2011年3月

Mar. 2011

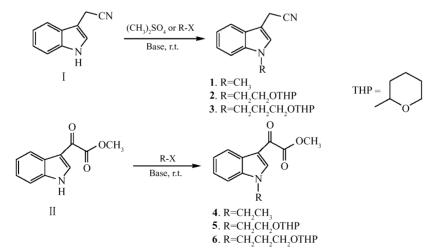
# 2 种吲哚衍生物的 N-烷基化产物的制备

马文康 卢杏萍 黄 雁\* 罗健东\* (广州医学院基础学院 广州 510182)

摘 要 吲哚-3-乙醛酸甲酯和 3-吲哚乙腈在碱存在下,以烷基卤或硫酸烷基酯为亲电试剂进行 N-烷基化反应,合成了 6 种新的 N-烷基化吲哚化合物。研究了吲哚化合物及烷基化试剂的结构、溶剂和碱对 N-烷基化反应的影响。具有强吸电子取代基的吲哚-3-乙醛酸甲酯使用弱碱  $Cs_2CO_3$  在室温就可顺利进行烷基化反应,产率达到 93%;而具有较弱吸电子取代基的 3-吲哚乙腈,需要使用强碱 NaH 才能进行烷基化反应。

关键词 吲哚类化合物,N-烷基化,合成

中图分类号:0626.1


文献标识码:A

文章编号:1000-0518(2011)03-0263-04

DOI:10.3724/SP. J. 1095.2011.00327

许多吲哚类化合物具有很强的生理活性,可作为酶抑制剂及受体拮抗剂 $^{[12]}$ ,具有抗炎症 $^{[3]}$ 和抗肿瘤作用 $^{[4]}$ 。有些吲哚类化合物如非甾体抗炎药吲哚美辛、抗高血压药物吲哚拉明和哮喘药物扎鲁司特(Zafirlwkast)等已是临床一线用药。吲哚类化合物的N-烷基化反应常用于天然产物和化学药物的合成,如吲哚咔唑类 PKC 抑制剂的合成 $^{[2]}$ 、细胞周期检测点激酶 ChK1、ChK2 抑制剂的合成等 $^{[5]}$ 。吲哚衍生物的N-烷基化反应通常由吲哚衍生物与烷基化试剂如卤代烷、烷基磺酸酯等在碱存在下进行。所用的碱有弱碱 Na<sub>2</sub>CO<sub>3</sub>、Cs<sub>2</sub>CO<sub>3</sub>和强碱 NaOH、KOH、季铵碱、叔丁醇钾、NaH等。其中 NaH 较为常用,但其碱性太强,易导致烷基化反应的区域选择性较差而造成吲哚衍生物的多位点烷基化,以及导致水解反应等副反应的发生,为此,吲哚衍生物的烷基化应尽可能在较弱的碱性和较温和的条件下进行。

本文以合成吲哚咔唑类 PKC 抑制剂及细胞周期检测点激酶 ChK1、ChK2 抑制剂的化合物 3-吲哚乙腈和吲哚-3-乙醛酸甲酯为原料,合成了一系列新的 N-烷基化的吲哚化合物(Scheme 1,表 1),探索了吲哚衍生物及烷基化试剂的结构、碱的强度、溶剂种类和干燥程度对反应的影响,为在温和的条件下吲哚衍生物的高效 N-烷基化反应提供依据。



Scheme 1 The N-alkylation reactions of two indole derivatives

2010-06-07 收稿,2010-07-29 修回

广东省科技计划项目(2008B060600074)及广州市属高校科技计划项目(08A107)

通讯联系人: 黄雁, 教授; Tel;020-81340209; Fax;020-81340163; E-mail; drhuangyan@163. com; 研究方向:细胞周期检验点废除剂的合成

## 1 实验部分

### 1.1 仪器和试剂

VarianMercury-Plus300 型核磁共振仪(美国 Varian 公司), TMS 内标; Agilent 6330 型质谱仪(美国 Agilent 公司)。3-吲哚乙腈、吲哚-3-乙醛酸甲酯、2-(2-溴乙氧基)四氢-2*H*-吡喃、2-(3-溴丙氧基)四氢-2*H*-吡喃、碘乙烷等均购自 Aldrich 公司; 硫酸二甲酯均为分析纯试剂。所用溶剂均为分析纯,二氯甲烷用 4A 分子筛干燥, DMF 经氢氧化钾干燥后减压蒸馏。

