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    Abstract— The  advancement  of  artificial  intelligence  (AI)  has
truly stimulated the development and deployment of autonomous
vehicles (AVs) in the transportation industry. Fueled by big data
from various sensing devices and advanced computing resources,
AI has become an essential component of AVs for perceiving the
surrounding  environment  and  making  appropriate  decision  in
motion. To achieve goal of full automation (i.e., self-driving), it is
important to  know  how  AI  works  in  AV  systems.  Existing  re-
search have made great efforts in investigating different aspects of
applying  AI  in  AV  development.  However,  few  studies  have
offered the  research community  a  thorough examination  of  cur-
rent practices in implementing AI in AVs. Thus, this paper aims
to  shorten  the  gap  by  providing  a  comprehensive  survey  of  key
studies  in this  research avenue.  Specifically,  it  intends to analyze
their use of AIs in supporting the primary applications in AVs: 1)
perception; 2) localization and mapping; and 3) decision making.
It investigates the current practices to understand how AI can be
used and what are the challenges and issues associated with their
implementation.  Based  on  the  exploration  of  current  practices
and technology advances, this paper further provides insights in-
to potential  opportunities regarding the use of AI in conjunction
with  other  emerging  technologies:  1)  high  definition  maps,  big
data,  and  high  performance  computing;  2)  augmented  reality
(AR)/virtual  reality  (VR)  enhanced  simulation  platform;  and  3)
5G communication for connected AVs. This paper is expected to
offer a  quick reference for researchers  interested in understand-
ing the use of AI in AV research.
    Index Terms—Artificial  intelligence  (AI),  autonomous  vehicles
(AVs), deep learning (DL), motion planning, perception, self-driving.

I.  Introduction

THE rapid development of autonomous vehicles (AVs) has
drawn  great  attention  worldwide  in  recent  years.  The

promising AVs for innovating modern transportation systems
are  anticipated  to  address  many  long-standing  transportation
challenges related to congestion, safety,  parking, energy con-
servation, etc. Arguably, many AV technologies in laboratory
tests,  closed-track  tests,  and public  road tests  have  witnessed
considerable  advancements  in  bringing  AVs  into  real-world
applications.  Such advancements  have been greatly  benefited
from  significant  investments  and  promotions  by  numerous
stakeholders  such  as  transportation  agencies,  information
technology (IT)  giants  (e.g.,  Google,  Baidu,  etc.),  transporta-
tion networking  companies  (e.g.,  Uber,  DiDi,  etc.),  auto-
mobile  manufacturers  (e.g.,  Tesla,  General  Motors,  Volvo,
etc.), chip/semiconductor  makers  (e.g.,  Intel,  Nvidia,  Qual-
comm, etc.), and so forth. Nonetheless, the concept of AVs or
self-driving vehicles is not new. It is recent major strides in ar-
tificial intelligence (AI)  together  with  innovative  data  collec-
tion  and  processing  technologies  that  drive  the  research  in
AVs to unprecedented heights.

The  prevailing  wisdom of  earlier  (semi-)automated  driving
concept  was  highly  related  to  advanced  driver  assistance
systems  (ADAS)  that  assist  drivers  in  the  driving  process.
These  systems  are  more  related  to  applications  such  as  lane-
departure  warning,  and  blind  spot  alerting.  They  aim  to
automate, adapt, and improve some of the vehicle systems for
enhanced  safety  by  reducing  errors  associated  with  human
drivers  [1].  Since  the  drivers  are  still  required  to  perform
various  driving  tasks,  these  systems  are  considered  as  the
lower levels  (Levels  1 and 2)  of  automation according to the
classification  of  the  Society  of  Automotive  Engineers  (SAE)
[2], [3]. With the reduction of human driver involvement, the
vehicle  systems  will  proceed  to  Level  3  (conditional
automation), Level 4 (high automation), and ultimately Level
5 (full automation). At Level 5, a vehicle is expected to drive
itself  under  all  environment  circumstances.  This  truly  self-
driving  level  requires  that  the  vehicle  must  operate  with  the
capabilities  of “perceiving”, “thinking”,  and “reasoning” like
a  human  driver.  The  AI  advancements  in  recent  years  led  to
natural  cohesiveness  between  AI  and  AVs  for  meeting  such
requirements.  In  particular,  the  success  of  AI  in  many
sophisticated  applications  such  as  the  AlphaGo  has
significantly  promoted  research  in  leveraging  AIs  in  AV
development. Especially, the advent of deep learning (DL) has
enabled many studies to tackle different challenging issues in
AVs,  for  example,  accurately  recognizing  and  locating
obstacles  on  roads,  appropriate  decision  making  (e.g.,
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controlling steering wheel, acceleration/deceleration), etc.
Overall,  it  has  been  shown that  various  AI  approaches  can

provide  promising  solutions  for  AVs  in  recognizing  the
environment  and  propelling  the  vehicle  with  appropriate
decision making. A few studies have specifically reviewed the
applications  of  AI  in  a  specific  component  associated  AV
development,  for  example,  perception  [4],  motion  planning
[5],  decision  making  [6],  and  safety  validation  [3],  [7],  [8].
Nonetheless,  there  still  lacks  a  comprehensive  review  of  the
state  of  the  art  of  the  progress  and  lessons  learned  from  AI
applications in supporting AVs, especially in latest years after
AlphaGo  defeating  human  go  masters.  A  thorough
investigation  on  the  methodological  evolution  of  AI
approaches,  issues  and  challenges,  and  future  potential
opportunities  can  timely  facilitate  practitioners  and
researchers  in  deploying,  improving,  and/or  extending  many
of current achievements.

Therefore,  this  paper  aims  to  provide  a  survey  of
contemporary  practices  on  how  AI  approaches  have  been
involved in AV-related research in recent years and ultimately
to explore the challenging problems, and to identify promising
future  research  directions.  To  fulfill  such  goals,  this  paper
starts  with  the  description  of  the  framework  for  performing
literature review, and further moves on to a critical descriptive
analysis  of  existing  studies.  Then  it  summarizes  current
practices  of  using  AI  for  AV  development.  This  is  followed
by  the  synthesis  of  major  challenges,  issues,  and  needs
regarding current AI approaches in AV applications. Based on
the  investigation,  the  paper  further  provides  suggestions  on
potential opportunities and future research directions. Finally,
the conclusion is presented.

