Another proof for C^1 stability conjecture for flows*

GAN Shaobo (甘少波)

(Department of Mathematics, Peking University, Beijing 100871, China)

Received March 4, 1998

Abstract The C¹ structural stability conjecture for flows by C¹ connecting lemma and obstruction sets is proved.

Keywords: axiom A, strong transversality, obstruction set, stability conjecture.

Let M be a compact n-dimensional C^{∞} Riemannian manifold without boundary (n > 1). Denote by χ all C^1 vector fields on M. Denote by χ^* all the systems $X \in \chi$ satisfying the following property: X has a neighborhood μ in χ such that each $Y \in \omega$ has only finitely many singularities and at most countably many periodic orbits (or equivalently, all singularities and periodic orbits of each $Y \in \omega$ are hyperbolic (see refs. [1,2]). Denote by χ^* all the systems $X \in \chi^*$ satisfying the following property: X has a neighborhood ω in χ^* such that for each $Y \in \omega$, Y is a Kupka-Smale system. In particular, the stable manifolds and unstable manifolds of singularities and periodic orbits of Y are all transversal. Denote by Ob(X) the obstruction set of $X \in \chi$ (see ref. [3] or the following for the definition of Ob(X)). The main results of this paper are the following theorems.

Theorem A. If $S \in \chi^{\sharp}$, then $Ob(S) = \emptyset$.

As a consequence, we generalize a result of Liao in reference [3].

Theorem B. If $S \in \gamma$, then the following conditions are equivalent:

- (i) S is C¹ structurally stable.
- (ii) $S \in \gamma^{\#}$.
- (iii) $Ob(S) \cup I(S) = \emptyset$. (I(S) denotes the interior of the set of all singularities of S).
- (iv) S satisfies the Axiom A and the strong transversality condition.

Proof. (i) \Rightarrow (ii) is proved by Robinson^[4]. For $S \in \chi^{\#}$, obviously, $I(S) = \emptyset$. Therefore, according to Theorem A we have (ii) \Rightarrow (iii). For (iii) \Rightarrow (iv) see ref.[3]. (iv) \Rightarrow (i) is the classical structural stability theorem (for a proof see reference [5]).

If $\dim M = 2$, the above theorem is a consequence of ref. [6]. If $\dim M = 3$, 4 and S has no singularities, the theorem is shown in Chapter 8 of reference [3].

The implication (i) \Rightarrow (iv) is the famous stability conjecture for flows, which is a long standing problem. It was first formulated in ref. [7], and many people have contributed to the problem. Liao proved the conjecture under some restricted condition for dimM=3 in ref. [2]. As a consequence he proved the conjecture for two-dimensional diffeomorphisms, which is reproved in ref. [8] by a relatively different method. Along this line Mané at last proved the conjecture for diffeomorphisms of general dimensions in ref. [9]. Sannami^[10] also proved this result in dimM=

^{*} Project supported by the National Natural Science Foundation of China.

2. Starting from the extended form of the technique used in ref. [9], Hu proved the conjecture for $\dim M = 3$ in ref. [11]. Also, Liao proved the conjecture for $\dim M = 3$ in ref. [12] by using obstruction sets, a method created by himself in ref. [13], and developed in ref. [14] (see also ref. [3]). A great breakup in proving the conjecture came up recently with the C^1 connecting lemma of Hayashi^[15]. Wen and Xia¹⁾ have a nice simple proof for the C^1 connecting lemma. Consequently, Hayashi and Wen proved this conjecture in refs. [15, 16], respectively, in a similar way by extending the method in ref. [9]. In this paper, we prove the conjecture by following the way in reference [12].

1 Obstruction set and minimal rambling set

In the following we briefly introduce the concept of obstruction sets (for the details, see ref. [3]). Let $S \in \chi$. Then S induces one-parameter transformation groups on M, the tangent bundle TM and the conjugate bundle \mathcal{D} of S, respectively:

$$\phi_{t}: M \to M, \quad -\infty < t < \infty,
\Phi_{t}: TM \to TM, \quad -\infty < t < \infty,
\phi_{t}: \mathcal{D} \to \mathcal{D}, \quad -\infty < t < \infty.$$

For any $u \in \mathcal{D}$, $||u|| \neq 0$, denote by $\psi_t(u)$ the orthogonal projection of u on \mathcal{D} . For any $u \in \mathcal{D}_x(x \in M' = M - \operatorname{Sing}(S))$, denote by $\bigotimes u$ the (n-2)-dimensional linear subspace of \mathcal{D}_x , consisting of all the vectors orthogonal to u, i.e.

$$\bigotimes u = \{v \in \mathcal{D}_x \colon \langle u, v \rangle = 0\}.$$

For any $t \in \mathbb{R}$, there exists a unique vector $\Psi_t(u) \in \mathcal{D}_{\phi_t(x)}$, $\Psi_t(u) \perp \psi_t(\bigotimes u)$ and $\psi_t(u) - \Psi_t(u) \in \psi_t(\bigotimes u)$.

