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The application of artificial intelligence (AI) has the potential to revolutionize various aspects of human life and industrial
production by enhancing efficiency, mitigating human error, and unlocking new avenues for innovation. However, the extensive
computational resources demanded by AI consequently lead to substantial energy consumption, presenting a complicated
challenge in balancing technological advancement with environmental sustainability. What AI can reciprocally contribute to the
energy sector is an intriguing and urgent topic for discussion. This review categorizes the role of AI in terms of its explicit and
implicit contributions to the energy sector by summarizing and discussing recent studies on this topic. Explicit contributions rely
on the specific and actionable involvement of AI in energy production, including the improvement of energy production
efficiency, optimization of renewable energy systems, and enhancement of energy security. In contrast, implicit contributions
may not always be apparent but could provide valuable guidance into the energy sector, such as the optimization of energy
allocation, promotion of energy conservation, support for sustainable urban development, and advancements in the development
of energy materials. Perspectives on future efforts to enhance the contribution of AI to the energy sector are also presented. This
review emphasizes the energy-intensive nature of AI technologies and highlights the imperative for strategies to mitigate their
environmental impact, suggesting future research directions to achieve a sustainable balance.
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1 Introduction

In the contemporary era characterized by an exponential
growth in information volume and a proliferation of frag-
mented data, the application of artificial intelligence (AI) is
instigating substantial transformation and restructuring
across diverse industries. Specifically, it has impacted var-
ious aspects of individual’s lives and industries, including
but not limited to healthcare, safety, finance, and industrial

sectors at present [1]. The successful implementation of AI
heavily relies on extensive computing resources, as they
enable intricate calculations and provide essential computa-
tional power support for training deep learning models.
Taking OpenAI, an AI research company established in the
United States, as an example, training a GPT-3XL model
with 1.3 billion parameters requires approximately 0.0275
exa floating-point operations per second (EFlops) of com-
puting power per training session [2]. Since the model used
for ChatGPT training is a fine-tuned version of GPT-3.5,
which also has 1.3 billion parameters, its computational
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demands are similar to those of the GPT-3XL model.
Therefore, it can be assumed that training ChatGPT once
would require approximately 0.0275 EFlops of computing
power. Additionally, assuming ChatGPT undergoes at least
50 training sessions per year, it would require 1.375 EFlops
of computing power annually. Considering factors such as
input text length, model dimensions, and the number of
layers, it can be estimated that each ChatGPT query requires
about 2.92 × 10−10 EFlops of computing power. With an
estimated 200 million queries per day, ChatGPT would re-
quire at least 0.0584 EFlops of computing power daily, re-
sulting in power consumption of approximately 50.22
million kilowatt hours [2].
The extensive computing power requirement will lead to a

substantial consumption of energy. Taking Chinese data
centers as a case study, energy consumption analysis reveals
that power usage primarily stems from information tech-
nology (IT) equipment, refrigeration systems, power supply
and distribution systems, lighting, and other auxiliary
equipment. Electricity costs account for 60%–70% of the
total operational expenses. In 2022, the power consumption
of all data centers in China is estimated to reach approxi-
mately 270 billion kilowatt hours, surpassing the annual
power generation capacity of nearly two Three Gorges hy-
dropower stations [3]. Concurrently, the total computing
power of data centers in China reached 315 EFlops, en-
compassing a cumulative count of 85,000 data centers. The
average computing power of each data center was 3.7 × 10−3

EFlops, with an annual electricity consumption exceeding
3.177 million kilowatt hours. By analyzing the scale of
China’s computing power and data center electricity con-
sumption from 2016 to 2021, it can be estimated that the
annual electricity consumption required per EFlops ranges
approximately between 800 million and 1.2 billion kilowatt
hours. Based on the above analysis and projected computa-
tional capacity in 2026, it is anticipated that the annual en-
ergy consumption of all data centers in China will reach a
minimum of 600 billion kilowatt hours by 2026 (Figure 1).
The proportion of data center power consumption to China’s
total electricity consumption is expected to increase from
1.86% in 2016 to ~6.06% by 2026 [4].
Overall, considering both the basic energy consumption in

