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Fast prediction of permeability directly from images enabled by image recognition neural networks is a
novel pore-scale modeling method that has a great potential. This article presents a framework that
includes (1) generation of porous media samples, (2) computation of permeability via fluid dynamics
simulations, (3) training of convolutional neural networks (CNN) with simulated data, and (4) validations
against simulations. Comparison of machine learning results and the ground truths suggests excellent
predictive performance across a wide range of porosities and pore geometries, especially for those with
dilated pores. Owning to such heterogeneity, the permeability cannot be estimated using the conven-
tional Kozeny–Carman approach. Computational time was reduced by several orders of magnitude
compared to fluid dynamic simulations. We found that, by including physical parameters that are known
to affect permeability into the neural network, the physics-informed CNN generated better results than
regular CNN. However, improvements vary with implemented heterogeneity.

� 2018 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

In geoscience and engineering, image-based pore-scale studies
immediately emerged as abilities to scan high-resolution images
of porous rocks became available [1–3]. X-ray computed tomogra-
phy can be used to construct three-dimensional images of porous
rocks with sub-micron resolution up to the scale of 10003 pixels.
Scanning electron microscopy (SEM) can reach a resolution of
nanometers (10�9 m). When combined with focused ion beam
(FIB) technology, three-dimensional images of nanometer resolu-
tion can be constructed by milling the sample layer by layer [4].
Image-based analyses have revealed rich pore-scale features previ-
ously unavailable, and have become a very useful tool of petro-
physics [5–10].

Computation of pore-scale transport properties from pore-scale
images is an important aspect of image-based pore-scale studies.
Such computations are generally performed in two ways, i.e., direct
simulation approach and simplified network approach. In the first
approach, the microscopic transport equations are solved directly
on the geometry shown by the pore-scale images to obtain
averaged properties such as permeability, relative permeability,
or dispersion coefficient. Both single and multiphase flows can be
Elsevier B.V. and Science China Pr
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accounted for, and both reactive and non-reactive transport equa-
tions can be solved. This direct approach is generally considered to
be more accurate, but the computational cost is very high. For pro-
cesses such as multiphase flows and reactive transport with slow
kinetics, it is nearly impossible to solve the governing equations
in a medium of even a moderate size. Therefore, the second alter-
native approach is to first abstract the porous medium as a discrete
network. By applying simplified flow and transport laws on the
network, the computational cost to obtain averaged properties
can be effectively lowered [11].

Some transport properties of porous media such as permeabil-
ity are solely functions of pore geometry. Therefore, it should be
possible to predict them using a neural network approach, which
is to develop a surrogate model that directly maps a pore geometry
to physical properties. Such a task resembles that in image classi-
fication [12,13], where a model takes an image as input and give
the classification label as output by recognizing the object in the
image, e.g., cars, animals, or even subtypes thereof (i.e., car make
or animal breed). Once being constructed, such surrogate models
have the potential to enable fast prediction of physical properties
of porous media without performing direct simulations or network
calculations. Recent studies of chemical imaging of rocks also
involve surrogate models. For example, Hao et al. [14] generated
a molecular distribution map across scales by building a machine
learning model.
ess. All rights reserved.
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Fig. 2. Sample images of porous media in the parameter space. The two algorithmic
parameters are N that controls the density of polygonal grains and the porosity and
probability k that controls the porosity of dilated pores.
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Convolutional neural network (CNN) has achieved significant
successes in image classification [12,13,15]. Researchers have
adopted CNN to solve various problems in science and engineering,
e.g., solving the quantum many-body problem [16], analyzing
gravitational lenses in astrophysics [17], extracting flow features
in resolved flow fields [18], and serving as a surrogate model for
parameterized partial differential equations [19]. Recent studies
[20,21] also demonstrated that porous media can be reconstructed
by using generative adversarial network (GAN) or autoencoder, in
which CNN is involved to map between the porous media image
and the latent space. CNN has also been used to directly predict
effective properties of multiphase materials [22–24]. Yang et al.
[22] adopted standard CNN to predict elastic homogenization link-
ages for 3-D composite material system. Cang et al. [24] also used
an existing CNN architecture (i.e., ResNet [25]) to predict material
properties from microstructures. The preliminary study of Srisut-
thiyakorn [26] demonstrated the feasibility of predicting perme-
ability directly from rock images by using CNN. The features of
connectivity between neighboring pixels were extracted by per-
forming convolution with all possible cross shape templates.
Srisutthiyakorn demonstrated that these extracted features lead
to better predictive performance than geometric measurements
(Minkowski functionals) passed to a regular neural network. Kar-
patne et al. [27] pointed out that data science models can be fur-
ther improved by leveraging the scientific knowledge. In this
article, we use a physics-informed machine learning framework
to combine image information and integral quantities (porosity
and specific surface area) in the same neural network. We demon-
strate that the physics-informed architecture has a general supe-
rior predictive performance compared to the conventional CNN,
though in some cases we also noted that it is not significantly bet-
ter than regular CNN. Assessment of the proposed neural network
architecture demonstrates that physics-informed CNN predicts
permeabilities to 10% accuracy for synthetic two-dimensional por-
ous media with a wide range of scenarios (porosities, fraction of
dilated pores, and similarity levels between training and prediction
datasets).