II.  Preparation for Literature Review

⟨
⟩ ⟨

⟩

In  order  to  conduct  a  comprehensive  review  of  existing
research  efforts  we  performed  an  initial  exploratory  search
about the published work from the following critical sources:
1) Web of Science (WoS); 2) Scopus; 3) IEEE Xplore; and 4)
Google Scholar (GS). The search engine keywords include the
combination  of  the  thematic  words “Autonomous  vehicles”,
“AVs”,  OR “Self-driving”  AND “Artificial  intelligence”,
“Machine  learning”, “Deep  learning”, “Reinforcement
learning”, OR “Neural network” . In sequence, we defined the
search  criteria  to  filter  and  select  the  key  papers  for  a
comprehensive  review.  The  key  criteria  included:  keywords
related to the research topic, work published in English, peer-
reviewed papers published by March 2019, and access to full
papers.  Depending  on  the  data  sources,  the  keywords  cover
article  titles,  abstracts,  metadata,  etc.  Next,  five  research
questions (RQs) were developed:

1) RQ1: How are existing research papers structured?
2) RQ2: What are the main focuses of the papers?
3) RQ3: What are the AI approaches applied in the papers?
4) RQ4: What  are  the  main  issues  and  challenges  to  apply

AI approaches?
5) RQ5: What are the future opportunities of AI approaches

in conjunction with other emerging technologies?
As  shown  in Fig. 1,  key  relevant  studies  published  by

March  2019  were  identified.  An  initial  set  of  71  technical

publications were identified, while 16 review papers pertinent
to  AVs were  also  sourced.  Some publications  were  excluded
based on the content analysis because they did not specifically
deal  with  AI  approaches.  Then,  two  reviews  focused  on  AI
approaches  in  AV  applications  were  identified.  Specifically,
Zitzewitz  [9]  investigated  the  application  of  neural  networks
(NN)  in  AVs  but  did  not  focus  on  other  promising  and
influential  AI  approaches  such  as  machine  learning  (ML)
approaches  (e.g.,  support  vector  machine  (SVM)),  DL
approaches  (e.g.,  long  short-term  memory  (LSTM)),  and
reinforcement learning (RL) approaches (e.g., deep Q-network
(DQN)).  This  review is  not  publicly available.  Later,  Shafaei
et  al.  [7]  specifically  focused  on  safety  issues  raised  by
uncertainty  in  ML  approaches:  1)  incompleteness  of  training
data;  2)  distributional  shift;  3)  differences  between  training
and  operational  environments;  and  4)  uncertainty  of
prediction).  Despite  existing  efforts,  there  still  lacks  a
comprehensive  examination  that  can  help  well  address  the
above  research  questions.  Thus,  we  conducted  a  systematic
review  through  identifying  and  discussing  key  components
(objective,  data,  AI  approaches),  their  issues  and  challenges,
and  future  opportunities.  The  identified  key  publications  are
summarized and ordered by year in Appendix.

III.  Descriptive Analysis

One  possible  method  to  infer  over  a  particular  state  of  the
art is to conduct a descriptive analysis concerning the factual
data,  independent  from  the  content  of  the  items.  Although
limited,  the  information  provided  by  the  temporal,
geographical, AI approaches, and application distributions can
be of great importance when understanding the current state of
the  art. Fig. 2 shows  the  overall  trend  of  studies  on  AI
approaches in various AV applications.

As  shown  in Fig. 2,  it  is  noticeable  that  publications
regarding  AI  approaches  in  AV  applications  are  on  an
incremental  path,  with  2018  being  the  peak  year  having  29
identified publications. Six publications were identified by the
first  quarter  of  2019.  It  can  be  expected  that  additional
publications  will  emerge  in  the  rest  periods  of  the  year  with
the focus on AI approaches in AV applications.

To  address  geographical  distribution,  we  sorted  the
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Fig. 1.     Schematic of literature identification and research plan.
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identified  publications  by  the  nationality  of  corresponding
authors.  It  was  found  that  most  publications  involved
corresponding  authors  from  the  United  States  (21
publications),  followed  by  publications  involving
corresponding  authors  from  China  (18),  European  countries
(16),  and  other  countries  (16).  Many  publications  involve
international collaboration.

Considering  the  AV  application  distribution,  38  papers
mainly  examined  the  applications  of  AI  approaches  in  AV
perception.  This  is  followed  by  studies  primarily  concerning
decision making (31), as well as localization and mapping (2).
One reason is that perception of surrounding environments is
the  fundamental  requirements  for  AV  applications,  and  the
mature  and  classical  image  recognition  approaches  (mainly
ML  and  DL  approaches)  have  been  widely  applied  in  many
other  areas.  It  should  be  noted  that  for  those  AV  related
research that  do not focus on perception and localization and
mapping,  direct  vehicle  states  such as  location and speed are
often  acquired  from  simulation  platforms  rather  than  using
image/3D cloud  points  in  perception  stage  to  serve  as  model
inputs.

Finally, the key AI approaches used in existing studies have
been  examined.  Seventeen  technical  publications  used  ML
approaches.  Forty-six  technical  papers  introduced  DL
approaches  including  convolutional  neural  networks  (CNN),
LSTM, and deep belief neural networks (DBN) to applications
such  as  vehicle  perception,  automatic  parking,  and  direct
decision  making.  Meanwhile,  eight  technical  publications
used  RL  approaches  mainly  to  imitate  human-like  decision
making.

IV.  Current Practices of Using AI for AVs

A.  Training AI for Perception, Localization, and Mapping
The  generalized  structure  of  the  AV  driving  system  to

recognize objects on roads includes two primary components:
1)  a  perception  module  that  provides  detection  and  tracking
information about surroundings such as vehicles, pedestrians,
and traffic signs based on inputs collected from various types
of sensors such as radar, light detection and ranging (LIDAR)
measurements,  or  cameras;  and  2)  localization  and  mapping
module that  refers  to  the relative states  of  AVs to others,  for
example, the distance of an AV to other vehicles, its position
in the map, and relative speed.

1) Perception Algorithms
In  this  paper,  perception  is  considered  as  an  AV’s  action

using  sensors  to  continuously  scan  and  monitor  the
environment,  which  is  similar  to  human  vision  and  other
senses.  Based  on  the  needed  output  and  goal,  existing
perception  algorithms can be  grouped into  two categories:  a)
mediated perception that develops detailed maps of the AV’s
surroundings  through  analyzing  distances  to  vehicles,
pedestrians, trees, road markings, etc.; and b) direct perception
that  provides  integrated  scene  understanding  and  decision
making.  Mediated  perception  uses  AI  approaches  such  as
CNN to detect the single or multiple objects. One of the most
classical perception tasks mastered by AI approaches is traffic
sign recognition. The accuracy ratio of AI approaches such as
deep neural network (DNN) has reached the value of 99.46%
and  outperformed  human  recognition  in  some  tests  [10].
Related topics like detecting lanes and traffic lights have also
achieved  accuracies  of  a  similar  level  when  applied  CNN
model  structures.  For  example,  Li et  al. [11]  proposed  to
combine road knowledge and fuzzy logic rules to detect roads
for the vision navigation of AVs. Later, Li et al. [12] proposed
adaptive  randomized  Hough  transform  algorithm  (ARHT)  to
detect  lanes  and  proved  its  validity  compared  with  genetic
algorithm  based  lane  detection  for  AVs.  Petrovskaya
and Thrun  [13]  combined  Rao-Blackwellized  particle  filter
and  Bayesian  network  to  detect  and  track  moving  vehicles
with Stanford’s autonomous driving robot Junior. Fagnant and
Kockelman  [14]  proposed  a  CNN  approach  that  can  detect
more  than  9  000  objects  in  real-time  at  40–70  frames  per
second  (fps)  with  a  mean  accuracy  of  nearly  80%,  which
makes  it  capable  of  detecting  almost  all  things  necessary  for
automotive  tasks  in  a  video  or  an  onboard-camera.  Such
approaches use techniques such as edge detection and saliency
analysis  to  extract  high-level  features  to  identify  objects.
Additional  classification  approaches  such  as  support  vector
machines (SVM) have been introduced to further classify such
CNN-learnt features. For example, Zeng et al. [15] introduced
extreme learning machine to classify deep perceptual features
via CNN, and achieved a competitive recognition performance
of 99.54% on the benchmark data of the German traffic signs.

