl Ob( S ) and x E w ( b ) = A without loss of generality. Obviously, 

x isasaddle. Since s : E w ( b )  wecan take x , E  W s ( x ) f l A -  1x1, x u €  W u ( x ) n A -  1x1.  

Choose a neighbourhood W of S in x ' . Using Theorem 2 . 1  twice we see that there exists X 

E ~ s u c h t h a t  x isasingularityof X a n d a ( y ) = w ( y ) = x  forsome y € M ,  inotherwords y is 

a homoclinic point of x with respect to X which contradicts the fact that X is a Kupka-Smale sys- 
tem. 

Lemma 2 .2 .  Let SE x ' and A be a compact invariant set of S with no singularities and 

there exists a fundamental psequence i Xi, P, 1 such that Pi converges to A in the sense of Haus- 

dor f f ,  which gives a dominated splitting 9A = Ae @A$ . If there exists f; > 0 such that f;< 3 
and A n R ( f;, p )  = 8 then S is contracting on A -  . Similarly i f  A fl L ( f;, p )  = 0 then S is ex- 

panding on A+ . 
Proof. Assume A fl R ( r, p ) = 8.  Acdording to I ~ m m a  6 . 4 . 8  in ref. [ 3 ]  there exist a 

number T>O, a neighbourhood U of A in M and a neighbourhood of S in x " such that for 

any X € w ,  if P is a periodic orbit of X with IndP = p and x E P then 

Therefore for. any x E A,  since Pi converges to A in the sense of Hausdorff we can take xi E Pi 
such that limi+m xi = x . Now we have 
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By taking subsequence we may assume that D - (Xi ,  x ,  ) converges to A! in the sense of Haus- 
dorff. Letting i tend to 00,  by the continuity of 7 - with respect to Xi and D - we have 

from which it is easily deduced that S is contracting on A- . The other half of the lemma can be 
proved similarly. 

P r o o f o f T h e o r e m A .  Let S E X a .  A s s u m e O b ( S ) U I ( S ) # 0 .  Obviously I ( S ) = 0 .  
Hence S has a minimal rambling set, say, A . From Theorem 2 .4  and Lemma 2 . 1  we know that 
A is nonsimple and contains no singularities. Assume 1 Xi, Pi I to be a fundamental p-sequence 
such that Pi converges to A in the sense of Hausdorff, which gives a dominated splitting 9* = 
A!@ At . From Theorem 2 . 4  S is not contracting on A< . Therefore according to Lemma 2 .2  

A f l R ( C , p ) # 0 f o r a n y O < g < i .  Thusby theTheorem6.5.7 inref.[3] thereexistsahyper- 
bolic set A < contained in A with index less than p . Similarly, there exists a hyperbolic set A > 
contained in A with index greater than p . Since A is nonsimple, we can take b E A fl Ob( S ) 
and may assume w ( b ) = A .  Take a compact neighbourhood of A < and a compact neighbour- 
hood u2 of A > . We may assume that Ui, i = 1 , 2  is small enough such that Dl n u2 = 0 and 

Ai = n t E R # , < D i ) ,  i = 1 ,2  
is a hyperbolic set. And take an open neighbourhood Vl of A < such that V I C  U1. Since A < C 

A = w ( b ) ,  there exist yi = #,;(b), zi = # , , ( b ) ( i > , 2 ) t i  < s iandyi ,z i  € aV1and#(t i , , i , (b)  

C V1. Since A <  is a proper subset of A,  it is easily proved that limi,-(si - t i )  = ~ 0 .  By taking 
subsequence we may assume that limi,, yi = yl E a Vl . Then it is easily seen that w ( y l )  C TI. 
Obviously yl E A . Similarly we have A2, y2 E a V2 fl A and a ( Y2) c v2. 

Now, using the C1 connecting lemma twice, we get X E x * and z E M such that w ( x )  is a 
hyperbolic set with index equal to IndA < = q < p and a ( x )  is a hyperbolic set with index equal 
to IndA > = r > p .  It is easily deduced that 

dimD- ( x )  = IndA< = q,  

dimD+ ( x )  = n - 1 -  IndA>= n - 1 - r .  

Thus 
dimD- ( x )  + dimD+ ( x )  = q + n - 1 - r  < n - 1 + p - p = n - 1. 

From Corollary 4.4.13 in ref. [3]  Orb( x )  is an obstruction set of X.  Obviously, it is a simply 
minimal rambling set, which contradicts Theorem 2.4 .  This proves Theorem A. 

Acknowledgement I would like to express my deepest gratitude to Prof. L. Wen. 
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