2. Methodology

2.1. Overview of the computational framework

The objective of the computational framework presented in this
study is to train a machine-learning model for fast prediction of
permeability. This framework consists of the following steps as
illustrated in Fig. 1:

(i) Generating training dataset. We first generated a number of
images of synthetic porous media covering a wide range of
Fig. 1. (Color online) Overview of the framework, including (a) generating images,
permeability, (c) using the database to train physics-informed CNN and (d) predicting t
the chosen parameter space (porosity and percentage of dilated
pores, see Fig. 2). Direct simulations with lattice Boltzmann
method were then used to compute the permeabilities of the
generated porous media samples. The image-permeability pairs
form the training database for the neural network based
machine learning model. The detailed procedure of generating
the training database is presented in Section 2.2 and Fig. 1a, b.
(ii) Training physics-informed CNN model. The data obtained
from the previous step were then used to train a neural network
that takes both an image and its physical geometric property
(porosity and surface area ratio) as input and gives permeability
as output. Details of the CNN architecture and the training pro-
cedure are presented in Section 2.3 and Fig. 1c.
(iii) Predicting permeabilities for new images. The trained model
obtained from step (ii) was then used to provide permeability
for new images that are not in the training database (see
Fig. 1d).

Potentially both synthetic and real porous media images can be
used when generating the training database in step (i). Regardless
of the source of images, it is essential to ensure that samples in the
(b) building a database by performing lattice Boltzmann simulations to obtain
he permeability of new samples.



Fig. 3. (Color online) Relation between the permeability and the porosity from our
synthetic 2-D models. Permeability is scaled by 3 lm=pixel resolution. For porosity
greater than 0.17 this relation agrees well with that of Fontainebleau sandstones
from Arns et al. [31].
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database cover sufficient regions of the parameter space. This
requirement is easier to satisfy with synthetic images. In this
study, we used two-dimensional synthetic binary images. Three-
dimensional, real rock images will be the objective of future
studies.

2.2. Generation of training data

Images of synthetic porous media were generated using a
Voronoi tessellation algorithm that has been presented in several
earlier studies [28–30]. Voronoi tessellation is a method to parti-
tion a plane using a given set of points henceforth mentioned as
the seeds. Each partition, a Voronoi cell, is a polygon that repre-
sents the set of points on the plane that are closer to the enclosed
seed than to any other. In our algorithm, seeds were generated ran-
domly in a 600� 600 (pixel) area. The edges of generated Voronoi
cells were then given a width of six pixels to form a fully perco-
lated network of flow channels. When channels are six-pixel wide,
the permeabilities from lattice Boltzmann simulations are within
5% of those extrapolated to infinite lattice resolution. The number
of seeds N, or equivalently the number of initial Voronoi cells, in a
given domain size is an algorithmic parameter to control the size of
polygons in the image and the porosity. The porosity of synthetic
media obtained using this algorithm increases from
0.084 � 0.002 when N is 18, to 0:257� 0:002 when N ¼ 189. The
porosity-permeability relation of these synthetic geometries can
be well fitted by the Kozeny–Carman equation:

k ¼ 0:14/3

s2ð1� /Þ2
; ð1Þ

where / is the porosity and s is the ratio between the total perime-
ter of the polygons and the total area of the polygons. The coeffi-
cient 0:14 in the numerator is a fitting parameter established by
the dataset presented in this work. Note that s is the two-
dimensional analogue of specific surface area, the net surface area
over the net solid volume and an important characteristics of por-
ous media.

