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Abstract In this paper, we study the differentiable structure of the w-subset of Sp(2n), which is
formed by all matrices in Sp(2n) possessing w as an eigenvalue, for w on the unit circle in the com-
plex plane. Based on this result the w-index theory parametrized by all w on the unit circle for arbitrary
symplectic paths is defined.
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1 Main results

Denote by N, R and C the sets of natural numbers, real numbers and complex numbers, re-

spectively. For n €N, as usual we define
Sp(2nyc) = {M 6 CL(ZTL,C) I M* JM = .’} ’
Sp(2n) = {M € GL(2n,R) | M"JM = J},

0

where J = J, = (I

omit the subindex n. In ref.[1], Long established the w-index theory based on his study of the

topological structure of w-subsets of Sp(2n). The w-index theory plays an important role in the

iteration theory of the Maslov-type index (cf. refs.[1—3]) . Let U be the unit circle of C and w

_O ") , I, is the identity matrix on R". When there is no confusion we shall

€ U. Following Long’s work'*!, we define the w-subsets of Sp(2n) as follows.
For 0 k<2n and w € U, define

Sp*(2n,C) = {M € Sp(2n,C) | dimckere(M - I) = ki, (1)
Sp¥(2n) = {M € Sp(2n) | dimckere( M - wl) = k}. (2)
It is clear that there are stratifications for every w € U:
Sp(2n,C) = U 8p*(2a,0), (3)
Sp(2n) ’=0 Hz Spk(2n). (4)

Our main results in this paper are the following
Theorem 1.1. (i) For every 0< k<2n, Sp*(2n, C) is a codimension k> smooth sub-

manifold of Sp(2n,C), and dit (Me”) , with MESp'(2n, C), forms a transverse struc-
t=0

ture of Sp'(2n, C) in Sp(2n, C). Moreover, we have
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Sp*(2n,C) = lUkSpl(Zn,(C).
(ii) For every 0O< k<2n, Sp'il(Zn) is a codimension %k( k + 1) smooth submanifold of

Sp(2n), and il,=0(Me}') , with ME Sp',,(2n), forms a transverse structure of SpL.(2n,

dt
C) in Sp(2n, C). Moreover, we have

Spii(2n) = Uspli(2n).
Theorem 1.2. Let €U \ R. Then Sp,(2n) is a codimension 1 smooth submanifold of

d
Sp(2n), and d_l‘ 0

Sp(2n) . Moreover, U . ,Sp}(2n) is a codimention k? real algebraic subvanety of Sp(2n) for

(Me”), with ME Sp(l,,(Zn) forms a transverse structure of Sp,l,, (2n) in

every 0< k<n, and is an empty set for n < k <2n.

Based on these theorems, for every path 7:[0,1]—>Sp(2n) and w € U, one can define
the w-index i, ,(7) to be the intersection number of ¥ and U ;, Sp¥(2n). This w-index the-
ory has been used in the study of the iteration theory of the Maslov-type index in refs.[1,5].

2 Some topological facts

In this section we list some well-known facts which will be used later in our study of fiber
maps.

Proposition 2.1. Let X, Y be topological spaces and p:Y—X be a continuous map. If
Zis a topological group and Facts on X, Y continuously so that

(a) Facts on X transitively.

(b) p(gy) = gp(y) for all g€ Fand yE Y.

(c) There is an %9 € X, a neighborhood U of x( in X, and a continuous map s: U—>¥
such that s(x)xg=x for x€E U.

Then p is a fiber map.

Proof. The proof is similar to that of Theorem 4.13 in ref. [6] and therefore is omitted .

Proposition 2.2. Let $be a Lie group and .# be a closed subgroup of & Then #is a
Lie subgroup of ¥and the natural projection 7 : %> %/ # is a fiber map.

Proof. Cf. Theorem 3.58 in ref.[7].

Lemma 2.1. Let $be a Lie group, .# be its closed subgroup, and % be a Lie subgroup
of & Then the natural map

o HBHN K> T H
is an embedding, provided that im ¢ is locally compact.