Unlike single object perception, multi-task object perception
imposes knowledge sharing while solving multiple correlated
tasks simultaneously. It helps boost the performance of a part
or even all the tasks. For example, Chu et al. [16] introduced
the  region-of-interest  voting  to  implement  the  multi-task
object  detection  based  on  CNN,  and  validated  the  proposed
approach  on  KITTI  and  PASCAL2007  vehicle  datasets.
Meanwhile, Chen et al. [17] introduced the Cartesian product-
based  multi-task  combination  to  simultaneously  optimize
object  detection  and  object  distance  prediction  to  fully  take
advantage of the dependency among such tasks.

In addition, instead of detecting objects such as vehicles and
traffic  signs,  semantic  segmentation  of  roads  with  drivable
surface  plays  an  important  role  in  AV  perception.  Semantic
segmentation links each pixel in an image to a class label such
as  pedestrians,  vehicles,  and  roads.  It  helps  AVs  to  better
understand the context in the environment. For example, John
et  al.  [18]  used  a  special  CNN encoder-decoder  architecture.
After  the  input  image  was  processed  through  the  network,  a
pixel-wise classification was computed to determine the label

 

 
Fig. 2.     Studies on AI approaches in the development of AVs (Note: data of
2019 include 1st quarter only).
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of each pixel. It reported a prediction accuracy of 88% for cars
and 96% for roads.

As  for  the  direct  perception,  AVs complete  sections  of  the
mapping-related computation (for example, determining AV’s
current  angle  on  the  road  and  the  distance  to  surrounding
vehicles and lane markings) but do not create a complete local
map  or  any  detailed  trajectory  plans.  Thus,  direct  perception
skips  the  majority  of  the  localization  and  mapping  stage  and
directly  controls  the  output  of  the  steering  angle  and  vehicle
speed. Despite the involvement of decision making, studies on
direct perception are considered under the perception group as
shown in Fig. 2.  For  example,  Chen et  al.  [19]  used TORCS
image data as  the input  and developed DNN to determine an
AV’s  steering  angle  and  velocity.  Furthermore,  the  same
perception  system  was  tested  using  videos  and  images  from
the KITTI database, showing that the system could recognize
lane configurations and transitions in the real world. Similarly,
Bojarski et  al.  [20], [21]  proposed  the  PilotNet,  which  is  a
CNN  framework  consisting  of  one  normalization  layer,  five
convolutional layers, and three fully connected layers, to train
AVs to steer on the road with camera images as the input and
steering parameters as the output.

2) Localization and Mapping
Localization  and  mapping  have  evolved  from  stationary,

indoor  mapping  for  mobile  robot  applications,  to  outdoor,
dynamic,  high-speed localization and mapping for AVs. This
process  is  also  named as  simultaneous  location  and  mapping
(SLAM).

Many  prototype  vehicles,  such  as  the  Google,  Uber,  and
Navya Arma AVs, have used priori mapping methods. These
methods  consist  of  pre-driving  specific  roads  and  collecting
detailed  sensor  data,  such  as  3D  images  and  highly  accurate
GPS  information.  Large  databases  store  the  created  detailed
maps  for  a  vehicle  to  drive  autonomously  on  those  specific
roads.  Local  localization  is  performed  by  observing
similarities  between  priori  maps  and  the  current  sensor  data,
whereas  obstacle  detection  is  achieved  through  observing
discrepancies between the a priori map and the current sensor
data.  For  example,  Alcantarilla et  al.  [22]  fused  data  from
GPS,  inertial  odometry,  and  cameras  as  the  input  of  the
SLAM  to  estimate  vehicle  trajectory  and  a  sparse  3D  scene
reconstruction.  Image  pairs  are  aligned  based  on  similarity
and  further  used  to  detect  potential  street-view  changes.  In
addition, given the assumption that objects recognized by AV’s
sensors  should  be  on  the  ground  plane,  Vishnukumar et  al.
[23]  estimated  car  distances  with  the  camera  and  LIDAR
signals from the KITTI dataset. A two-CNN system was used
with  one  for  close-range  (2–25  m)  and  another  for  far-range
(15–55m)  object  detection  considering  the  low  resolution  of
input  images.  Then,  the  outputs  of  the  two  CNNs  were
combined  for  estimating  the  final  distance  projection.ce
projection.

B.  Training AI for Decision Making
Given the learned information such as surroundings, vehicle

states  (velocity  and  steering  angle),  decision  making  related
applications such as automatic parking, path planning, and car
following have been investigated.

Automated  parking  is  automated  driving  in  a  restricted
scenario  of  parking  with  low speed  maneuvering.  Other  than
semi-automated  parking  using  ultrasonic  sensors  or  radars,
automated  parking  using  camera,  radar,  or  LIDAR  sensors
have  been  investigated  [24].  Potential  applications  including
3D  point  cloud-based  vehicle/pedestrian  detection,  parking
slot  marking  recognition,  and  free  space  identification  are
discussed. Meanwhile, Notomista and Botsch [25] proposed a
two-stage random forest-based classifier to assist autonomous
parking  and  validated  the  approach  during  the  Audi
Autonomous Driving Cup, a college-level contest.

Conventional  path  planning  methods  have  been  widely
explored.  These  methods  typically  include  artificial  potential
field,  distance  control  algorithm,  bumper  event  approach,
wall-following,  sliding  mode  control,  dijkstra,  stereo  block
matching,  voronoi  diagram,  SLAM,  vector  field  histogram,
rapidly  exploring  random  tree,  curvature  velocity,  lane
curvature,  dynamic  window,  and  tangent  graph  [26].
However,  most  of  these  approaches  are  time-consuming  and
relatively difficult to implement in real robot platforms. Thus,
AI-based  approaches  such  as  NN,  genetic  algorithms  (GA),
simulated  annealing  (SA),  and  fuzzy  logic  [11]  have  been
introduced  and  achieved  relatively  high  performance.  For
example,  Hardy  and  Campbell  [27]  introduced  the  obstacle
trajectory  clustering  algorithm  and  simultaneously  optimize
multiple continuous contingency paths for AVs. Al-Hasan and
Vachtsevanos  [28]  proposed  an  intelligent  learning  support
machine to learn from previous path planning experiences for
optimized  plan  planning  decisions  at  high  speeds  in  natural
environments.  Meanwhile,  Chen et  al.  [29]  combined  fuzzy
SVM  and  general  regression  neural  network  to  support  path
planning in off-road environments. Sales and Correa [30] used
NN  to  perceive  surrounding  environments  and  proposed  the
adaptive finite state machine for navigating AVs under urban
road  environments.  Similarly,  Akermi et  al.  [31]  proposed  a
sliding  mode  control  mode  for  path  planning  of  AVs.  The
inner radial basis function neural network (RBFNN) and fuzzy
logic  system  was  found  to  be  able  to  well  deal  with
uncertainties  and  mismatched  disturbance  in  simulation
scenarios.