This gives a one-parameter transformation group

$$\Psi_t: \mathcal{D} \to \mathcal{D}, \ t \in \mathbb{R}.$$

This transformation group can be uniquely extended to (still denoted by Ψ_t)

$$\Psi_{\cdot}: \mathfrak{D}^* \to \mathfrak{D}^*$$
,

where \mathcal{D}^* is the closure of \mathcal{D} in TM. The obstruction set of S is defined as

$$\mathrm{Ob}(S) = \{x \in M \colon \exists u \in \mathscr{D}^* \cap TM_x \text{ such that } \|u\| = 1 = \inf_{\iota \in (-\infty,\infty)} \|\Psi_\iota(u)\| \}.$$

This is a closed subset of M.

Definition 1.1. A subset Λ of M is called the rambling set of S, if Λ is closed in M, invariant under $\phi_t(-\infty < t < \infty)$ and

$$\Lambda \cap \mathrm{Ob}(S) \neq \emptyset$$
.

A rambling set of S is called minimal, if each of its proper subset is never a rambling set of S. According to Zorn's lemma, the following is easily deduced^[3].

Proposition 1.1. Every rambling set of S contains at least one minimal rambling set.

For the convenience of discussion, minimal rambling sets are classified into two classes.

Definition 1.2. A minimal rambling set Λ is called simple, if it satisfies the following condition (i) or (ii):

- (i) Λ contains no ordinary point of S, or
- (ii) Λ contains an ordinary point $a \in Ob(S)$ such that both the ω -limit set $\omega(a)$ and the α -

¹⁾ Wen, L., Xia, Z., The C¹ connecting lemma, Preprint, 1995.

limit set $\alpha(a)$ of the orbit $\operatorname{Orb}(a) = \{\phi_t(a) \mid t \in (-\infty, \infty)\}\$ are proper subsets of Λ . Otherwise, Λ will be called non-simple.

The following theorem gives a relatively complete description for simply minimal rambling sets.

- **Theorem 1.1.** Let Λ be a simply minimal rambling set of S. Then Λ consists of exactly one point if and only if this point is a nonhyperbolic singularity. Let Λ contain more than two points. Then S has an ordinary point $a \in \Lambda \cap Ob(S)$ with the following properties:
- (i) Both the ω -limit set $\omega(a)$ and the α -limit set $\alpha(a)$ of the orbit $P(a) = |\phi_t(a)| t \in (-\infty, \infty)|$ of S have hyperbolic structures.
- (ii) $\Lambda = P(a) \cup \omega(a) \cup \alpha(a)$ and $(\omega(a) \cup \alpha(a)) \cap Ob(S) = \emptyset$. Hence $\Lambda \cap Ob(S)$ is contained in a finite arc-orbit of P(a).
 - (iii) $\dim(D_{-}(a) + D_{+}(a)) < n-1$, where

$$D_{-}(a) = \{u \in \mathcal{D}_a + \lim_{t \to \infty} \psi_t(u) = 0\}, \ D_{+}(a) = \{u \in \mathcal{D}_a + \lim_{t \to -\infty} \psi_t(u) = 0\}.$$
Hence $\dim((\bigotimes D_{-}(a)) \cap (\bigotimes D_{+}(a))) \geqslant 1$.

(iv) Either $\omega(a)$ consists of only one singularity of S, or $\omega(a) \subseteq M$. In the latter case, there exist numbers $\mu < 0$ and d > 0 such that

$$\| \psi_{s+t}(u) \| \leq \| \psi_s(u) \| \exp(\mu t) \text{ for } u \in D_-(a), s \geq 0 \text{ and } t \geq d,$$

$$\| \psi_{s+t}(u) \| \geq \| \psi_s(u) \| \exp(-\mu t) \text{ for } u \in \otimes D_-(a), s \geq 0 \text{ and } t \geq d,$$
and dim $D_-(x) = \dim D_-(a)$ for $x \in \omega(a)$.