Proof. The proof is similar to that of Theorem 3.62 in ref.[7] and is thus omitted. We
only point out that since .% satisfies the second countable axiom and img is a locally compact
Hausdorff space, we can apply the theorem in § 2.13 of ref.[8] to prove that ¢ is a homeomor-
phism.

Remark 2.1. Note that an open or closed subspace of a locally compact Hausdorff space
is also locally compact Hausdorff.

3 Proof of Theorem 1.1

Let V=C"@C*, and (*,*) be the standard Hermitian inner product of V. We define
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{v,wh = (Zv,w), Yv,w €V, where 7 = (

A complex subspace X of V is called Lagrangian if and only if

(a) X is isotropic, i.e. {v,w}=0, Vv, wE X, and

(b) dimgX =2n.
We denote by Lag( V) the set of Lagrangian subspaces of V and topologize it as a subspace of
G,,(V), where G,(V) is the Grassmannian of all k-dimensional complex subspaces of V.

Let g: Sp(2n,C)—>Lag (V) be the embedding

g(M) = Gr(M)E{(;{x) x € C™, Y M E Sp(2n,0). (5)

Proof of Theorem 1.1. (i) Note that the argument in ref.[9] can be generalized into
the complex case, the stratification structure follows from the stratification structure of Lag( V)
and the fact that g is an open embedded submanifold.

By Proposition 3.2 of ref. [10], the transversal structure follows.

(ii) The case w = 1 follows from the same method of the complex case, and the case w = — 1
follows from the case w =1 by considering the diffeomorphism Sp(2n)—>Sp(2n): M- M.

4 Proof of Theorem 1.2

o i)

Our aim in this section is to prove Theorem 1.2. We carry out the proof in three steps.

4.1 The structure of img, , for v €U\ R
For k€ {0,1,**,2n} and w € U we define Pk, SpE(2n)—> G, (C*") by
Oro(M) = kerc(M - wl), ¥ M €E Spk(2n). (6)
It is clear that locally ¢, , is rational hence of class C “. We will use it to study the structure
of the w-subsets of Sp(2n). The first step is to study im ¢, , . Suggested by ref.[11], we have
Definition 4.1. Let VE G,(C?"). We call V admissible if V satisfies
(a) For any &, +ig €V, &+ i€V, with &, &, 9, 72€R2", we have
§106: = nidn, ElJp = - 9iJe. (7)
(b) For any complex linearly independent elements &, + 191,77, &1+ iy of V where §;, »;
ER™",j=1,,l,1<l<k,&, 7, &, 7 are real linearly independent.
Lemma4.1. Letk=1,0€U\Rand V€ img,; ,. Then V is admissible and k< n.
Proof. Property (a) of Definition 4.1. Let v, w€ V and M € Sp} (2n) such that
@k,o(M) =V. Then we have Mv = wv and Mw = ww, so v"M " JMw = (v ) "] (ww) =
20" Jw . Since w?51, we have vTJw = 0. Therefore (a) is verified.
Property (b) of Definition 4.1. Let M€ Sp¥(2n) such that k(M) =V. Let a;,b,€

i Oj
R, j=1,,1 such that Ejl=l(a]$j +b7) =0. Letv = 2j1=](bj +ia;)(& +i7n;) . Then
v= 2} 1(bg ~ am) ER*™ N V=1{0}. So v =0 and therefore a;=b=0, j=1, -, 1.
Hence (b) is verified.
That k < n follows from property (b) .Our lemma is proved.

Recall that G =i/ is the Krein form on C2".
Lemma 4.2. Let V be admissible. Consider the Hermitian form hy = —;—GI v, and we have

(a) hy (&) + i, 6+ i"]z) = - 871172 - if'f]fz = 77?]52 - iﬂ?]ﬂzaWhel‘efl +in, 6+
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i€ Vand §,6,, ;],,172€R2".
(b) V has a unique orthogonal decomposition with respect to hy
V=V.® V. Vo, (8)
such that hy is positive definite, negative definite, and null on V., ,V_, and V¥, respectively.
(¢) There is a standard basis of V
v,y €V,
V1590, € V., 5,0 20,5+t <k, (9)
Ugrre1s s € Vo,
such that hy(vp,vq) =2,0,,1<p,qg<k, where
1, fl<ps<s,
A,=4-1, fs+l<p=<ss+it,
0, fs+t+l<sp<k.
Proof. By direct computation.
By virtue of Lemma 4.2 we can introduce
Notation 4.1. ForO<k<2n, O<s,t<s+ t<k, we denote by
A¥ = {VE G, (C?") |V is admissible} ,

hy = %Cl v, ¥ VE A%, where G is the Krein form,

AP = {VE A*|dim ¢ Vo = | where V, is the null space of hy!,

At = {VE A*Idim V., = s,dimcV_ = ¢}, where V, , V_ are defined by (8) accord-
ing to V.