### 1.2 N-甲基吲哚-3-乙腈(1)的合成

在反应瓶中加入 1.0 g(6.4 mmol) 化合物 I 和 50 mL DMF, 搅拌 5 min 后, 加入 2.5 mL(6.4 mmol) 季胺碱 Triton<sup>®</sup> B(40% 水溶液), 待反应体系变为紫黑色后将体系置于冰浴中, 缓慢滴加 0.97 g(7.68 mmol) 硫酸二甲酯。滴加完毕升至室温反应 30 min 后反应完全, 加入 100 mL 乙酸乙酯稀释, 用 1 mol/L HCl 将 pH 值调至中性, 饱和食盐水洗涤, 无水硫酸镁干燥, 减压去除溶剂后得棕红色油状物, 粗产物用丙酮重结晶得淡黄色晶体 1.03 g, 收率 95%。

### 1.3 N-(2-(四氢-2H-吡喃-2-氧基)乙基)-1H-吲哚-3-乙腈(2)的合成

在反应瓶中加入 1.0 g(6.4 mmol) 化合物 I 和 50 mL DMF, 搅拌 5 min 后, 在冰浴下缓慢滴加 0.26 g(6.4 mmol) NaH(60% 矿物油的混合物)的 DMF 溶液, 室温下搅拌 30 min, 缓慢滴加 1.6 g(7.68 mmol) 2-(2-溴乙氧基) 四氢-2H-吡喃。反应 6 h 后加入 100 mL 乙酸乙酯稀释,饱和食盐水洗涤,无水硫酸镁干燥,减压蒸馏除去溶剂。粗产物经硅胶柱层析分离,以 V(二氯甲烷):V(石油醚):V(甲醇)=5:5:0.1 洗脱,得 1.25 g 红褐色油状物 2,收率 69%。

## 1.4 N-(3-(四氢-2H-吡喃-2-氧基)丙基)-1H-吲哚-3-乙腈(3)的合成

以化合物 I 和 2-(3-溴丙氧基) 四氢-2H-吡喃为原料,按化合物 2 的合成过程合成,得 1.45 g 红褐色油状物 3,收率 76% 。

#### 1.5 N-乙基吲哚-3-乙醛酸甲酯(4)的合成

在反应瓶中加入 1.0~g (5.0~mmol) 化合物 II~n 50 mL 干燥的 DMF, 搅拌 5~min~fm 1.7~g (5.21~mmol)  $Cs_2CO_3$ , 继续搅拌 30~min。冰浴下缓慢滴加 0.936~g (6~mmol) 碘乙烷, 滴毕, 将反应混合物 升至室温反应 2~h。加入 100~mL 乙酸乙酯稀释, 依次用氯化铵水溶液, 饱和氯化钠水溶液洗涤, 硫酸钠 干燥, 减压蒸馏除去溶剂后得褐色油状物。粗产物经硅胶柱层析分离,以  $V(CH_2Cl_2): V(EtOAc) = 20:1$  洗脱, 得 1.06~g 绿色晶体 4, 收率 92%。