data centers and the future advancements in emerging do-
mains, it is anticipated that the demand for computing re-
sources and electricity usage by AI will persistently increase,
potentially exacerbating the energy burden and overall car-
bon emissions. Therefore, it is imperative for AI to promote
the development of the energy industry, alleviate energy
pressure, and improve the environment. This review pro-
vides a comprehensive overview of recent literature on this
subject and classifies AI’s role in the energy sector into two
categories: the explicit and implicit contributions as sum-
marized in Figure 2. Some typical examples of AI’s explicit

contributions are illustrated in Figure 3 and Figure 4, while
examples of implicit contributions are shown in Figure 5,
accompanied by a corresponding discussion in the relevant
section. Finally, perspectives on future efforts to enhance the
contribution of AI to the energy sector are presented, sug-
gesting research directions aimed at achieving a sustainable
balance.

2 The explicit contribution of AI to the energy
sector

The explicit contributions of AI to the energy sector refer to
its specific and actionable involvement in energy production,
with a direct focus on addressing fundamental challenges

Figure 1 (Color online) Electricity consumption and its proportion in the
total national electricity consumption by data centers in China from 2016 to
2026.

Figure 2 (Color online) A conceptual diagram of AI’s contributions to
the energy sector.
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such as enhancing production efficiency, facilitating renew-
able energy generation, and providing security management.

2.1 AI for improving energy production efficiency

AI technology plays an important role in improving energy
production efficiency. Taking thermal power plants as an
example, AI technology can facilitate efficient power gen-
eration and substantially mitigate carbon emissions through
diverse approaches. The architecture of intelligent power
generation technology includes three layers: the intelligent
device layer, the intelligent operation and maintenance layer,
and the intelligent management layer. These layers com-
prehensively address various aspects ranging from device
management to operational optimization. Hua et al. [5] de-
monstrated that AI could optimize combustion processes,
improve energy efficiency, and mitigate pollutant emissions
through intelligent operations and energy-saving technolo-
gies. Muhammad Ashraf et al. [6] proposed an efficient
power generation and emission reduction method based on
artificial intelligence for coal-fired power plants (Figure 3).
In terms of technical applications, successful im-

plementations have been achieved on 300 and 600 MW
power generation units using online monitoring technology
for the 3D temperature field inside the furnace, as well as
precise feedforward control technology for boiler operation
optimization based on wind-coal-water independent decou-
pling and operational data analysis. The implementation of
this technology not only reduces coal consumption for power
generation but also effectively mitigates the emission of ni-
trogen oxides from furnace combustion [7]. Furthermore,
Zhao et al. [8] analyzed the functional design and application
of intelligent robot technology in coal-fired smart power
plants, encompassing their capabilities to inspect and main-

tain critical areas such as booster stations, boilers, and tur-
bine rooms, thereby accomplishing the objective of
“unmanned operation and few people management”. This
technology not only enhances safety measures, but also ef-
fectively reduces labor costs and minimizes the occurrence
of potential human errors. In addition, the widespread ap-
plication of automatic control information technology has
brought thermal power generation into the era of in-
formatization and networking, which is of great significance
for improving power generation efficiency and reducing
energy consumption [9]. Lee [10] proposed that intelligent
technologies, such as neural networks and fuzzy logic, can be
applied to improve the performance of power plants, thereby
overcoming unpredictable dynamics and computational
complexity issues.
In summary, the application of AI technology enhances the

efficiency of power generation in coal-based plants by op-
timizing the combustion processes, implementing intelligent
monitoring and maintenance systems, as well as adopting
advanced control algorithms.

2.2 AI for renewable energy production

The application of AI in renewable energy production is
extensive and comprehensive, encompassing multiple as-
pects such as photovoltaic power generation, wind power
generation, and hydropower generation.
In photovoltaic systems, AI is primarily employed for

addressing challenges such as maximum power point
tracking, power generation prediction, and fault detection.
Mateo Romero et al. [11] revealed that AI can improve the
operational efficiency and economic benefits of solar pho-
tovoltaic power generation systems through intelligent
management and optimization. Kuzlu et al. [12] proposed a
PV power forecasting methodology using explainable arti-
ficial intelligence (XAI) tools (Figure 4a). The integration of
photovoltaics and AI has brought about profound transfor-
mations in the energy industry, facilitating enhanced utili-
zation of clean and renewable solar energy.
In the field of wind power generation, AI can be applied