(v) Also, either $\alpha(a)$ consists only one singular point of S, or $\alpha(a) \subseteq M$. In the latter case, there exist numbers $\mu' < 0$ and d' > 0 such that

$$\|\psi_{s+t}(u)\| \leq \|\psi_a(u)\| \exp(-\mu't) \text{ for } u \in D_+(a), s \leq 0 \text{ and } t \leq -d',$$

$$\|\psi_{s+t}(u)\| \geq \|\psi_a(u)\| \exp(\mu't) \text{ for } u \in \otimes D_+(a), s \leq 0 \text{ and } t \leq -d',$$
and $\dim D_-(x) = \dim(\otimes D_+(a)) \text{ for } x \in \alpha(a).$

Definition 1.3. Let Λ be a connected hyperbolic set of S. Denote

$$Ind\Lambda = Ind_{S}\Lambda = \dim F_{-}(x),$$

where $x \in \Lambda$, and

$$F_{-}(x) = \{u \in TM_{x}: \lim_{t \to \infty} \Phi_{t}(u) = 0\}.$$

Obviously, the value Ind Λ is independent of x.

2 C^1 -connecting lemma and the proof of the main result

To prove Theorem A, we also need Hayashi's C^1 connecting lemma^[15]. The following strong version is taken from reference [16]¹⁾.

Theorem 2.1). Let M be a compact n-dimensional C^{∞} Riemannian manifold without boundary. Let $X \in \chi$, which induces a flow $\phi_t = \phi X_t$. Assume $z \in M$, which is not a singularity of X or a point on any periodic orbit of X. For any C^1 neighbourhood ω of X in χ , there exist $\rho > 1$, T > 1 and $\delta_0 > 0$ such that for any $0 < \delta \le \delta_0$ and any two points x, y outside the tube $\Delta = \bigcup_{t \in [0,T]} B(\phi_{-t}(z), \delta)$ if the positive X-orbit of x and the negative X-orbit of y hit $B(x, \delta/\rho)$, then there exists $Y \in \omega$ such that $Y \equiv X$ outside Δ and y is on the positive Y-orbit of x.

This theorem is summarized from the linear version below. We state it as follows.

¹⁾ See the footnote on page 1077.

Theorem 2.2¹⁾ (The linear version of the C^1 connecting lemma). Let $\|V_n\|_{n=0}^{\infty}$ be a sequence of inner product spaces and let $T_n: V_n \to V_{n-1}$ be a sequence of linear isomorphisms. For any $\varepsilon > 0$ there exist $\rho \ge 1$ and $L \in \mathbb{N}$ such that: For any sequences $\|x_i\|_{i=1}^s$ and $\|y_j\|_{j=1}^t$ in V_0 , with an order ≤ 1 defined on the union

$$X = \{x_i, y_i : i = 1, 2, \dots, s; j = 1, 2, \dots, t\}$$

as

$$x_1 < x_2 < \cdots < x_s < y_t < y_{t-1} < \cdots < y_1$$

there exist two points $x \in |x_i|_{i=1}^s \cap B(x_s, \rho | x_s - y_t|)$, $y \in |y_i|_{i=1}^s \cap B(x_s, \rho | x_s - y_t|)$, $k \ge 0$ together with some ordered pairs $|p_i, q_i| \subseteq X \cap B(x_s, \rho | x_s - y_t|)$ say, k of them, with the order

$$x_1 \leq p_1 \leq q_1 < p_2 \leq q_2 < \dots < p_{k'} \leq q_{k'}$$

< $x < y < p_{k'+1} \leq q_{k'+1} < \dots p_k \leq q_k \leq y_1$,

 $(0 \le k' \le k)$ satisfying the following conditions.

- (i) There exists an ϵ -kernel transition from x to y of length L, supported in $B(x_s, \rho | x_s y_t|)$.
- (ii) For any $i = 1, 2, \dots, k$ there exists an ε -kernel transition from p_i to q_i of length L, supported in $B(x_s, \rho | x_s y_t |)$.
 - (iii) Thesee (k+1) transitions avoid $X [x_1, y_1] [p_1, q_1] \cdots [p_k, q_k]$.
 - (iv) These (k+1) transitions are mutually disjoint.

Remark 2.1. The existence of ρ and L in the above theorem is only dependent on ε , $\{T_n\}$ and $\{V_n\}$. In other words in Theorem 2.1 ρ , L and δ_0 are only dependent on the tangent maps of f at Orb(z) and the size of ω . This fact is very useful for the later application of Theorem 2.1.