To introduce more variability in the synthetic geometries, we
used a probability k to remove Voronoi cells from generated tessel-
lations. Areas occupied by removed cells were assigned to the fluid,
creating large and isolated space that resembles dilated pores
found in many geological porous media. As such, the algorithmic
parameter k is an approximate proxy that controls the porosity
of dilated pores in the porous medium. Increasing k effectively
increases the porosity of medium while keeping the specific sur-
face area s nearly unchanged, leading to scattering of the /–k rela-
tion. The permeabilities of cases with k > 0 cannot be well
predicted by the Kozeny–Carman equation established for the case
of k ¼ 0. These cases (k > 0) are therefore particularly interesting.
In this study, two values of k were used to generate synthetic sam-
ples with dilated pores: k ¼ 0:05 and 0:10. The porosity of syn-
thetic geometries (N 2 ½18;189� and k 2 f0; 0:05; 0:10g) ranges
from 0:08 to 0:39, covering typical porosity values of real rocks.
The relation between the permeability and the porosity is pre-
sented in Fig. 3 for the current database of synthetic geometries.
This relation when scaled by a common CT-scan resolution of
3 lm=pixel is in good agreement with numerical and experimental
data of Fontainebleau sandstone presented in Ref. [31] when the
porosity is greater than about 17%. When porosity is less than
17%, our synthetic geometries have higher permeabilities than
those in Ref. [31], perhaps due to cementation or blockage of pore
throats that are not considered in our current geometries. It should
be noted that the purpose of this work is to demonstrate the feasi-
bility of using convolutional neural networks in fast prediction of
permeability for porous media and hence we do not seek to obtain
exact representations of rock geometries. For this purpose, two
different parameters, N and k, were introduced to represent a
selected complexity of 2-D porous media. Incorporating more com-
plexities in the training is possible, e.g., varying the channel width
or even closing some channels. These complexities may be useful
for achieving better representations of real-rock geometries.

Permeabilities of the generated synthetic geometries were
obtained by using lattice Boltzmann simulations. Specifically, a
two-dimensional, nine-velocity (D2Q9) scheme with the multi-
relaxation time collision operator that we wrote and presented
in an earlier paper [29] was used in the simulations. Fluid flow
from one side of the image to the opposite side was generated
by a body force or acceleration assigned to the fluid. The body
force and the viscosity of the fluid were chosen such that flows
were strictly in the Stokes regime. Domain-averaged, steady-
state velocity of the fluid was used to compute the permeability.
Details of the lattice Boltzmann method can be found in the
Supplementary data, and critical methods and parameters are sum-
marized in Table 1. All lengths in this study have the dimension of
pixel, which is the native unit of digital images. Consequently, per-
meabilities of all synthetic geometries are reported in the unit of
pixel squared. Permeability expressed in pixel squared can be
related to the dimensional permeability by the resolution of the
image. For instance, if the resolution of an image is 2.0 lmper pixel

and the permeability of the image is 0.25 pixel2, the permeability of
the medium would be 2:02 � 0:25 ¼ 1:0 lm2. Previously presented
Fig. 3 is an example of this conversion. The computational domain
size of lattice Boltzmann simulations is 600� 600 pixels, and the
computational time for one simulation is approximately 1 h on a
single CPU core.

2.3. Convolutional neural network

Neural networks are a class of machine learning models that are
parameterized by coefficient vector W and represent mappings
from input q to output y in the form of a sequence of composite
functions. For example, a neural network with one layer of inter-
mediate variables between input and output (one hidden layer)
may be represented by the following composite functional
mapping

y ¼ W ð2Þr W ð1Þqþ bð1Þ
� �

þ bð2Þ
;

or alternatively written in an equivalent form as



Table 1
Settings of lattice Boltzmann simulations.