for various tasks including wind speed and power prediction,
optimization control of turbines, and layout optimization of
wind farms. Techniques such as artificial neural networks,
wavelet neural networks, and hybrid intelligent models can
be employed to enhance the accuracy of wind speed and
power predictions, thereby facilitating improved manage-
ment and scheduling of wind power resources within the
power system [13]. For example, Qiao et al. [14] applied
fuzzy logic, genetic algorithm, particle swarm optimization
(PSO), and other advanced techniques to optimize the op-
erational status of wind turbines, achieving improved power
generation efficiency and stability. Wu et al. [15] proposed
the utilization of a genetic algorithm and ant colony system

Figure 3 (Color online) An efficient power generation and emission re-
duction method based on artificial intelligence applied to coal-fired power
plants. Reproduced with permission from Ref. [6]. Copyright@2022,
Elsevier.
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algorithm to optimize the layout and transmission system
planning of wind farms, aiming to maximize wind power
output while minimizing installation and operation costs.
In the field of hydropower, AI is primarily employed for

optimizing scheduling, forecasting, monitoring, and main-
tenance tasks. AI technologies such as machine learning and
deep learning can be employed to improve the efficiency and
accuracy of hydroelectric power generation. For example,
Carvalho et al. [16] proposed a new method utilizing artifi-
cial neural networks to evaluate future power generation
scenarios, facilitating the exploration of the influence of
different combinations of power plants on water energy

networks. In addition, the integration of AI technology into
hydropower plant monitoring systems can significantly en-
hance operational stability and safety, while concurrently
reducing labor costs. Zhao et al. [17] proposed an artificial
neural network model based on monitoring data to develop
an optimized operational system for hydroelectric generating
units in hydropower stations.

2.3 AI for energy security

The application and impact of AI in the field of energy se-
curity are multifaceted, including smart grid management

Figure 4 (Color online) The typical cases of explicit contributions. (a) The schematic diagram illustrates a photovoltaic power prediction method using XAI
tools. Reproduced with permission from Ref. [12]. Copyright@2020, IEEE. (b) Blueprint of the AI-based electricity grid management system and (c) grid
management module. Reproduced with permission from Ref. [19]. Copyright@2023, IEEE.

Figure 5 (Color online) The examples of implicit contributions. (a) Improving CO2 absorption using artificial intelligence and modern optimization for a
sustainable environment. Reproduced with permission from Ref. [46]. Copyright@2023, MDPI. (b) Reaction network for the reaction of syngas (CO + H2) to
CO2 and the reduced network for syngas reactivity on Rh(111). The green, gray, red and white balls represent Rh, C, O, and H atoms, respectively. (c)
Development in methods to accelerate new materials discovery. Reproduced with permission from Ref. [48]. Copyright@2020, John Wiley and Sons.
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and optimization, power equipment security management, as
well as network security and information protection.
In terms of smart grid management and optimization, AI

can enhance the safety of energy production by facilitating
fault diagnosis, minimizing power losses, and integrating
renewable energy. The faults of the main components in the
power grid, such as transformers, lines, and busbars, are
diagnosed using AI technologies including back propagation
neural network (BPNN) and generalized regression neural
network (GRNN) combined with fuzzy decision-making
technology. These methods can effectively improve the ef-
ficiency of fault handling by operators, thereby enhancing
the reliability and safety of power supply in the power sys-
tem. In power grid regulation, AI technology can provide
intelligent decision support, including but not limited to
power grid fault identification and load forecasting, thereby
enhancing the intelligence level of power grid regulation
business [18]. Syu et al. [19] proposed a blueprint for the AI-
based electricity grid management system (Figure 4b, c).
With the rapid deployment of renewable energy sources such
as solar and wind, the inherent variability and uncertainties
associated with these energy sources amplify the risk of real-
time power imbalance in the system. AI technology can
enhance the stability and reliability of the power grid by
accurately predicting and efficiently scheduling the integra-
tion and balance of renewable energy sources with traditional
energy. Yang et al. [20] proposed an AI system based on deep
reinforcement learning, which enables efficient processing
of large-scale data sets. This system could assist power grid
operators in making scientifically informed and rational
decisions to effectively manage electricity fluctuations re-
sulting from renewable energy sources.
In terms of power equipment safety management, an AI-