Remark 4.1. We have

A* = 0LIJI‘A’”, (10)
Ak,l = Uk lAk,s,t’ (11)
A* = @for k > n, and (12)
AFt = @ fork + 1 > n. (13)

Moreover, A¥'** is closed in A**, U, A*? is closed in A¥, and A* is an open subset of
a closed subset of G,(C2?"). Therefore by Remark 2.1 all the subsets of A* that is defined by
Notation 4.1 are locally compact Hausdorff spaces.

Proof. (10) and (11) are clear, (12) follows from Lemma 4.1, and we will prove (13)
in Lemma 4.3 below. The second part of the remark follows from Lemma 4.2 and standard argu-
ments . QED

For any topological transformation group (&, X) and x € X, we denote

Stabx = {g € ¥l gx = «}.
Then Stabx is a closed subgroup of G. Denote by e, the k-th unit vector of C". It is convenient
to give the following notations (cf. refs. [4,11]).

Notation 4.2. We define o-product ¢:Sp(2k, C) x Sp(21, C)—>Sp(2k + 21, C) by
Ay 0 Ap O
0 B, 0 By
Ay 0 A4y O |
0 By 0 By
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where M, € Sp(2k,C) and M,€ Sp(21,C) are in square block forms
An Ap By Bp
= (G ) = (o)
Moreover, we define k-fold o-product of M € Sp(2n,C)by M= Mo oM.
Lemma4.3. letk,s,t=0and =k - s—t such that k<n.
(a) A¥' =@ if and only if k+1>n.
(b) Assume that k + < n. Let

Xi,s,e = spanclx,,y, 1< p<s+t,l<qgs<lif,
where xp= e, tidJe, ¥ = e ugtie . A, = sign(s— %),1spss+ ,l<gs<l.
Then we have X; , ,€ A** and
Ab+' = Sp(2n)/StabX, , ., (14)

where StabX; ; , is defined by the group action (15) .
Proof. Since Sp(2n) preserves symplectic structure, there is a group action f: Sp(2n)
A*— A* defined by
fAM,X) = MX, VY X €E A*. (15)
Moreover, A*'***is invariant under this action. We shall prove that A¥'*"'#Z@ &k + l<n, and

if k+l<n,A* " is an orbit of the action. Therefore our lemma will follow from Proposition 2.2
and Lemma 2.1.

In fact, it is clear that X, , , € A**'if k+ I<n. Let V€ A*** and v,(I<sp<k)bea
standard basis of V satisfying the conditions in (¢) of Lemma 4.2 . Let §s Mp ER?™, 1< p<k,
such that v, = £, +iy,. Let W, = span{&,, ", ¢&,,,, s s+ .1 » Wa be the symplectic com-
plement of W;, and W5 = span { Esvevtn s Eks Ns+e+1s"""s ”k} . Then W, W, are symplec-
tic subspace of R*", and W; is an isotropic subspace of W,. So we have

dimW; = 21 < %disz = %(Zn -2(s+t)) =n-s-1.

That is, s+ ¢t+2l<n. Since s+t+ 1=k, k+l<n and (a) is proved .

Now we prove that A***** is an orbit of the action (15) by constructing an M € Sp(2n) such
that MV = X, , , By Lemma 4.2, it is not difficult to show that there is an M€ Sp(2n) such
that M =e,, M, M= ApJe, for p=1,++,s + t. Since Sp(2n) acts transitively on the La-
grangian Grassmannian 2;(n) and M, W, =span {e,,,.1,"""y€n, Je,\ 01, ,Je, |, there is
an M,€ Sp(2n - 2s - 2t) such that N, M, WiCspan {e,,,.1," " ,e,}, where Ny =I5, 5,0
M,. Let M;€GL(n - s -t,R) and N5 = diag(I,,,, M;) such that

diag( Ny, I,) No M, &, = e, diag( N3, I,L)NoM 7, = e,,,
forp=s+¢+1,",k. Let M = diag( N5, (N3) ') N,M,. Then M E Sp(2n) and MV =
Xy, s,t. Therefore A¥**'* is an orbit of the group action.