Compared  with  conventional  linear  car-following  model,
distance  inverse  model,  memory  function  model,  expected
distance  model,  and  physiological-psychological  model,  AI-
based  car  following  models  are  prominent  and  have
outstanding  advantages  in  dealing  with  nonlinear  problems
through algorithms such as CNN, RL, and inverse RL (IRL).
For  example,  Dai et  al. [32]  proposed  to  use  RL  to  control
longitudinal  behaviors  of  AVs.  Later,  surrounding  vehicles’
trajectories (especially with human drivers) are predicted and
tracked  to  help  make  safer  car  following  behaviors.  For
example,  Gong  and  Du  [33]  introduced  curve  matching
learning  algorithm to  predict  leading  human-driven  vehicles’
trajectories  to  facilitate  making  the  cooperative  platoon
control  for  a  mix  traffic  flow  including  AVs  and  human-
driven  vehicles.  Meanwhile,  ML/DL  approaches  can  also
directly  use  images,  vehicle  metrics  such  as  speed,  lateral
information, steering angle as the input, and control the output
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speed and steering angle  to  perform car  following behaviors.
For example, Onieva et al. [34] combined the fuzzy logic and
genetic  algorithm  for  the  lateral  control  of  steering  wheels.
Li et  al.  [35]  used  the  abstractions  of  road  conditions  as  the
input  and the  vehicle  makes  driving decision based on speed
and  steering  output  from  a  six-layer  NN.  Chen et  al.  [36]
proposed  a  rough-set  NN  to  learn  decisions  from  excellent
human  drivers  to  make  car-following  decision.  The  test  on
virtual urban traffic simulations proved the better convergence
speed  and  decision  accuracy  of  the  proposed  approach  than
that of NN. RL and IRL can gradually learn from surrounding
environments,  with  the  benefit  of  using  reward  function  that
evaluates  how  AVs  ought  to  behave  under  different
environments.  For  example,  Gao et  al.  [37]  introduced  the
IRL to estimate the reward function of each driver and proved
its efficiency via simulation in a highway environment.

After the multilayer perceptron being used to guide vehicle
steering  [38],  various  AI  approaches  such  as  CNN,  recurrent
NN  (RNN),  LSTM,  and  RL  have  been  introduced.  For
example,  Eraqi et  al.  [39]  introduced  a  convolutional  LSTM
to learn from camera images to decide steering wheel angles.
The validation on comma.ai dataset showed that the proposed
approach  can  outperform  the  CNN  and  residual  neural
network (Resnet). Other than simulation, real-world tests have
been implemented by Nvidia. Bojarski et al. [21] proposed the
PilotNet to output steering angles given road images as input.
Road  tests  demonstrated  that  the  PilotNet  can  perform  lane
keeping regardless of the presence of lane markings.

Further, cooperative negotiation among following AVs have
also  been  examined  and  found  to  help  improve  the  control
performance.  Information  can  pass  through  leading  AVs  and
following AVs to make more efficient decision [40], [41]. For
example,  Kim et  al.  [40]  investigated  the  impact  of
cooperative  perception  and  relevant  see-through/lifted-
seat/satellite  views  among  leading  and  following  vehicles.
Given the extended perception range, situation awareness can
be  improved  on  roads.  The  augmented  perception  and
situation  awareness  capability  can  contribute  to  better
autonomous driving in terms of decision making and planning
such as early lane changing and motion planning. In addition,
safety  issues  such  as  intrusion  detection  have  been  explored
[42].

C.  Current Evaluation Practices
The  current  evaluation  practices  can  be  categorized  into

three types: 1) dataset based; 2) simulation based; and 3) field
test  based.  Given  public  datasets  such  as  the  German  traffic
signs  and  the  KITTI  dataset,  the  performance  of  AI-based
approaches  were  examined.  Meanwhile,  simulation-based
practices used software such as MATLAB/Simulink, TORCS,
and  CarSim  to  simulate  traffic  scenarios  and  vehicle
movements.  However,  there  exists  a  large  gap  between  such
simulated  scenarios  and  real-world  scenarios  due  to  ignored
hidden aspects such as inclement weather, market penetration
ratio of AVs, and human-driven vehicles. In addition, directly
using  vehicle  states  such  as  operating  speed  and  distance  to
other  vehicles  archived  in  simulation  ignores  the  perception
errors  of  AVs.  Finally,  only  few  of  recent  approaches  have

implemented validation under real-world simplified scenarios
such as driving tests on university campus roads [20], [21].

V.  Major Challenges for AI-Driven AV Applications

A.  Sensor Issues Affecting the Input of AI Approaches
The success of AI approaches largely relies on the quality of

the sensor data as the input. Sensors used in AV applications
fall  into  three  main  categories:  self-sensing,  localization,  and
surrounding-sensing. Self-sensing uses proprioceptive sensors
to measure the current state of the ego-vehicle, including AV’s
velocity,  acceleration,  and  steering  angle.  Proprioceptive
information  is  commonly  determined  using  pre-installed
measurement  units,  such  as  odometers  and  inertial
measurement  units  (IMUs).  Localization,  using  external
sensors  such  as  GPS  or  dead  reckoning  by  IMU  readings,
determines  an  AV’s  global  and  local  positions.  Lastly,
surrounding-sensing  uses  exteroceptive  sensors  to  perceive
road  markings,  road  slope,  traffic  signs,  weather  conditions,
and the state (position, velocity, acceleration, etc.) of obstacles
(e.g., other surrounding vehicles). Furthermore, proprioceptive
and  exteroceptive  sensors  can  be  categorized  as  active  and
passive  sensors.  Active  sensors  emit  energy  in  the  forms  of
electromagnetic  waves,  and  examples  include  sonar,  radar,
and  LIDAR.  On  the  other  hand,  passive  sensors  perceive
electromagnetic  waves  in  the  environment  and  examples
include  light-based  and  infrared  cameras.  Detailed
applications of sensors used in AVs are listed in Table I. The
most  frequently  used  sensors  are  camera  vision,  LIDAR,
radar, and sonar sensors.

Cameras  are  one  of  the  most  critical  components  for
perception.  Typically,  the  spatial  resolution  of  a  camera  in
AVs  ranges  from  0.3  megapixels  to  two  megapixels.  A
camera  can  generate  the  video  stream  at  10–30 fps  and
captures  important  objects  such  as  traffic  light,  traffic  sign,
obstacles,  etc.,  in  real  time  [4].  A  LIDAR  system  scans  the
surrounding  environment  periodically  and  generates  multiple
measurement  points.  This “cloud” of  points  can  be  further
processed  to  compute  a  3D  map  of  the  surrounding
environment.  Besides  cameras  and  LIDAR,  radar  and
ultrasonic  sensors  are  also  widely  used  to  detect  obstacles.
Their detection areas can be short-range and wide-angle, mid-
range and wide-angle, and long-range and narrow-angle [43].
It  should  be  noted  that  most  AVs integrate  multiple  types  of
sensors  due  to  two  important  reasons.  First,  fusing  the  data
from  multiple  sensors  improves  the  overall  perception
accuracy.  For  example,  a  LIDAR  system  can  quickly  detect
the regions of  interest  and a camera system can apply highly
accurate  object  detection  algorithms  to  further  analyze  these
important  regions.  Second,  different  layers  of  sensors  with
overlapped  sensing  areas  provide  additional  redundancy  and
robustness  to  ensure  high  reliability.  For  example,  Jo et  al.
[44] proposed to fuse data from cameras and LIDAR sensors
and achieved better results under poor light conditions.