## 1.6 N-(2-(四氢-2H-吡喃-2-氧基)乙基)-1H-吲哚-3-乙醛酸甲酯(5)的合成

以化合物 II 和 2-(2-溴乙氧基) 四氢-2H-吡喃为原料,按化合物 4 的合成过程,反应 12 h,得 1.42 g 红褐色油状物 5,收率 86%。

#### 1.7 N-(3-(四氢-2H-吡喃-2-氧基)丙基)-1H-吲哚-3-乙醛酸甲酯(6)的合成

以化合物 II 和 2-(3-溴丙氧基) 四氢-2H-吡喃为原料,按化合物 4 的合成过程,反应 12 h,得 1.61 g 红褐色油状物 6,收率 93%。

## 2 结果与讨论

6 个合成 N-烷基化产物的 H NMR 和 MS 数据列于表 1,结果与目标产物结构吻合。

表 1 6 个烷基化产物的结构表征数据

Table 1 Characterization data for the as-synthesized compounds

| Compd. | ¹H NMR,δ                                                                            | MS(EI), $m/z(%)$     |
|--------|-------------------------------------------------------------------------------------|----------------------|
| 1      | $(CDCl_3/TMS): 3.789(s,3H,CH_3), 3.834(s,2H,CH_2CN), 7.087(s,1H,ArH), 7.181(t,J=1)$ | 193 (M + Na) + ,100% |
|        | 12 Hz,1H,ArH),7.254 ~7.328(m,2H,ArH),7.572(d, $J$ = 12 Hz,1H,ArH)                   |                      |

#### Continued from previous page

| Compd. | <sup>1</sup> H NMR,δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MS(EI), $m/z(%)$        |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 2      | (DMSO-d <sub>6</sub> ):1.251~1.686(m,6H),3.207~3.261(m,1H),3.307~3.383(m,1H),3.602~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 307 ( M + + Na) + ,100% |
|        | $3.670 (m,1H), 3.808 \sim 3.880 (m,1H), 4.042 (s,2H), 4.334 (t, J = 5.4 Hz,2H), 4.479 (t, J = 5.4 Hz,2H)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |
|        | $3.3~{\rm Hz},1{\rm H})~, 7.055~({\rm t},J=7.8~{\rm Hz},1{\rm H})~, 7.160~({\rm t},J=7.8~{\rm Hz},1{\rm H})~, 7.368~({\rm s},1{\rm H})~, 7.503~({\rm d},J=7.8~{\rm Hz},1{\rm H})~, 7.503~({\rm d},J=7.8~{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
|        | 7.8 Hz, 1 H), 7.553  (d, J = 7.8 Hz, 1 H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |
| 3      | $(\mathrm{DMSO\text{-}d_6}) ; 1.367 \sim 1.674 (\mathrm{m},8\mathrm{H}) , 1.942 \sim 2.029 (\mathrm{m},2\mathrm{H}) , 3.190 \sim 3.265 (\mathrm{m},1\mathrm{H}) , 3.339 \sim 100 \mathrm{m}^{-2} \mathrm$ | 321 (M + + Na) + ,100%  |
|        | $3.408(m,1H), 3.544 \sim 3.651(m,1H), 3.651 \sim 3.724(m,1H), 4.037(s,2H), 4.225(t,J=1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |
|        | $3.6~{\rm Hz},2{\rm H}),4.468({\rm t},J=6.6~{\rm Hz},1{\rm H}),7.066({\rm t},J=7.5~{\rm Hz},1{\rm H}),7.174({\rm t},J=7.5~{\rm Hz},1{\rm H}),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |
|        | 7.358(s,1H), 7.459(d, J=7.8 Hz,1H), 7.571(d, J=7.8 Hz,1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |
| 4      | $({\rm DMSO\text{-}d_6}): 1.420({\rm t}, J=6.9{\rm Hz}, 3{\rm H}), 3.894({\rm s}, 3{\rm H}), 4.358({\rm q}, J=6.9{\rm Hz}, 2{\rm H}), 7.274\sim10^{-3}{\rm Hz}, 3{\rm Hz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 254 (M + + Na) + ,100%  |
|        | $7.364(\mathrm{m},2\mathrm{H}), \\ 7.564(\mathrm{d},J=8.1\mathrm{Hz},1\mathrm{H}), \\ 8.175(\mathrm{d},J=6.9\mathrm{Hz},1\mathrm{H}), \\ 8.513(\mathrm{s},1\mathrm{H}), \\ 8.513(s$                                                                                                                                                                                                                                                                                                                                                                                           |                         |
| 5      | $(\mathrm{DMSO\text{-}d_6}): 1.245 \sim  1.634(\mathrm{m},6\mathrm{H}), 3.195 \sim  3.372(\mathrm{m},2\mathrm{H}), 3.425(\mathrm{s},1\mathrm{H}), 3.680 \sim  3.748(\mathrm{m},6\mathrm{H}), 3.680 \sim  3.748$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 354 (M + + Na) + ,100%  |
|        | 1H) ,3.897( s,3H) ,4.480( t, $J$ = 4.8 Hz,1H) ,4.496( t, $J$ = 4.8 Hz,2H) ,7.268 ~7.343( m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|        | 2H) $,7.658(d, J = 8.1 Hz, 1H), 8.223(d, J = 6.3 Hz, 1H), 8.499(s, 1H)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |
| 6      | $(\mathrm{DMSO\text{-}d_6}): 1.328\sim 1.640(\mathrm{m},6\mathrm{H}), 2.002\sim 2.102(\mathrm{m},2\mathrm{H}), 3.228\sim 3.449(\mathrm{m},2\mathrm{H}), 3.547\sim 100(\mathrm{m},2\mathrm{H}), 3.228\sim 3.449(\mathrm{m},2\mathrm{H}), 3.248\sim 3.249(\mathrm{m},2\mathrm{H}), 3.248(\mathrm{m},2\mathrm{H}), 3$                                                                                                                                                                                                                                                                                                                                                                        | 368 (M + + Na, 100%)    |
|        | $3.750 (m, 2H), 3.892 (s, 3H), 4.393 (t, J = 6.9 Hz, 2H), 4.462 (t, J = 3.6 Hz, 1H), 7.268 \sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |
|        | $7.362 \mathrm{(m,2H)}$ , $7.652 \mathrm{(d,} J = 7.9 \mathrm{Hz}$ , $1 \mathrm{H}$ ), $8.173 \mathrm{(d,} J = 7.2 \mathrm{Hz}$ , $1 \mathrm{H}$ ), $8.487 \mathrm{(s,1H)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |

吲哚衍生物的 N-烷基化反应活性首先与吲哚衍生物的结构有关,具有强吸电子取代基的吲哚-3-乙醛酸甲酯的反应活性大于有弱吸电子取代基的 3-吲哚乙腈。前者的 N-烷基化反应使用弱碱  $C_{s_2}CO_3$ 就可以顺利进行,而且收率较高,而后者则需使用强碱氢氧化苄基三甲基铵(Triton® B)或 NaH 才能反应,且收率比较低。显然,吲哚环上的强吸电子取代基增加了吲哚氮上 H 原子的酸性,使用较弱的碱便可以使吲哚氮成为负离子,因而与烷基化试剂发生亲核取代反应。

烷基化试剂的结构对反应也有较大的影响。3-吲哚乙腈与硫酸二甲酯进行 N-甲基化反应时,用季 铵碱 Triton<sup>®</sup>B 在较短时间内就可以得到高收率的产物,虽然 Triton<sup>®</sup>B 含水 60%,但没能妨碍反应的进行。而 3-吲哚乙腈与四氢吡喃(THP)保护的 2-溴乙醇或 3-溴丙醇进行烷基化反应时,使用碱 Triton<sup>®</sup>B 却只有少量的产物生成,只有使用 NaH 代替 Triton<sup>®</sup>B 在无水条件下,反应才能进行,且只有中等收率。可见,烷基化试剂硫酸二甲酯的活性大于四氢吡喃保护的 2-溴乙醇或 3-溴丙醇,这可能与空间位阻有关,它们是伯卤代烷,反应按  $S_N$ 2 机制进行。

此外,溶剂对反应的进行也有影响。吲哚-3-乙醛酸甲酯与 2-(3-溴丙氧基)四氢-2H-吡喃进行烷基化反应时,使用四氢呋喃作溶剂收率只有 50% 左右,延长反应时间也不能增加收率,而使用 DMF 作溶剂时,反应几乎定量完成。试剂或溶剂是否含水对反应也可能有较大的影响,吲哚-3-乙醛酸甲酯与 2-(3-溴丙氧基)四氢-2H-吡喃进行烷基化反应时,使用含水 60% 的强碱 Triton<sup>®</sup>B,反应难以进行,而使用干燥的碱性较弱的  $Cs_2CO_3$ 反应却可以顺利进行。