Write $M'=M-\mathrm{Sing}(S)$. For $x\in M'$ denote $\mathscr{D}_x=\{u\in TM_x\colon \langle u,S(x)\rangle=0\}$. Assume that $\Lambda\subset M'$ is a compact invariant subset of S. Denote by \mathscr{D}_Λ the restriction of the conjugate bundle $\mathscr{D}=\bigcup_{x\in M'}\mathscr{D}_x$, i.e. $\mathscr{D}_\Lambda=\bigcup_{x\in \Lambda}\mathscr{D}_x$. For any Whitney sum $\mathscr{D}_\Lambda=\Delta_-\oplus\Delta_+$ with Δ_- and Δ_+ invariant under S, we say S is contracting on Δ_- if there exist $\eta>0$, T>0 such that $\eta_-(t,\Delta_-(x))\leqslant -t\eta$, for any $x\in \Lambda$ and $t\geqslant T$, where

$$\eta_{-}(t,E) = \begin{cases} \sup_{\|u\|=1} \ln \|\psi_{t}(u)\|, & \text{if } \dim E > 0, \\ -\infty, & \text{if } \dim E = 0, \end{cases}$$

for any linear subspace $E \subset \mathcal{D}_x$. If -S is contracting on Δ_+ then S is called expanding on Δ_+ .

In the following we fix two numbers $\tilde{\eta}$ and \tilde{T} and a neighbourhood $\tilde{\omega}$ for each $S \in \chi^*$ as in reference [3].

A sequence $|X_i, P_i|$ is called a fundamental p-sequence (of S), where $X_i \in \tilde{u}$, P_i is a periodic orbit of X_i and p an integer $(0 \le p \le n-1)$, if

$$\lim_{i\to\infty} || X_i - S ||_1 = 0$$
 and $\operatorname{Ind}_{X_i} P_i = p$, $i = 1, 2, 3, \dots$.

Let a number $\zeta \in (0, \tilde{\eta})$ and an integer $p \in \langle 0, n-1 \rangle$ be given. For $S \in \chi^*$, a point $a \in M$ is called a right (ζ, p) -hunched point of S, if there exist a fundamental p-sequence $\{X_i, P_i\}$ and points x_i on P_i satisfying

¹⁾ See the footnote on page 1077.

$$\lim_{i\to\infty}x_i=a,$$

$$\frac{1}{k\tilde{T}} \sum_{i=0,1,\dots,k-1} \eta_{-}(X_{i}, D_{-}(X_{i}, \phi_{X_{i}(j\tilde{T})}(x_{i})); \tilde{T}) \geqslant -\zeta$$

and

$$\frac{1}{k\widetilde{T}} \sum_{i=-k,-k+1,\cdots,-1} \eta_{-}(X_{i},D_{-}(X_{i},\phi_{X_{i}(j\widetilde{T})}(x_{i}));\widetilde{T}) \leqslant -\zeta$$

for $k = 1, 2, \dots, q_i$; $i = 1, 2, 3, \dots$

$$\lim_{i\to\infty}q_i=\infty.$$

Denote by $R(\zeta, p)$ the set of all right (ζ, p) -hunched points of S. A point $a \in M$ is called a left (ζ, p) -hunched point of $S \in \chi^*$ if a is a right $(\zeta, n-1-p)$ -hunched point of -S (obviously, $S \in \chi^*$ implies -S also $\in \chi^*$). Denote by $L(\zeta, p)$ the set of all left (ζ, p) -hunched points. It is easy to know that $R(\zeta, p)$ and $L(\zeta, p)$ are both closed subsets in M.

The following theorem is a reformulation of Theorem 8.3.2 in reference[3].

Theorem 2.3^[3]. Let $S \in \chi^{\sharp}$. If Λ is a nonsimply minimal rambling set without singularities, $\{X_i, P_i\}$ is a fundamental p-sequence and P_i converges to Λ in the sense of Hausdorff, which gives a dominated splitting $\mathcal{D}_{\Lambda} = \Delta^p \oplus \Delta^p_+$, then S cannot be contracting on Δ_- and S cannot be expanding on Δ_+ .

Also from ref. [3] we have

Theorem 2.4^[3]. Let $S \in \chi^{\#}$. Then S has no simply minimal rambling sets.

Now we use C^1 connecting lemma to establish the following lemma.

Lemma 2.1. Let $S \in \chi^{\#}$. If Λ is a nonsimply minimal rambling set, then it contains no singularities.