Abnormal conditions such as severe weather pose precision
and accuracy issues  on  sensor  outputs,  and can  be  (partially)
addressed  by  some  of  the  aforementioned  sensor  fusion
technologies.  For  example,  perception  under  poor  weather
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conditions such as snow, heavy rain,  and fog is  an important
AV research topic as these scenarios continuously prove to be
problematic  even  for  human  drivers.  In  snowy  conditions,  it
has  been  found  that  both  vision-based  and  LIDAR-based
systems have extreme difficulties. The “heaviness” or density
of  the  snow has  been  found  to  affect  the  LIDAR beams  and
cause  reflections  off  snowflakes  that  lead  to “phantom
obstacles” [45].  Several  approaches  such  as  sensor  fusion  of
camera,  LIDAR,  and  radar  sensors  [45]  and  taillight
recognition  [46]  were  proposed.  Perception  is  also
problematic  under  different  environment  conditions  such  as
complex  urban  areas  and  unknown  environments.  As  such,
Chen et al. [36] introduced rough set theory to deal with some
possible noise and outliers.

As  shown  in Table I,  the  sensors  chosen  by  different
stakeholders  are  noticeably  different.  Several  key  questions
should  be  answered  in  determining  the  priority  of  specific
sensors.  For  example,  will  the  sensor  need  to  work  under
severe  weather  conditions?  Should  the  AV  sensors  be  cost
effective  to  sacrifice  some  level  of  accuracy,  and  so  on?  In
practices,  for  examples,  the  AVs  in  the  DARPA  Urban
Challenge  were  generally  outfitted  with  multiple,  expensive
LIDAR and radar sensors, but lacked sonar sensors, since the
challenges did not focus on low-speed and precise automated
parking (e.g., parallel parking). In contrast, many commercial
vehicles, such as the Tesla Model S and the Mercedes-Benz S
class, include ultrasonic (sonar) sensors for automated parking
but not LIDAR to minimize cost. Infrared cameras, which are
often  used  to  detect  pedestrians  and  other  obstacles  at  night,
are predominantly found on commercial vehicles [47].

In  short,  the  discrepancy  of  sensors  will  lead  to
heterogeneous  datasets  gathered  for  serving  AI  approaches.
Also, the quality and reliability of different sensor data should
be  noted.  Therefore,  when  designing  an  AI  approach,  the

issues  associated  with  sensor  inputs  such  as  data  availability
and data quality need to be thoroughly examined.

B.  Complexity and Uncertainty
AVs  are  complex  systems  that  involve  lots  of  perceptions

and  decision  making.  The  implementation  of  AI  approaches
unavoidably involves uncertainty in performing these tasks. In
general, the uncertainty associated with AI approaches can be
grouped  in  two  aspects:  1)  uncertainty  induced  data  issues:
almost all data collected by the sensor systems will have noise
that can bring unpredictable errors in the input for AI models;
and 2) uncertainly brought by the implemented models [63].

The previous section has discussed that the used sensors in
AV  development  may  not  reliably  work  under  different
conditions.  Thus,  the  failure  or  inappropriate  working  status
will induce uncertainty in perceiving environments. To reduce
such  uncertainty,  approaches  such  as  false  detection  and
isolation  methods  have  been  used  in  some  research.  For
example,  Pous et  al.  [64]  applied  analytical  redundancy  and
nonlinear transformation methods to assess sensor metrics for
determining faulty or deviant sensor measurements. Shafaei et
al.  [7]  considered  RL  to  determine  abnormal  input  due  to
missing data, distribution shift, and environmental changes.

The uncertainties  brought  by AI models  are  rooted in  their
functional requirements. In AI algorithms, a major assumption
is  that  the  training  data  collected  from  sensors  can  always
meet the needs of the functioning algorithms. In addition, the
used  models  are  supposed  to  capture  the  operational
environment  constantly.  These  assumptions  are  often  not
guaranteed in real-world operations of AVs as the operational
environment  is  highly  unpredictable  and  dynamically
changing [7].

In addition, the complexity and uncertainty can be triggered
on  connected  AVs  due  to  malicious  attacks  that  can  be

 

TABLE I  
Different Sensors Used in AV Development

Vehicle A# B C D E F

Audi’s Research Vehicle [48] Y Y Y Y Y Y

Ford: Hybrid Fusion [49] Y Y Y Y

Google: Toyota Prius [50] Y Y Y Y

Nagoya and Nagasaki University’s Open ZMP Robocar HV (Toyota Prius) [51] Y Y

Volvo: (Stoklosa, Cars) [52] Y Y Y Y Y

Apple: Lexus RX450h SUVs [53] Y Y Y Y Y

DIDI’s research vehicle [54] Y Y Y Y Y

Infiniti Q50S [55] Y Y Y

Lexus RX [56] Y Y Y

Volvo XC90 [57] Y Y Y

BMW750i xDrive [58] Y Y Y Y Y

Mercedes-Benz E & S-Class [55] Y Y Y Y Y

Otto Semi-Trucks [59] Y Y Y

Renault GT Nav [60] Y Y Y

Tesla Model S [61] Y Y Y

Baidu Apollo [62] Y Y Y
#Note: A:Vision; B:Stereovision; C:IR Camera; D:LIDAR; E:Radar; and F:Sonar.
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launched  from  any  location  randomly.  Also,  a  malicious
attack  does  not  require  physical  access  to  AVs.  Thus,
malicious  attack  and  intrusion  detection  is  critical  in
connected  AVs.  AI  approaches  such  as  NN  and  fuzzy  logic
have  been  explored  in  external  communication  systems  [42],
and it is expected to develop more efficient AI approaches that
can well  address  more  complex scenarios  if  many AVs were
connected.

C.  Complex Model Tuning Issues
Due  to  the  relative  simplicity,  some  research  on  AVs

primarily used ML approaches such as particle filter, random
forest,  SVM.  Given  many  successful  applications  of  DL
approaches  in  other  transportation  areas  such  as  traffic  flow
prediction,  some  researchers  explored  emerging  AI
approaches  such  as  CNN,  LSTM,  and  DBN  [23],  [65]–[67].
However,  there  are  still  some  issues  when  using  advanced
learning algorithms for real-time AV decision making. Firstly,
DL  and  RL  approaches  often  employ  more  complex  model
structures  and  thus  the  parameter  calibration  is
computationally  expensive.  Currently,  there  lacks  the
guidance on the selection of the model hyper-parameters such
as the number of hidden layers, hidden units, and their initial
weighting values. This means that the end user must design a
suitable  model  tuning  strategy  by  a  costly  trial-and-error
analysis  when  used  on  AVs  to  decide  angles  of  the  steering
wheel.  Secondly,  the  supervised  learning  algorithms  such  as
SVM and NN can not well learn from unlabeled environment.
For  example,  the  uncertainty  issue  mentioned  before  will  be
especially  severe  when  the  training  data  significantly  differs
from  testing  data,  which  is  expected  to  be  the  case  in  real-
world  traffic  conditions.  Training  an  AV  to  perceive
surroundings  in  suburban/rural  areas  and  test  it  in  complex
urban  scenarios  will  potentially  raise  safety  issues  due  to
uncovered  training  scenarios  (e.g.,  pedestrian  presence).
Chen et  al.  [36]  used  rough  set  to  reduce  the  influence  of
noise  and  uncertain  data  on  NN  models,  but  the  learning
ability  with  unexpected  scenes  such  as  mobile  work  zones
remains  an issue.  Last  but  not  least,  the  transferability  of  the
trained scenarios will also be a challenge for AI approaches to
be involved in every sector of the AV applications.