Scheme Collision Boundary condition Body force (Pressure gradient equivalent) Kinematic viscosity

D2Q9 MRT Bounce-back DP=qL ¼ 2:78� 10�9Dx=Dt2 Dx2=ð6DtÞ
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y ¼ W ð2Þhþ bð2Þ with h ¼ r W ð1Þqþ bð1Þ
� �

;

where r is an activation function such as rðqÞ ¼ tanhðqÞ or

rðqÞ ¼ 1=ð1þ e�qÞ;W ðiÞ and bðiÞ indicate weights and bias, respec-

tively, of the ith layer. In the context of this work, the input
q 2 R600�600 is the binary image of 600� 600 pixels, and the output
y 2 R is the permeability.

Compared to the fully connected neural networks, convolution
neural networks (CNN) exploit two facts to significantly reduce
the number of coefficients and thus to increase learning efficiency.
First, a neuron, the basic unit of a neural network, is only locally
connected to several neurons in the previous layer as spatially
nearby pixels in an image are more correlated. Second, the output
sought from images has translational invariance [32], which allows
weight sharing of convolution kernel at all locations. Such preser-
vation of invariance allows CNN to achieve a comparable perfor-
mance of regular neural networks with much less training data.

A CNN consists of a number of convolutional layers and pooling
layers, followed by fully connected layers. In the problem of esti-
mating permeability from images as concerned in this study, the
convolutional and pooling layers mapped the image space to phys-
ical quantity space. The fully connected layers represent a nonlin-
ear mapping between physical quantities, with permeability as the
final output. We extended the regular, image-classification CNN
architecture (Fig. 4a) by introducing the porosity / and the specific
surface area s into one of the fully connected layers (see the thick/
red edges in Fig. 4b). The extended network architecture is referred
to as physics-informed CNN in view of its relation to our previous
work that used machine learning for physical modeling [33,34].
Both / and s are parameters of the Kozeny–Carman equation. Their
influence on the permeability k was built into the neural network
architecture in an explicit yet flexible manner. That is, the pro-
posed network architecture represents our prior knowledge that
the permeability k may be a function of / and s, but the specific
functional relation is not known and needs to be established by
training. While / and s were the most natural choices due to their
connections to the Kozeny–Camen equation, other choices are pos-
sible but not tested in this study. The CNN architecture proposed
here is inspired by earlier works in image classification
[12,13,15] and physical modeling [27]. The proposed CNN architec-
ture is implemented in machine learning frameworks Lasagne and
Theano [35,36].
Fig. 4. (Color online) Physics-informed CNN architecture, including (a) regular CNN and
(MLP) neural network. In this work, the input image has been preprocessed by a 6� 6 m
The CNN used in our study includes two convolutional layers,
each followed by a pooling layer, which are then followed by three
consecutive fully-connected layers. Each convolutional layer has
10 channels and a convolutional kernel of size 5� 5 to extract dif-
ferent features from the corresponding input. In the two pooling
layers, the max pooling function and a kernel size of 2� 2 were
adopted. The three fully-connected layers have 10, 32, and 10 neu-
rons, respectively. Among the neurons in the second fully con-
nected layer are two neurons representing porosity / and
specific surface area s. The number of layers was empirically
selected to ensure enough complexity of the neural network. The
number of channels or neurons within each layer were chosen by
using grid searching to minimize the mean squared error of the
predicted permeabilities for the training database. Instead of using
the cross-validation, dropout ratios of 0.2 and 0.1 were applied to
the first and the third fully-connected layers, respectively, to avoid
the overfitting of the trained model [37]. The computational cost is
of the order of seconds for predicting the permeability of a
600� 600 pixels image by using the trained physics-informed
CNN in Fig. 4. This is three orders of magnitude lower than lattice
Boltzmann simulations. Note that we have intentionally omitted in
Fig. 4 a 6� 6 max pooling kernel used to preprocess the images
before inputting the images to CNN. The purpose of this procedure
is to reduce the image size and the computational cost of CNN
training.