## 3 结 论

综上所述,吲哚衍生物的 N-烷基化反应与吲哚衍生物及烷基化试剂的结构、溶剂种类和溶剂干燥程度等有关,吲哚衍生物环上的取代基是吸电子取代基时对反应有利,使用弱碱  $Cs_2CO_3$ 在温和的条件下便可进行烷基化反应,得到高收率的产物;烷基化试剂的空间位阻越小,反应越容易进行,甲基化反应的活性最大。反应较适宜的溶剂是 DMF。除了进行甲基化反应,使用 2 个或以上 C 原子的卤代烷进行烷基化反应时,应使用不含水的碱如  $Cs_2CO_3$ 或 NaH 等,使用含水或产生水的碱如  $Triton^{@}B$ 、KOH、NaOH 和 CsOH 等对反应不利。

### 参考文献

[1] Kato M, Komoda K, Namera A, et al. Pyrrole Butyric Acid Derivatives as Inhibitors of Steroid 5α-Reductase [J]. Chem Pharm Bull, 1997, 45:1767-1776.

- [2] Kleinschroth J, Hartenstein J, Rrdolph C, et al. Non-glycosidic/non-aminoalkyl-substituted Indolocarbazoles as Inhibitors of Protein Kinase C[J]. Biomed Chem Lett, 1993, 3(10):1959-1964.
- [3] SUN Gangchun, CHANG Junbiao, CHEN Rongfeng, et al. E, E-1-(3'-Indolyl)-5-(substituted phenyl)-1, 4-pentadien-3-one Derivatives[J]. Chinese J Appl Chem, 2002, 19(7):621-624(in Chinese).

  孙纲春,常俊标,陈荣峰,等. 酮化合物的合成及抗炎活性[J]. 应用化学, 2002, 19(7):621-624.
- [4] Golob T, Liebl R, von Angerer E. Sulfamoyloxy-substituted 2-Phenylindoles: Antiestrogen-based Inhibitors of the Steroid Sulfatase in Human Breast Cancer Cells [J]. Bioorg Med Chem, 2002, 10:3941-3953.
- [5] Smaill J B, Lee H H, Palmer B D, et al. Synthesis and Structure-Activity Relationships of Soluble 8-Substituted 4-(2-Chlorophenyl)-9-hydroxypyrrolo[3,4-c] carbazole-1,3(2H,6H)-diones as Inhibitors of the Weel and Chk1 Checkpoint Kinases[J]. Bioorg Med Chem Lett, 2008, 18:929-933.

# N-Alkylations of Two Indole Derivatives

MA Wenkang, LU Xingping, HUANG Yan\*, LUO Jiandong\* (Department of Foundation, Guangzhou Medical College, Guangzhou 510182)

**Abstract** The *N*-alkylations of methyl 3-indoleglyoxylate and indole-3-acetonitrile were carried out using alkyl halides or sulfonates as electrophiles in the presence of bases and six new *N*-alkylation products of indole derivatives were prepared. The influences of the structures of indole derivatives and electrophiles, the solvents and bases on the alkylations have been studied. The *N*-alkylation of methyl 3-indoleglyoxylate with a strong electron-withdrawing group could be conducted using weak base Cs<sub>2</sub>CO<sub>3</sub> in mild reaction condition and in 93% yields while a strong base such as NaH must be used when indole-3-acetonitrile with a weak electron-withdrawing group was used as reactant in the *N*-alkylation.

**Keywords** indole derivatives, *N*-alkylation, synthesis

## 关于举办《第十三届国际电分析化学会议》的通知

《第十三届国际电分析化学会议》经中国科学院批准,并受中国化学会委托,由中国科学院长春应用化学研究所电分析化学国家重点实验室举办。会议于2011年8月19日至22日在长春应化所举办。会议将特邀国际著名电分析化学家参加,会议语言为英语,欢迎参加,如提出报告,请交英文摘要1份(截止日期:2011年5月15日)。联系人:张柏林研究员,吉林省长春市人民大街5625号,邮编:130022(电话/传真:0431-85262430,电子邮件:blzhang@ciac.jl.cn),随后寄上录用通知(国内来宾注册费600元)。最新详细信息请登录 http://iseac.ciac.jl.cn/。

《第十三届国际电分析化学会议》组委会