Proof. Suppose on the contrary that Λ is a nonsimply minimal rambling set and contains a singularity x. Assume $b \in \Lambda \cap \mathrm{Ob}(S)$ and $x \in \omega(b) = \Lambda$ without loss of generality. Obviously, x is a saddle. Since $x \in \omega(b)$ we can take $x_s \in W^s(x) \cap \Lambda - |x|$, $x_u \in W^u(x) \cap \Lambda - |x|$.

Choose a neighbourhood ω of S in χ^{\sharp} . Using Theorem 2.1 twice we see that there exists $X \in \omega$ such that x is a singularity of X and $\alpha(y) = \omega(y) = x$ for some $y \in M$, in other words y is a homoclinic point of x with respect to X which contradicts the fact that X is a Kupka-Smale system.

Lemma 2.2. Let $S \in \chi^*$ and Λ be a compact invariant set of S with no singularities and there exists a fundamental p-sequence $\{X_i, P_i\}$ such that P_i converges to Λ in the sense of Hausdorff, which gives a dominated splitting $\mathcal{D}_{\Lambda} = \Delta^p \oplus \Delta^p_+$. If there exists $\zeta > 0$ such that $\zeta \leq \overline{\eta}$ and $\Lambda \cap R(\zeta, p) = \emptyset$ then S is contracting on Δ_- . Similarly if $\Lambda \cap L(\zeta, p) = \emptyset$ then S is expanding on Δ_+ .

Proof. Assume $\Lambda \cap R(\zeta, p) = \emptyset$. According to Lemma 6.4.8 in ref. [3] there exist a number T > 0, a neighbourhood U of Λ in M and a neighbourhood u of S in χ such that for any $X \in u$, if P is a periodic orbit of X with $\operatorname{Ind} P = p$ and $x \in P$ then

$$\eta_{-}(X, D_{-}(X, x), T) \leqslant -\frac{\zeta}{2}T.$$

Therefore for any $x \in \Lambda$, since P_i converges to Λ in the sense of Hausdorff we can take $x_i \in P_i$ such that $\lim_{i \to \infty} x_i = x$. Now we have

$$\eta_{-}(X_{i}, D_{-}(X_{i}, x_{i}), T) \leqslant -\frac{\zeta}{2}T, \forall i \geqslant 1.$$

By taking subsequence we may assume that $D_{-}(X_{i}, x_{i})$ converges to Δ_{-}^{p} in the sense of Hausdorff. Letting i tend to ∞ , by the continuity of η_- with respect to X_i and D_- we have

$$\eta_{-}(T, \Delta_{-}(x)) = \eta_{-}(S, \Delta_{-}(x), T) \leqslant -\frac{\zeta}{2}T,$$

from which it is easily deduced that S is contracting on Δ_- . The other half of the lemma can be proved similarly.

Proof of Theorem A. Let $S \in \chi^*$. Assume $Ob(S) \cup I(S) \neq \emptyset$. Obviously $I(S) = \emptyset$. Hence S has a minimal rambling set, say, Λ . From Theorem 2.4 and Lemma 2.1 we know that Λ is nonsimple and contains no singularities. Assume $\{X_i, P_i\}$ to be a fundamental p-sequence such that P_i converges to Λ in the sense of Hausdorff, which gives a dominated splitting \mathcal{D}_{Λ} = $\Delta_{+}^{p} \oplus \Delta_{+}^{p}$. From Theorem 2.4 S is not contracting on Δ_{-}^{p} . Therefore according to Lemma 2.2 $\Lambda \cap R(\zeta, \rho) \neq \emptyset$ for any $0 < \zeta < \tilde{\eta}$. Thus by the Theorem 6.5.7 in ref. [3] there exists a hyperbolic set $\Lambda_{<}$ contained in Λ with index less than p. Similarly, there exists a hyperbolic set $\Lambda_{>}$ contained in Λ with index greater than ρ . Since Λ is nonsimple, we can take $b \in \Lambda \cap Ob(S)$ and may assume $\omega(b) = \Lambda$. Take a compact neighbourhood \overline{U}_1 of Λ_{\leq} and a compact neighbourhood \overline{U}_2 of $\Lambda_{>}$. We may assume that U_i , i=1,2 is small enough such that $\overline{U}_1 \cap \overline{U}_2 = \emptyset$ and