To  learn  from  drivers  and  extract  key  factors,  RL
approaches  have  also  been  explored  [37],  [68]–[75].  RL
categorizes  vehicle  metrics  as  diverse  states  and  define
rewards  and  policy  to  control  AV  behaviors.  The  use  of  RL
requires knowledge of the reward function, which needs to be
carefully  designed.  An  alternative  is  to  learn  the  optimal
driving  strategy  using  demonstrations  of  the  desired  driving
behavior.  For  example,  Isele et  al.  [72]  proposed  a  deep  RL
structure  to  navigate  AVs  drive  across  intersections  with
occlusions.  Deep  Q-network  learns  the  relationship  among
rewards and inputs. Although one can approximately recovers
expert  driving  behavior  using  this  approach,  the  matching
between  the  optimal  policy/reward  and  the  features  is
ambiguous.  Special  attention  needs  to  be  paid  to  learn  the
complicated  driving  behavior  with  preference  on  certain
actions.  In  short,  more  efforts  are  needed  to  enhance  AI
approaches  for  specific  autonomous  applications  and  desired

maneuvers.

D.  Solving the Hardware Problem
The  AI  implementations  in  AV  applications  require

demanding  computational  resources,  and  therefore  heavily
rely  on  the  computing  devices  [4].  Diverse  computing
architectures have been proposed, including multicore central
processing  unit  (CPU)  system,  heterogeneous  system,
distributed  system,  etc.  Multiple  computing  devices  are
usually  integrated  into  the  AV system.  For  example,  the  AV
designed  by  Carnegie  Mellon  University  deployed  four  Intel
Extreme  Processor  QX9300s  with  mini-ITX  motherboards
equipped  with  CUDA-compatible  graphics  processing  units
(GPUs) [76]. Meanwhile, BMW deployed a standard personal
computer and a real-time embedded computer (RTEPC) [77].
PC  fused  sensor  output  data  to  percept  surrounding
environments and RTEPC was connected to the actuators for
steering,  braking,  and  throttle  control  [77].  While  the
aforementioned  hardware  systems  have  been  successfully
applied  for  real-time  operations  of  autonomous  driving,  the
field  test  performance  (measured  by  accuracy,  throughput,
latency,  power,  etc.)  and  cost  (measured  by  price)  remain
noncompetitive for commercial deployment. Hence, there still
needs efforts to advance hardware implementations to address
both  the  technical  challenges  and  the  market  needs  for  AI
applications in AVs development.

The  major  challenges  for  such  computing  devices  rely  on
GPUs,  CPUs,  and  field-programmable  gate  array  (FPGA).
GPUs  are  originally  designed  to  manipulate  computer
graphics  and  image  processing,  e.g.,  to  meet  the  need  for
running  high-resolution  3D  computer  games.  With  the
emergence  of  DL,  GPUs  draw  wide  attention  due  to  its
inherent parallel structure that can achieve substantially higher
efficiency  compared  with  CPUs  when  processing  large
volumes  of  data  in  parallel.  Thus,  it  has  been  considered  as
promising computing devices for implementing AI approaches
for  AV applications.  Nonetheless,  GPUs often  consume high
energy  and  pose  significant  amount  of  challenges  for
additional  power  system  load  and  heat  dissipation.  Great
efforts have been made to address the commercial application
of GPUs. For instance, NVIDIA released its advanced mobile
processor  Tegra  X1  implemented  with  a  Maxwell  256-core
GPU  and  an  ARM  4-core  CPU  [4].  It  should  be  noted  that
Tegra X1 has already been deployed in NVIDA’s DRIVE PX
Auto-Pilot platform for autonomous driving.

On  the  other  hand,  a  FPGA  is  a  reconfigurable  integrated
circuit  to  implement  diverse  digital  logic  functions.  FPGAs
are  programmed  for  given  applications  with  their  specific
computing architectures and for different  purposes that  result
in a reduced non-recurring engineering cost. Hence, it leads to
a higher computing efficiency and lower energy consumption
compared  to  CPUs/GPUs  aimed  at  general-propose
computing.  For  instance,  Altera  released  its  Arria  10  FPGAs
manufactured  by  20  nm  technology  and  gained  up  to  40
percent  lower  power  compared  with  previous  generation
FPGAs.  Meanwhile,  its  built-in  digital  signal  processing
(DSP)  units  enable  wide  applications  such  as  radar  designs
and motor control applications. Table II illustrates the energy
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efficiency of CPU, GPU, and FPGA for ALexNet. It suggests
that FPGA outperforms CPU and GPU in terms of the higher
energy efficiency measured by the  throughput  over  power.  It
also  should  be  noted  that  new advanced system architectures
have also been developed to facilitate efficient implementation
of  DL  approaches.  For  instance,  Google  proposed  tensor
processing  unit  (TPU)  and  validated  that  it  can  achieve  on
average 15 times–30 times faster speed than its contemporary
CPU  or  GPU  [78],  with  TOPS/Watt  [79]  about  30
times–80 times higher.  However,  it  should be mentioned that
there  still  exists  large  gaps  for  hardware  improvement  in
supporting  real-time  implementations  of  AI  approaches  for
large-scale commercial applications in AVs.

VI.  Opportunities and Future Research

Other  than  examining  the  issues  with  respect  to  AI  use  in
AV systems in existing literature(e.g., studies shown in Table
III), this paper also explores some potential opportunities and
research  directions  that  deserve  more  investigations  in  future
work.

A.  Emerging Real-Time High-Definition Maps Associated With
Big Data and HPC

With  the  development  of  sensor  technologies,  many  data
sources  are  becoming  available.  This  provided  many
opportunities to revisit the perception and decision making of
AVs under diverse environments. As illustrated in Fig. 3, AVs
can  collect  high-frequency  data  via  sensors  such  as  radar,
LIDAR,  and  cameras  to  better  perceive  surroundings.  Such
big  data  have  shown  potential  to  improve  AV  performance
under  complicated  conditions  [44].  Meanwhile,  the
development  of  high  performance  computing (HPC)
devices helps  accelerate  commercial  implementation  of  the
complex AI algorithms on AVs.