Lemma4.4. Let n,k,s,t be non-negative integers and [ = k — s — ¢ such that O [ <

k<k+ l<n. Then we have
dimStabX; ., = 2n® + n — 4nk + 3k* - k + 1%

Proof. As in linear algebra, a matrix M€ gl(n,C) is viewed as a representation of a
linear transformation A on C" by choosing the basis e;,**, e,. Let N be a representation of A by
choosing a permutation g on e;,***,e,. We call g a block decomposition, and under g, M is
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in block form N. With this convention, we give our proof as follows.
By a suitable block decomposition, J=J, is in block form
diag( Js+u-]2l’]n-k—l)-
Consider the Lie algebra of StabX; , ,, g={MEsp(2n)IMX,, , C Xy, .} Let A, =

sign(s-—p+%) ,J<p<s+tand MEg(2n,R). By the definition of X; ,,,, M€ g if and

only if M€ sp(2n) and there are a,,, b,y € R (1<p,qg<k) such that
M(e, +idJe,) = D) (ap + iby) (e, + id,Je,)

lgpgs+t

+ 2 (ap +iby)(e, +iey,1), (16)

s+i+lgpsk
for l<g<s+t, and

Me, +ieg,) = 2, (apy + iby) (e, +idJe,)

lgpes+t

+ D) (ap +iby)(e, + ieper)s (17)

s+i+lgpek
A, A, B, Bz)

fors+t+1l<sqgsk. Let A= (ap)icp,qak = (A3 A4) yB = (bpy)i<p,qck = (B3 B,
A = diag(A,***,A,,.), then (16) and (17) are equivalent to that M is in block form

M, M,
ey a0 S
where M, is in block form
Ny Nz Np
Ny Ny Ny (19)
0 0 Niy
and
A,  BA A, B,
Nu = (- AB, AA,A)’ N = (- AB, AAz)’
(20)
A, B, A, B,
N21=(_33 As)’ N"‘( B, A4)’
M5 is in block form
(0 N, (21)
By (18) we have M € sp(2n) if and only if
(Ml Mz)T(Jk+z 0 ) (Jk+l 0 )(Ml M2) o
My M\ 0 TtV 0 g\ M) T
if and only if
M, € sp(2k +21), (22)
M, € sp(2n - 2k - 21), (23)
Mg]n—k—l + JroMy = 0. (24)
By (19) we have M, € sp(2k +21) if and only if
Ny Np NpY(Je O 0 Joor 0 0 Y(Nu N Np

Ny Ny Ny 0 0 -Iyl+| O 0 -1Iy|{Ny Ny Ny|=0,
0 0 N3y 0 I 0 0 I, 0 0 0 N33
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if and only if
Ny € sp(2s +2t),Nyy =0, Ny == JNJ, Nyg = - NL, Ny = Nz (25)
By (20) we have N;; € sp(2s +2t) if and only if
AA, = - (AA)D)T, AB; = (AB))". (26)
From (18) to (26) we have
dim StabX, , , = dimg

= k=D =1=1) + 3 (k= Dk = 14 1)
+ 20k =1) +202+ 121l +1) +21(2n = 2k = 21)
+2(n -k -1 +n-k-1

=2n*+ n - 4nk + 3k - k + 1. GED
Corollary 4.1. Ifl<k<k+lI<nand s+ t=k- 1, we have dimA**'* = 4nk - 3k*
+k-1%
Lemma 4.5. If o€ U\ R and 1< k<2n,there holds img,,, = A*.
Proof. Let VE A* and