$$\Lambda_i = \bigcap_{t \in \mathbb{R}} \phi_t(\overline{U}_i), i = 1, 2$$

is a hyperbolic set. And take an open neighbourhood V_1 of $\Lambda_{<}$ such that $V_1 \subset U_1$. Since $\Lambda_{<} \subset$ $\Lambda = \omega(b)$, there exist $y_i = \phi_{t_i}(b)$, $z_i = \phi_{s_i}(b)(i \ge 2)t_i < s_i$ and $y_i, z_i \in \partial V_1$ and $\phi_{(t_i, s_i)}(b)$ $\subset V_1$. Since $\Lambda_{<}$ is a proper subset of Λ_i , it is easily proved that $\lim_{i\to\infty} (s_i - t_i) = \infty$. By taking subsequence we may assume that $\lim_{i\to\infty} y_i = y_1 \in \partial V_1$. Then it is easily seen that $\omega(y_1) \subset \overline{V}_1$. Obviously $y_1 \in \Lambda$. Similarly we have Λ_2 , $y_2 \in \partial V_2 \cap \Lambda$ and $\alpha(y_2) \subseteq \overline{V}_2$.

Now, using the C^1 connecting lemma twice, we get $X \in \chi^{\#}$ and $x \in M$ such that $\omega(x)$ is a hyperbolic set with index equal to $\operatorname{Ind}\Lambda_{\leq} = q \leq p$ and $\alpha(x)$ is a hyperbolic set with index equal to Ind $\Lambda_{>} = r > p$. It is easily deduced that

$$\dim D_{-}(x) = \operatorname{Ind} \Lambda_{<} = q,$$

$$\dim D_{+}(x) = n - 1 - \operatorname{Ind} \Lambda_{>} = n - 1 - r.$$

Thus

$$\dim D_{-}(x) + \dim D_{+}(x) = q + n - 1 - r < n - 1 + p - p = n - 1.$$

From Corollary 4.4.13 in ref. [3] $\overline{Orb(x)}$ is an obstruction set of X. Obviously, it is a simply minimal rambling set, which contradicts Theorem 2.4. This proves Theorem A.

Acknowledgement I would like to express my deepest gratitude to Prof. L. Wen.

References

- 1 Markus, L., Structurally stable differential systems, Annals of Math., 1961, 73: 1.
- 2 Liao Shantao, On the stability conjecture, Chinese Ann. Math., 1980, 1: 9.
- 3 Liao Shantao, Qualitative Theory of Differential Dynamicsl Systems, Beijing: Science Press, 1996.
- Robinson, C., C' structural stability implies Kupka-Smale, in Dynamical System (ed. Pexioto, M.), 1971, New York: Academic Press, 1973, 443-449.
- 5 Robinson, C., Structural stability of C1 flows, in Dynamical Systems-Warwick 1974, Lecture Notes in Mathematics (ed.

- Manning, A.), Vol. 468, University of Warwick, 1973/1974, New York: Springer-Verlag, 1975, 262-277.
- 6 Pexioto, M., Structural stability on 2-dimensional manifolds, Topology, 1962, 1: 101.
- 7 Palis, J., Smale, S., Structural stability theorems, in Global Analysis, Proc. Sympos. Pure Math. (eds. Chern, S. S., Smale, S.), Vol, 14, University of California, Berkeley, 1968, Providence: Amer. Math. Soc. Rhode Island, 1970, 223—231.
- 8 Mané, R., An ergodic closing lemma, Ann. of Math., 1982, 116: 503.
- 9 Mané, R., A proof of the C¹ stability conjecture, Publ. Math. IHES, 1988, 66: 161.
- 10 Sannami, A., The stability theorems for discrete dynamical systems on two-dimensional manifolds, Nagoya Math. J., 1983, 90; 1.
- 11 Hu, S., A proof of C¹ stability conjecture for three-dimensional flows, Trans. Amer. Math. Soc., 1994, 342: 753.
- 12 Liso Shantao, Obstruction sets, minimal rambling sets and their applications, in Chinese Mathematics into the 21st Century, Tianjin (eds. Wu Wen-tsun, Cheng Min-de), 1988, Beijing: Peking University Press, 1991, 1—14.
- 13 Liao Shantao, Obstruction sets (I), Acta Math. Sinica (in Chinese), 1980, 23: 411.
- 14 Liao Shantao, Obstruction sets (II), Acta Sciencetiarum Naturalium Universitatis Pekinensis, 1981, 2: 1.
- 15 Hayashi, S., Connecting invariant manifolds and the solution of the C¹ stability conjecture and Ω-stability conjecture for flows, Annals of Math., 1997, 145: 81.
- 16 Wen, L., On the C¹ stability conjecture for flows, J. D. E., 1996, 129; 334.