The architecture should also be applicable to 3-D porous media,
for which we need to use a 3-D kernel for the convolutional neural
network. Therefore, the convolutional neural network will have
more coefficients and the training cost will increase accordingly.
In addition, representing the 3-D porous media in pixels leads to
a higher dimensional space, which will require more training data
and thus more training computational cost.
3. Numerical experiments

In this section we present results of three numerical experi-
ments. We first show the merit of the proposed framework by
demonstrating the predictive performance in cases with no dilated
pores for a wide range of the number of seeds N (case 1). Further, in
case 2 we show that the neural network model trained by a diverse
dataset consisting of samples with and without dilated pores
(k ¼ 0 and 0.1, respectively) is able to predict samples with pore
(b) physics-informed CNN by introducing a fully connected multilayer perceptron
ax pooling kernel to reduce the image size and thus the training cost.
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heterogeneity not in the training dataset (k ¼ 0:05). Finally, in case
3 we show that the neural network model has a significantly better
predictive performance than the Kozeny–Carman equation for
geometries with dilated pores (k ¼ 0:05). The porosity distribution
of the prediction set for case 3 is 0:233� 0:002. The prediction set
for case 3 is chosen such that the number of seeds N ¼ 108 is in the
middle of the range of the number of seeds from the training set,
but not within the training set. Detailed setup and parameters of
the three cases including the number of images n, number of seeds
N, and k for both training and prediction datasets are presented in
Table 2.

The regular CNN provides satisfactory predictions of permeabil-
ities as demonstrated in case 1, with most data points falling
within an error range of �10% (shown as shaded regions in
Fig. 6. (Color online) Prediction of permeability for case 2 by us

Table 2
Parameters of cases investigated in this work including the number of images in
dataset n, the number of seeds N, and k for both training and prediction. Square and
curly brackets are used to indicate ranges (with intervals) and sets, respectively. For
example, the range/interval notation ½1 : 2 : 9� is equivalent to set f1;3;5;7;9g.

Case No. Training set Prediction set

n N k n N k

1 980 [18: 9: 189] 0 20 [18: 9: 189] 0
2 1960 [18: 9: 189] {0, 0.1} 20 [18: 9: 189] 0.05
3 490 [27: 18: 189] 0.05 50 108 0.05

Fig. 5. (Color online) Prediction of permeability for case 1 by us
Fig. 5a). Here, the Lattice Boltzmann simulation results are taken
as ground truth, since training data were provided by such simula-
tions. The Kozeny–Carman equation clearly has a better perfor-
mance than the regular CNN model, which is expected as the
samples in this case do not have dilated pores. However, by incor-
porating the physical quantities / and s into the network architec-
ture, predictions from the physics-informed CNN showed
significant improvements. For most data points the physics-
informed CNN predicts permeabilities very close to those from
the Kozeny–Carman equation (see Fig. 5b). This comparison clearly
shows the superiority of the physics-informed CNN to regular CNN.
Underestimation of permeability can be observed when the num-
ber of seeds N > 150 in Fig. 5. The main reason is that the prepro-
cessing procedure with a 6� 6 max pooling kernel reduces the
resolution of the original images. Specifically, the CNN had diffi-
culty in distinguishing the images with a different number of seeds
N when N is large. Therefore, the CNN tends to underestimate the
permeability when predicting the cases with the number of seeds
N > 150.

Case 2 demonstrates that the physics-informed CNN is able to
predict permeabilities within�10% error range of the ground truth
for samples with dilated pores (shown in Fig. 6b), even though the
training datasets have different k. In comparison, the Kozeny–Car-
man equation is not able to give accurate predictions, with relative
errors over 200%. The physics-informed CNN has the capability of
exploring more accurate functional mappings from the training
database by taking into account information from the entire image.
ing (a) the regular CNN and (b) the physics-informed CNN.