based platform for managing power equipment safety can
effectively facilitate the coordination of power equipment
resources, standardize communication network timing, and
establish a robust operational environment, thereby im-
proving the level of safety management in power equipment
[21]. Li [22] employed neural networks and principal com-
ponent analysis to evaluate the security risks of power sys-
tem equipment, including the selection of appropriate
indicators such as hardware, software, and information sys-
tem security. Lin [23] proposed an AI-based power grid
cloud security protection management system to identify and
rectify vulnerabilities in power grid information, thus im-
proving power information security performance. Jiang et al.
[24] conducted a study on the application of endpoint de-
tection and response (EDR) technology and machine learn-
ing algorithms for comprehensive security monitoring and
protection of power internet of things (IOT) terminals. Ad-
ditionally, an intelligent robotic detection system is devised
for real-time monitoring of the operational status and me-
teorological parameters of photovoltaic panels in order to

accurately identify equipment faults within photovoltaic
power plants. This system could ensure the secure and stable
operation of such plants while promoting favorable opera-
tional outcomes [25].
In the context of network security and information pro-

tection in energy production, AI is playing an increasingly
important role. With the development of smart grids, the
power system confronts a growing array of network security
threats. AI technology can be employed to devise the whole
system including design, hybrid power selection, and net-
work security strategies, thereby ensuring sustainable energy
production while minimizing pollution or waste generation
and reducing operational expenses [26]. The integration of
AI and machine learning technologies can substantially
elevate the level of network security in the power industry as
demonstrated by Mohamed et al. [27]. Meanwhile, AI
technology excels in the identification and defense against
network attacks. For example, Huang [28] has further de-
veloped strategies based on AI to enhance the information
security prevention and control system of power grid en-
terprises.

3 The implicit contribution of AI to the energy
sector

The implicit contributions of AI may not always be apparent
but could provide valuable guidance in the energy sector,
such as the optimization of energy allocation, promotion of
energy conservation, support for sustainable urban devel-
opment and innovating material design.

3.1 AI for energy allocation optimization and man-
agement

By utilizing AI algorithms, efficient management and sche-
duling of distributed energy resources such as electric ve-
hicles and energy storage batteries can be accomplished,
ensuring dependable energy allocation. Furthermore, AI can
optimize the operation status of the power grid, and reduce
faults and losses by enabling real-time monitoring and ana-
lysis.
The digitalization and intelligence of urban energy systems

are continuously advancing, with edge intelligence technol-
ogy serving as a crucial component in supporting distributed
resources within these systems. By leveraging cloud-edge
collaboration and mechanism design, edge intelligence
technology can improve the operational efficiency and re-
sponse speed of energy systems [29]. Ruan et al. [30] pro-
posed a method for optimizing the operation of distributed
energy systems using deep reinforcement learning, enabling
real-time optimization through distributed proximal policy
optimization (DPPO). Zhou et al. [31] proposed a real-time
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automatic optimization scheduling strategy based on the K-
means clustering algorithm and long short-term memory
neural network (LSTM) to optimize the charging and dis-
charging of electric vehicles connected to the network. This
strategy can effectively generate an approximate optimal
solution within milliseconds, independent of users’ precise
travel time inputs, making it well-suited for real-time opti-
mization and scheduling of electric vehicles on a large scale
[31].

3.2 AI for energy conservation

The application and impact of AI in energy conservation are
multifaceted, including direct reduction of carbon emissions
by improved energy efficiency, as well as indirect achieve-
ment of sustainable development by optimizing the design
and management of energy systems. However, it is crucial to
consider the substantial energy consumption associated with
AI itself.
Firstly, AI technology has significant potential to improve