Yi.. = spancixp,zq llsp<ss+t,l<qs<li,

where x,=¢, + id,Je,,z,=€,,,,2,-1 + ie,+,+2q,/1p=sign(s -p+ 5) Jspgss+t,l <

g < ! . By Lemmas 4.2 and 4.3, there is a P€ Sp(2n) such that PY, , , = V. Let w = e”

by b
with € (- 7,0) U (0, 7). Let B=(b1 b2) € gl(2,R)such that (b, — by)cosl = (b, +
3 04
: : R(-06) B
bs)sinf and b, bs.Let R(6) = I,cosf + J;sind and N = ( 0 R( - 9)) . By Lem-

ma 3.3 in ref.[4] there holds N€ Sp(4) and kerc(N - wl) = C(e, +ie,). Let

Mi,.= R(-6)>°R(0)°*ON°'olL,, 21 2, (27)
then M, , , € Sp(2n) and ¢;,,(M;,,.) =Y, . Let M= PM, , P '€ Sp(2n). Then
®r,o(M) =V and V€ img, ,. Hence A* Cimg, ,. By Lemma 4.1 our Lemma follows.

QED.
4.2 The structure of w-subsets of Sp(2n), case @ €U\ R
Lemma 4.6. Define ¢k=Spf°(2n)-*Gk(R2") by

Pr(M) = ker(M - I), VM E Spf(2n), (28)

for k=1,"",2n, then @, is a surjective map.

Proof. Let WE G,(R*"). There is a P€ 0(2n), such that W = PR*. Let P~'JP =

*
( N g) where Q and R are kx (2n - k) and (2n - k) x (2n - k) matrices respectively.
k)

be 2n x 2n matrices.

0
Let A = diag(1,,0), B = diag(0,1,,_,) and C= P ' JPB = (0

Pick a symmetric S € gl(2n - k,R) such that S + R is invertible. Let X be the subspace of R*"
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defined by
A D
= di P,P ( ) 4n,
X = diag( ) 0 B R
where D = diag(0, S) € gl(2n,R). Since D is symmetric, X is a Lagrangian subspace of
(R**, J,), where
0 - I2n)
Jz - (IZn O '

Direct computation shows X 1 R*" = W. Moreover, we have
X N Ge(J) = {(~ JPBy,PBy) € R*" | Ax + (D + C)y = 0}.
Since S + R is invertible, there holds
rank(D + C) = rankB(D + C) = 2n - k.
So for any (x,y) € R*" such that Ax + (D + C)y =0, we have
B(D + C)y = BAx + B(D + C)y = 0.
Therefore (D + C)y =0, and then By =0. From this we have X1 Gr(J) = {0}. Since X is
Lagrangian, there is an M € Sp(2n) such that
X={((I+Max,J(I-Mzx)|x€R".
Then &, (M) =ker(M - I) = X(NR>" = W and @, is surjective. QED
Lemma 4.7. For any VE img, , ,the inverse image ¢; . (V) is a smooth manifold of
dimension 2n? + n - 4nk + 2k* - k.
Proof. Let ME q),,‘,lw( V),§+ inj(éj, quRz"),j =1,",k be a basis of V, and W
= span {51,"',51”771,"',77,,}. Let N&€Sp(2n). Then
kerc(NM - wl) DVEONM |y = wl |y &Ny = 1 |y. (29)
Let &= {NESp(2n) NIy =Ily!}. Since & is a closed subgroup of Sp(2n), it is a Lie
subgroup of Sp(2n). By the definition of &% and (29), we have kerc(M — wl) DV for any N
€ . Since dim¢ V = dimgkerg (M — wl) = k, there is a neighborhood U, of I in & such that
dimckerc( NM - wl) < k and hence kerc (M - wl) = V, for N € U;. So we get
UMc ;L (V). By (29) there holds ¢ 1 (V) %M. Therefore there exists a neighborhood
U, of M in Sp(2n) such that
UM = ¢!, (V) N U,. (30)
So ¢ (V) is a manifold of dimension dim %,. From (30) we obtain that ¢ oL (V) is smooth
by the definition of smoothness and the Lie group structure of &y .
Now we calculate the dimension dim%j;. By Lemma 4.6 @,; is surjective. By (ii) of Theo-
rem 1.1, each fiber of the map &,; is a smooth manifold of dimension
dim Sp?*(2n) - dimG, (R*") = 2n% + n - kQQk + 1) - 2k(2n - 2k)
= 2n* + n - 4nk + 2k* - k.
Since WE G,,(R?"),the argument of the above paragraph shows that ¢2'k1( W) is a manifold of
dimension dim . So we have
dimp;', (V) = dim%y = dim@5; (W) = 2n* + n - 4nk + 2k* - k. QED
Proposition 4.1. (i) There are fiber maps
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il (AF0) > gbor, (31)
where k,s,t,l are non-negative integers and [ = k-s-t,k+ l<n.
(ii) Let k,s,¢,1 be as (i). Then tp,:ylw(Ak’l) is a smooth manifold of dimension 2n’ + n
- k2= 1%,
(iii) Spf(2n) is an analytic variety of dimension 2n% + n — k?.
Proof. (i) Let Sp(2n) act on Sp(2n) by
P(M) = PMP, (32)
For any M€ Sp*(2n), we have
@k,o(P(M)) = Pg, ,(M). (33)
Since Sp(2n) acts on A***'! transitively, our results follow from Proposition 2.1 and Lemmas
4.3, 4.5;
(ii) follows from Corollary 4.1, Lemma 4.7 and (i);
(iii) follows from (ii).