ing (a) the regular CNN and (b) the physics-informed CNN.
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In contrast, the Kozeny–Carman equation only has physical vari-
ables / and s, and thus is not able to account for the presence of
dilated pores. For this case, the neural network model is clearly
more flexible in formulating the functional mapping compared to
the analytical formula. This is ultimately attributed to the capabil-
ity of neural networks in representing high-dimensional mapping
(from R600�600 to R), allowing it to take the entire image as input.
As explained in Section 2.3, although the physics-informed CNN
contains variables / and s as neurons, it may not utilize themwhen
they do not contribute in explaining the permeability data (e.g., in
the presence of dilated pores). Therefore, the predictive perfor-
mance of the physics-informed CNN for this case is similar to
results of the regular CNN as shown in Fig. 6. However, the similar
performance between the physics-informed CNN and the regular
CNN for this case does not mean that the physical neurons / and
s are not needed. The impact of a given neuron upon the neural
network output can be analyzed by studying the trained weights
of the neural network. Based on the analysis of the weights in
physics-informed CNN, the impact of physical neurons / and s
on the permeability prediction becomes smaller, but still signifi-
cant, when the probability k is larger than zero and dilated pores
exist.

In case 3 we further highlight the predictive capability of the
physics-informed CNN by using training and testing datasets with
different N. It can be seen in Fig. 7a that the Kozeny–Carman equa-
tion again overestimates the permeability of all testing samples
due to the presence of dilated pores. The predictions of the
physics-informed CNN show much better agreement with ground
truth (lattice Boltzmann simulations) than the Kozeny–Carman
and mostly fall within the �10% error range. The improvement
of CNN prediction over the Kozeny–Carman equation can be clearly
seen by plotting the predictions against the ground truth in Fig. 7b,
where CNN predictions align much better with the ground truth
indicated by the solid line. It should be noted that the view in
Fig. 7b is zoomed to better present the prediction of physics-
informed CNN. Some results based on Kozeny–Carman equation
Fig. 7. (Color online) Prediction of permeability based on physics-informed CNN for case
the prediction and the ground truth.

Table 3
R2 scores and mean squared errors of the results by using Kozeny–Carman (K-C) equation

Case No. R2 score

K-C CNN PI-C

1 0.993338 0.861430 0.926
2 �7:361731 0.878642 0.884
3 �65:155383 �0:714258 0.204
are significantly different from the ground truth and thus cannot
be seen in this zoom-in view.

R2 scores and mean squared errors are shown in Table 3 to pro-
vide a more quantitative evaluation of the results. It can be seen
that the machine learning predictions are much better than
Kozeny–Carman in cases 2 and 3, where dilated pores exist.
Compared to the standard CNN, the physics-informed CNN has bet-
ter prediction performance in all three cases, though the improve-
ment in case 2 is relatively marginal. The definition of R2 scores
and mean squared errors are presented as follow:

R2 ¼ 1�

X
i

ðjCNN
i � jLBM

i Þ2

X
i

ðjLBM
i � jLBMÞ2

; ð2Þ

MSE ¼ 1
n

Xn

i¼1

ðjCNN
i � jLBM

i Þ2; ð3Þ

where the superscript CNN and LBM denote the results from CNN
and lattice Boltzmann simulation, respectively, and the term jLBM

represents the average of the lattice Boltzmann simulation results.
Note that R2 scores of case 3 are not as good as those for cases 1
and 2, suggesting that, despite the visual agreement seen in Fig. 7,
case 3 is a more difficult case where the differences between the
predictions and the ground truth become as significant as the vari-
ations in the ground truth. In case 3, physics-informed CNN shows
more improvement over CNN than case 2.
4. Discussion

It is important to understand why CNN provided such good pre-
dictions of permeabilities with a limited set of training data. A crit-
ical prerequisite of good prediction is that the permeability is
indeed a function of the pore geometry, and thus a functional
3, including (a) the permeability against the sample index and (b) the comparison of

, standard CNN and physics-informed CNN (PI-CNN).

Mean squared error

NN K-C CNN PI-CNN

315 0.000042 0.000883 0.000470
680 0.074112 0.001076 0.001022
947 0.059938 0.001553 0.000720



Fig. 8. Illustration of features learned by CNN, including (a) an input image and (b,c) two corresponding features obtained from the first convolutional layer.
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mapping from the rock pore geometry to permeability is expected
to exist. Attempting to fit a functional relation that does not exist
would fail regardless of how sophisticated the machine learning
model is. We provide below some insights on how CNN predicated
permeability from images pixels information.