energy efficiency through intelligently predicting and opti-
mizing energy consumption, thereby mitigating wastage and
improving overall efficiency [32]. Specifically, Yang et al.
[33] demonstrated that the integration of AI’s computational
intelligence, perceptual intelligence, and cognitive in-
telligence, can effectively change traditional energy utiliza-
tion patterns, thus further promoting intelligent capabilities
within power systems and integrated energy systems. Zhang
et al. [34] demonstrated that the implementation of machine
learning and other artificial intelligence algorithms can en-
hance the identification, detection, and classification of
power quality issues, enabling more effective measures for
optimization and adjustment to improve energy utilization
efficiency. Furthermore, AI can also be used to predict and
regulate energy usage in buildings, thereby mitigating un-
necessary energy consumption. By employing artificial
neural networks, it is possible to predict and optimize the
heat loss of buildings. Khedher et al. [35] utilized a hybrid
approach combining PSO and harmony search (HS) algo-
rithms, along with multilayer perceptron (MLP), to forecast
the heat loss of buildings based on the thermal conductivity
coefficients of walls and coating materials, as well as indoor
and outdoor surface temperatures. The performance and
prediction accuracy of this model were evaluated using the
coefficient of determination (R2) and root mean square error
(RMSE), revealing exceptional results in terms of precision.
Xie [36] found that the application of machine learning al-
gorithms in predicting building energy consumption, fore-
casting building loads, and evaluating comprehensive
energy-saving technologies can enhance the efficiency of
energy-efficient building design and research on energy
consumption. Morina et al. [37] utilized machine learning
algorithms, thermal imaging technology, and IoT sensors to

optimize energy consumption in smart homes. These tech-
nologies not only contribute to the improvement of energy
efficiency, but also facilitate waste reduction and ensure
optimal user comfort. Bagheri et al. [38] proposed a method
for sharing computing and data storage resources, which can
lead to substantial energy savings in various building types,
regardless of their functionality, classification, or heating
system.
Additionally, AI has the potential to enhance its energy

efficiency through advancements in hardware architecture
and software optimization techniques. In terms of hardware
design, dedicated accelerators can be developed based on the
inherent characteristics of deep learning models, such as
using FPGA or GPU for optimization. This method can en-
hance hardware performance while simultaneously reducing
the computational requirements on the algorithmic side.
Shafik et al. [39] utilized the Tsetlin machine learning al-
gorithm based on the principle of finite state automata for
resource-efficient hardware design. This algorithm operates
on natural logic rather than arithmetic operations, thereby
enabling a significant reduction in energy consumption while
maintaining high learning efficiency. In terms of software,
Zhao et al. [40] found that employing techniques such as
instruction-level optimization, algorithm-level optimization,
and software architecture optimization can effectively miti-
gate redundant computation and data transmission, thus re-
ducing the overall energy consumption of AI systems. He et
al. [41] simplified the training process of deep neural net-
works by introducing a residual learning framework, facil-
itating network depth without significantly augmenting
training complexity. In addition, employing techniques such
as knowledge distillation enables the compression of in-
tricate models into more lightweight versions to accom-
modate the resource constraints of edge devices [42]. Yan et
al. [43] utilized AI technologies, including deep learning and
deep reinforcement learning, for energy management and
optimization in cloud computing data centers. These tech-
nologies can facilitate the attainment of cross-layer aware-
ness regarding data center energy consumption and enable
precise management of energy, thereby improving energy
efficiency and mitigating environmental impact. Besides,
Kelechi et al. [44] found that AI can improve the energy
efficiency of high-performance computing (HPC) entities by
continuously monitoring power consumption across all
components and leveraging data in a database to optimize
and automate processes.

3.3 AI for environmental and sustainable development

The application and impact of AI in sustainable development
and carbon reduction are also multifaceted. Specifically, the
application of AI in urban planning and management plays a
crucial role in achieving sustainable urban development
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goals (SDGs). By applying AI technology, more effective
implementation of waste management, air quality monitor-
ing, disaster response management, and traffic management
can be achieved, thereby enhancing cities’ sustainability and
residents’ quality of life. The utilization of AI technology in
environmental monitoring and protection also exhibits sig-
nificant potential. For example, AI can effectively forecast
and monitor greenhouse gas emissions, providing valuable
support in mitigating global warming. Notably, the study by
Nassef et al. [45] demonstrated that AI technology can ac-
curately predict carbon dioxide emissions, providing precise
data support for policy makers to make well-informed de-
cisions. Meanwhile, they also utilized artificial intelligence
and modern optimization technology to improve the carbon
dioxide absorption rate for sustainable development (Figure
5a) [46]. In addition, Zhu et al. [47] proposed that AI can also
be employed for urban-level carbon peak and carbon neu-
trality planning and governance, thereby supporting national
spatial planning through the analysis of the correlation be-
tween urban spatial form evolution and carbon emissions.