Given  the  incorporation  of  such  big  data,  HPC,  and  other
relevant  information  including  infrastructure  sensor
measurements,  a  promising  application  is  the  real-time  high-
definition  (HD)  maps  that  serve  as  the  key  input  of  the  AI
approaches,  interacts  with  AVs,  and  reflects  real  world
scenarios.  HD  Mapping  startups  have  turned  to
crowdsourcing,  sought  to  lower  the  cost  of  HD  mapping
software and hardware,  or focused only on technical services
for HD map development. Diverse crowdsourcing approaches
have  been  introduced  to  construct  a  HD  map.  For  example,
IvI5 applies computer vision technology and encourages Uber
drivers  to  use  its  app  Payver  to  collect  data,  especially

recording  videos  for  rewards  [84].  Thus,  AVs  can  use  such
HD  maps  as  the  input  of  the  AI  approaches  and  further
augment  functions  such  as  high-precision  localization,
environment  perception,  planning  and  decision  making,  and
real-time  navigation  cloud  services  to  autonomous  vehicles.
For  example,  AVs can quickly  archive  input  of  traffic  signal
lights  and  surrounding  vehicles  via  HD  maps,  then  use  DL
and/or  RL  approaches  to  implement  direct  perception  and
decision  making  with  a  reduced  software  and  hardware  cost.
In  addition,  AVs  can  make  an  informed  path  planning  when
driving in unfamiliar environments. As shown in Fig. 3, AVs
can  quickly  select  the  suitable  parking  lot  by  taking
information  such  as  road  congestion,  distance  into
consideration,  and  drive  toward  the  destination  assisted  by
markings in the HD map. Thus, it is expected that an efficient
and  valid  solution  to  establish  real-time  digital  maps  can
leverage  the  value  of  big  data  and  HPC,  and  significantly
improves  the  data  quality  when  serving  as  the  input  of  AI
approaches to further increase the performance of AVs.

B.  Enhanced Simulation Testbed with AR/VR
The  testing  of  various  AI  approaches  in  developing  AV

applications is time-consuming and expensive. This stimulates
the opportunities for leveraging simulation models to generate
extensive  data  and  test  the  developed  AI  algorithms.  Many
existing simulation-based research on AVs use platforms such
as  MATLAB  and  CarSim  to  simulate  AVs  and  road
environments.  However,  such  simulation  testbeds  lack  the
interaction with components such as crossing pedestrians and
drivers of ordinary vehicles. The low fidelity of these testbeds
can  not  generate  high-quality  and  realistic  data  to  train  AI
models  to  make  better  decisions  in  various  scenarios.  For
example,  the  gap  between  reactions  of  simulated
pedestrians/drivers and realistic actions would be crucial when
analyzing  the  potential  safety  impacts  with  the  designed  AI
algorithms.  Alternatively,  it  is  promising  to  leverage
augmented  reality  (AR)/virtual  reality  (VR)  to  get  realistic
human  behaviors  for  training  designed  AI  algorithms  in
estimating  the  potential  safety  issues  of  AVs  [85],  [86].  For
example,  researchers  can  simulate  the  scenario  when  AVs
cross  the  urban  downtown  area  with  lots  of  pedestrians
wearing VR/AR devices. This creates rich data for training the

 

TABLE II  
Comparison of CPU, GPU, and FPGA Accelerators for CNN

Device Throughput
(frame/s) Power Efficiency

(frame/s/W)
CPU E52699 Dual Xeon [80] 1320 321 4.11

GPU Tesla K40 [81] 824 235 3.5

FPGA Arria 10 GX1150 [80] 1200 130 9.27

FPGA Arria 10 GX1150 + [81] 233 25 9.32

FPGA Virtex7 VX690T [82] 826 126 6.56

Virtex7 VX690T+[83] 446 25 17.84
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Fig. 3.     AV driving with HD maps.
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AI algorithms for understanding the possible scenes. Many of
the  following  questions  may  benefits  from the  more  realistic
simulation results: how should an AI algorithm perceive such
complex  surroundings  and  recommend  decisions  such  as
yielding  to  crossing  pedestrians,  identifying  aggressive
ordinary vehicles, and path planning? How should AVs learn
from  people’s  behavior  and  evolve  their  AI  approaches  to
reduce  collision  risk?  In  summary,  an  accelerated  simulation
platform  such  as Fig. 4 is  beneficial  to  develop  extensive
scenarios  for  testing  the  AI  approaches  prior  to  field
implementations.

In  general,  mixed  reality  (MR)  prototyping  with  AR  and
VRs  provides  a  safe  testing  platform  for  experimenting  the
performance of AI algorithms adopted by AVs, which are yet
to be perfected. For example, some researchers have used MR
to study human-machine teaming and has successfully paired
human  with  autonomous  aerial  vehicles  [87].  The  level  of
reality can vary and be improved with the use of geo-specific
terrains.  AR/VR  can  also  be  used  to  test  risky  scenarios
without  exposing  human  in  danger  and  to  optimize  the
relevant  AI  approaches  for  AVs.  In  particular,  this  may
facilitate  the  use  of  RL  for  AVs  to  imitate  human  drivers’
decision making. For example, AVs can use RL approaches to
interact  with  actual  pedestrians/drivers  wearing  AR/VR
headsets,  and  optimize  its  corresponding  steering  angles  and
velocity to reduce collision risk. Human participants’ behavior
can  be  collected  and  served  as  the  training/testing  data  to
support  AI-based  AVs’ decision  making  towards  enhanced
safety  and  operational  performance.  It  is  expected  that  many
of the data issues associated with the use of AI algorithms will
be mitigated with the AR/VR generated simulation data.

C.  5G Connected AVs
Connected  AVs  (e.g.,  autonomous  truck  platoon)  can

implement  cooperative  decision  making,  perceptions,  and
achieve  a  better  performance  [40],  [41].  Communication
technologies  such  as  dedicated  short-range  communications
(DSRC) are limited by the bandwidth to guarantee a high data
rate  link  and  are  prone  to  malicious  attack.  The  sub-6GHz
bands used by 4 generation long term evolution-advanced (4G
LTE-A)  systems  are  highly  congested,  which  leave  limited
space  for  AVs.  The  limited  communication  capability  can
impede  the  implementation  of  many  AI  algorithms  that
requires  large  volume  of  real-time  data  collection  and

transmission.  This  stimulates  the  5G  community  to  leverage
the underutilized mmWave bands of 10–300 GHz [88]. It has
been known that mmWave bands are subject to issues such as
high path loss and penetration loss, which hinder their widely
application. However, latest studies have shown the improved
potential  of  the  mmWave  bands  by  taking  advantages  of
directional  transmission,  beamforming,  and  denser  base
stations [88]. This will be important for providing reliable and
sufficient connectivity for AVs.