In a CNN each convolutional layer contains the filtered results of
the previous layer, and these filtered results can be visualized to
illustrate what the CNN learns. Here we use filtered results from
the first convolutional layer to show how the trained CNN analyzes
an unseen image and makes the corresponding prediction. Two
typical filtered results from the first convolutional layer are pre-
sented in Fig. 8b and c for the prediction of permeability of a sam-
ple image shown in Fig. 8a. It can be seen that in Fig. 8b CNN
attempts to identify all the paths and temporarily ignores the
dilated pores (removed Voronoi cells). On the other hand, the
removed Voronoi cells are treated together with the connection
points by another filtered result as shown in Fig. 8c. The separate
treatment of paths and dilated pores explains the better prediction
performance of CNN than the Kozeny–Carman equation. Specifi-
cally, the Kozeny–Carman equation views the porosity in dilated
pores the same as that in channels and thus significantly overesti-
mates the permeability. Such overestimation is absent in CNN pre-
dictions since the dilated pores are treated as a different category
of fluid-filled porosity from the channels.

It should be noted that the features presented in Fig. 8 are only
for a qualitative visualization of how CNN learned different pat-
terns from the images. In practice, the parameters of CNN are
determined by minimizing the prediction error of the training set
with some techniques to prevent overfitting (e.g., using dropout
or imposing sparsity). This is a more mathematically rigorous def-
inition of the learning objective of CNN compared with analyzing
the learned features. For instance, out of the ten filtered results
from the first convolutional layer, the other eight features (not
shown) have similarities compared to the two presented in
Fig. 8. However, the number of features is still optimal in repre-
senting the information within the whole training dataset.

The images used in this study are synthetic and do not corre-
spond to any real rocks. Hence, at this time we cannot project
the performance of CNN with real rock geometries. The permeabil-
ity studied in this work varied by only one order of magnitude,
partly because of the unit employed to express permeability
(pixel2) and partly because of the synthetic nature of the geome-
tries. Real porous media have permeability covering several orders
of magnitudes. To use CNN to predict the permeability of different
types of rocks, first, proper conversion of permeability is needed.
For instance, images of sandstone are generally scanned with lm
resolutions and those of shale are generally scanned with nanometer
resolutions. Therefore, conversion from pixel-based permeability
to dimensional permeability should in part differentiate these
two kinds of rocks. Second, it is important that the geometries used
for training are realistic. Additionally, different rock types, such as
sandstones and shale, with their different pore structures, are
likely to require their respective training data. This work mainly
focuses on the proof-of-concept for adopting image recognition
and specifically CNN/physics-informed CNN in predicting perme-
ability of porous media. In order to predict on real rock samples,
approaches that have been proven effective in other machine
learning practices [38] can be adopted, such as adding some real
rock images with known permeability into the training data, and
maintaining a validation dataset of real rock images to further
ensure the extrapolation capability when the majority of training
samples are synthetic and the objectives are real rock images.

5. Conclusion

Fast predictions of physical properties of porousmedia are of sig-
nificant practical importance. In this work, we propose a physics-
informed convolutional neural network (CNN) to predict permeability
from pore-scale images. The framework consists of the following
components: (1) obtaining images of porous media, (2) building
training datasets via fluid dynamics simulations, (3) training a
physics-informed CNN, and (4) applying the trained model to pre-
dict new images that are not in the training set. The predictive capa-
bility of the proposed model is demonstrated for synthetic images
with a wide range of porosity and with various fractions of dilated
pores as micro-scale heterogeneity. The predicted permeabilities
for most samples have less than 10% error compared to the lattice
Boltzmann simulation results. In particular, for images with dilated
pores where one cannot apply the Kozeny–Carman equation to
estimate their permeabilities, the proposed model can give much
better predictions. The CNN-based permeability prediction method
is orders of magnitude faster than direct simulations using lattice
Boltzmann. The proposed framework should have a great potential
in geoscience and engineering applications and perhaps beyond.
It can certainly be used to predict other physical properties of
porous media as long as they are solely governed by the geometry.
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