3.4 AI for energy materials

The application of AI in the field of energy materials is
progressively changing the traditional model for material
research and development, providing novel prospects to
address global energy challenges through improving effi-
ciency, reducing costs, and promoting innovation. Chen et al.
[48] summarized several stages of material development and
found that machine learning could also be used to study
reaction mechanisms by reducing the complexity of reaction
networks, thereby accelerating the development of energy
storage and conversion materials (Figure 5b, c). Besides,
Maleki et al. [49] proposed a machine learning-based
method for predicting and optimizing the performance of
new materials by analyzing extensive datasets, facilitating
the discovery and development of new materials with tai-
lored properties in a shorter period of time. This method
accelerates the development process of energy materials. AI
has the potential to improve the efficiency of material design
and reduce experimental costs and time by learning historical
data and experimental results. In the field of energy con-
version and storage, such as batteries, super capacitors, and
photocatalysts, the application of AI can facilitate the opti-
mization of the microstructure and composition of these
materials to achieve higher energy conversion efficiency and
longer service life [50].

4 Summary and outlook

This review highlights the transformative impact of AI on the
energy sector, emphasizing both explicit and implicit con-

tributions. AI has been shown to significantly enhance en-
ergy production efficiency, optimize renewable energy
systems, and contribute to the development of innovative
energy materials. These advances have enabled industries to
reduce carbon emissions, improve energy utilization, and
transition towards cleaner energy solutions. However, the
growing energy demands associated with AI technologies
pose significant challenges. To harness the full potential of
AI in the energy industry while minimizing its environmental
footprint, future research directions can include the follow-
ing three aspects.
(1) The application of AI in energy policy-making. The

application of AI technology in the energy policy-making
process is an emerging field. By leveraging big data analysis
and machine learning techniques, AI has the capability to
simulate and predict the potential impact of different energy
policies, optimize the energy pricing system, and effectively
manage fluctuations in supply and demand within the mar-
ket. In addition, AI can facilitate policy makers in accurately
evaluating the long-term impacts of measures such as carbon
taxes and renewable energy subsidies, thereby enhancing the
transparency and efficiency of the energy market. However,
the comprehensive exploration of AI technology’s potential
in optimizing the decision-making process, implementation
management, and execution stages of energy policies, as well
as ensuring the substantive fulfillment of energy system
demands, remains an area that requires further research [51].
(2) The application of AI in waste heat recovery and uti-

lization. A significant proportion of energy in industrial en-
ergy systems is dissipated as waste heat. In the future, AI can
optimize waste heat recovery systems, enabling real-time
monitoring and management of the process while assisting
industrial facilities in maximizing waste heat utilization for
enhanced energy efficiency. Currently, the application re-
search in this field is fragmented and lacks a comprehensive
framework [52].
(3) The application expansion of AI in the field of nuclear

energy. Nuclear energy is a low-carbon energy source;
however, ensuring its safety and effective operational man-
agement presents intricate challenges. In the future, the ap-
plication of AI in the field of nuclear energy can significantly
enhance the safety monitoring and risk prediction cap-
abilities within nuclear power plants. AI could enable the
real-time analysis of data, facilitating the identification and
prevention of potential equipment failures, radiation leaks, or
other safety hazards, thus effectively mitigating the occur-
rence of accidents. Additionally, AI can aid in the processing
and management of nuclear waste, optimize waste disposal
procedures, and ensure the attainment of environmental
safety standards [53]. Furthermore, AI has the potential to
accelerate the advancement of nuclear fusion technology. By
facilitating the analysis of extensive data in nuclear reactions
and establishing predictive models, it enables scientists to
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gain insights into and optimize the intricate process of nu-
clear fusion reactions [54].
In conclusion, while AI offers profound opportunities for

the energy sector, its sustainable growth must be aligned with
environmentally conscious practices. A comprehensive ap-
proach that addresses both technological advancements and
environmental challenges is imperative to ensure that AI can
effectively drive the transformation of the energy industry in
a sustainable manner.
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