4.3 The top stratum of the w-singular subset of Sp (2n)

Lemma 4.8. Let w € U. Then the submanifolds wSp(2n),Sp'(2n,C)of Sp(2n,C)
are transversal to each other.

Proof. Let M€ wSp(2n) N Sp'(2n,C).By (i) of Theorem 1.1, the curve ¥ () =
Me”,t € R is transversal to Sp' (2n,C) at M. Since 7(t) € wSp(2n) and Sp' (2n,7) is a
codimension 1 submanifold of Sp(2n,C),

Ty(wSp(2n)) + Ty(Sp'(2n,C)) o Tyr & Tu(Sp'(2n,C)) = Ty(Sp(2n.0)).
So wSp(2n) is transversal to Sp'(2n,C) at M.
Proposition 4.2.  Sp;,(2n) is a smooth submanifold of codimension 1 of Sp(2n) and

a% Me” , M€ Sp.,(2n) gives a transverse structure of Sp.,(2n) in Sp(2n) at M.
t=0

Proof. Let f:wSp(2n)—>Sp(2n,C)be the obvious embedding. By Lemma 4.8, f inter-
sects Sp'(2n,C) transversely. By (i) of Theorem 1.1, Sp'(2n, C) is a smooth codimension 1
submanifold of Sp(2n, C). Moreover, we have

£'(Sp'(2n,C)) = wSpL(2n).
By Theorem II. 4.4 of ref. [12], «Sp. (2n) is a smooth codimension 1 submanifold of
wSp(2n) . Hence the first part of the proposition follows. The second part follows from (i) of
Theorem 1.1. ‘ QED

Proof of Theorem 1.2. ForO< k< n, note that U, ,Sp’(2n) consists of all matrices
M in Sp(2n) such that any (2n -k +1) x (2n — k + 1) submatrix N of M - wl satisfies det
N =0. Thus it is a real subvariety of Sp(2n). Since M€ Sp(2n) is real, w and @ € 6 (M)
possess the same geometric multiplicity. Therefore U, ;Sp!(2n) is empty when n < k<2n.
Combining with Propositions 4.1 and 4.2, we obtain Theorem 1.2.

5 The definition of the w-index theory

Let 7:[0,7]—>Sp(2n) be a continuous symplectic path (7 >0) and w € C be on the unit
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circle. By (ii) of Theorem 1.1 and Theorem 1.2, there exists an &€ > 0 such that y(t)er €
Sp2(2n)for t=0or v and s€ (- ¢,0)U(0,¢). By (i) of Theorem 1.1 and Theorem 1.2 we
can make the following definition.

Definition 5.1. The w-index i,,w( y) for the symplectic path ¥ is defined to be the in-

tersection number of path ¥ (t)e” Js € [0, r] and the codimension 1 algebraic subvariety
U t51SpE(2n) of Sp(2n) for s€ (0,¢).
Remark 5.1. It is proved in ref. [5] that this definition coincides with that of ref. [1].
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