Given the abundant bandwidth, it has been highlighted that
the necessity of multi-Gbps links to enable 5G communication
of AVs [89]. Transmitting a large volume of data collected by
sensors  such  as  radar  and  LIDAR  is  expected  to  be  ensured
with  a  relative  low  latency  in  the  context  of  5G
communication.  Thus,  5G-connected  AVs  are  expected  to
better  support  the  AI  algorithms  for  environment  sensing,
perception, and decision making [88]. As illustrated in Fig. 5,
the obstacle (incident) occurs in the left lane and is perceived
by an AV. Thus, the following AVs can acquire and respond
to such safety information faster with their built-in algorithms.
It should be noted that each AV serves as an intelligent agent
and  negotiate  with  each  other.  The  platoon  of  multiple  AVs
that  communicate  with  each  other  via  5G  technology  can
constitute  a  multi-agent  system.  In  order  to  implement  such
cooperated  AVs,  there  still  exists  several  challenging  issues
that  need  to  be  addressed.  For  example,  which  AI  approach
should be leveraged to select the optimal beam to compensate
for  the  high  path  loss?  How  should  AVs  build  the  network
routing  and  transmit  messages  between  each  other?  How
should  AVs  make  cooperative  decision  making  such  as  lane
changing,  deceleration,  and  acceleration?  How  should  the
multi-agent  system  composed  of  AV  agents  apply  AI
approaches to learn from the environment and negotiate with
each  other?  The  upcoming  5G  applications  will  undoubtedly
stimulate  more  thinking  about  these  questions  in  AV
development.

VII.  Conclusions

A number of studies were published on the AI-related work
in  AV  research  community.  Despite  a  substantial  amount  of
research  efforts,  there  still  exists  challenging  problems  in
using  AI  for  supporting  AVs’ perception,  localization  and
mapping,  and decision making.  Many AI approaches such as
ML,  DL,  and  RL  solutions  have  been  applied  to  help  AVs
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better  sense  surroundings  and  make  human-like  decisions  in
situations  such  as  car  following,  steering,  and  path  planning.
However,  such  applications  have  been  inherently  limited  by
data availability and data quality, complexity and uncertainty,
complex  model  tuning,  and  hardware  restrictions,  and
therefore  still  need  continuous  endeavor  in  these  avenues.
Therefore,  this  paper  has  provided  a  summary  of  current
practices  in  leveraging  AI  for  AV  development.  More
importantly,  some  of  the  challenging  issues  in  using  AI  for
meeting the functional needs of AVs have been discussed. The
future  efforts  that  can  help  augment  the  use  of  AI  for
supporting  AV  development  have  been  identified  in  the
context  emerging  technologies:  1)  big  data,  HPC,  and  high
resolution  digital  map  for  enhanced  data  collection  and
processing;  2)  AR/VR  enhanced  platform  for  constructing
accelerated  test  scenarios;  and  3)  5G  for  low-latency

connections  among  AVs.  These  research  directions  hold
considerable promise for the development of AVs. Combined
with  the  refinements  of  AI  approaches,  one  can  expect  more
opportunities  will  emerge  and  offer  new  insights  into
commercial  and  widespread  AV  applications  in  real  world.
Thus,  it  also  deserves  special  attention  to  the  business,
economic,  and  social  impacts  accompanied  with  the
evolvement of AI and AVs.

Acknowledgements

The  authors  appreciate  Prof.  Li  Da  Xu at  Old  Dominion
University  (ODU)  and  Prof.  MengChu  Zhou  at  New  Jersey
Institute  of  Technology  (NJIT)  for  their  great  comments  and
suggestions that greatly helped develop this paper.

APPENDIX
 

TABLE III  
Summary of Identified Key References

Ref. Key input A‡ B C D E F Test scenario Method

[28] Digitized map Y Y Simulation Learning support machine

[12] GPS, sensors, traffic signals Y Y Y Laboratory test in Carnegie Mellon University Adaptive randomized Hough
transform algorithm

[32] Position, engine traction force, and other
relevant vehicle states Y Y Y Simulation Fuzzy inference system, Q

estimator network (RL)

[13] Velodyne LIDAR sensor Y Y Y Y Y Urban environments (Stanford campus and a
port town in Alameda, CA) Bayesian model, Particle filter

[34] Lateral and angular information Y Y Y Y Test in driving zone Genetic algorithm, Fuzzy Logic

[27] Vehicle trajectories Y Y Y Simulation Clustering

[30] Kinetic sensor with 3D images Y Y Y Y Y Y Indoor and Urban environments ANN, Finite State Machine

[46] Image Y Test with video SVM, ML

[40] Image Y Y Y Y Y Y Test in university HMM

[18] Image Y Y Image dataset in Japan, USA, and France Spatial clustering, CNN

[19] Image Y Y Y Y Y TORCS, KITTI dataset CNN

[20] Camera (left, center, right) Y Y Y Y Y Y SimulationOn road test (10-mile) CNN

[90] Front-face cameraAngle of steering wheel/
indicator braking Y Y Y Racing car simulator with/without traffic Safe imitation learning

[68] Speed, location Y Y Y Simulation with double merge scenario Multi-agent DRL

[91] Image Y Y Y Public traffic light data PCA net, tracking

[92] Image, LIDAR Y Y Y Y Y Y Field test on roundabouts Classification, ML

[43] Radar Y Field test on road Naïve Bayesian estimator

[93] Image Y Y KITTI dataset CNN, SVM

[45] Radar, LIDAR, camera, GPS, odometry, and
inertial measurement sensors Y Y Field testAdverse weather and light conditions Particle filter, Kalman filter

[69] Speed, location Y Y Y TORCS simulator DRL

[21] Image Y Y Y Y Human-driven test car Deep CNN

[70] Image, vehicle, state Y On ramp merge, simulation LSTM, DRL

[94] Camera (left, center, right) Y Y Y Unity, TORCS simulator CNN

[39] Image Y Comma.ai dataset CNN, LSTM

[64] Odometric measurements Y Simulation Nonlinear transformation
Decision Process

[23] Conceptual input Y Conceptual Framework DNN, ML

[95] Moving directions, lane change Y Y Simulation Swarm intelligence

[15] Image Y Traffic sign dataset CNN kernel, DP-KELM

[96] Image Y Y Vehicle turn signal CNN tracking

[97] LIDAR Y Y Y Obstacle detection Segmentation 3-d filter

[25] Image, ultrasound sensors Y Simulation GBRF
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TABLE III (continued)
Summary of Identified Key References

Ref. Key input A‡ B C D E F Test scenario Method

[98] Camera+2/3D LIDAR Y Y Y Test in university KNN, SVM, naïve Bayesian
classifier

[29] GPS, camera Y Y Y Y Off-road image Fuzzy SVM, general regression
NN

[99] Path, state Y Y Carsim Random forest, particle filter

[36] Key factor of driver
behavior, motion data Y Y SimulationCar following Rough set, NN

[100] Lateral tier force,
vehicle parameter Y Y Y Y Y Y Field test on road Mivar expert system

[101] Image Y Y Virtual, INRIA, Daimler dataset Deep CNN

[35] KITTI datasetImage Y Y Y Y Y TORCS CNN, DNN

[42] Kyoto dataset Y Y Intrusion detection DNN

[17] KITTI datasetImage Y Y KTTI dataset Cartesian product based multi-
task learning

[72] Location, speed Y Y SUMO simulation DQN

[88] Vehicles’ beam
selection Y Simulation considering 5G technology Fast machine learning

[63] Image Y Y SIM200k dataset, GTA dataset, KITTI dataset Random forest classifier

[102] Image Y GTSRB, GTSDB dataset CNN

[103] Conceptual sensor Y Y Y Y Y Conceptual Framework AI

[104] Control messages,
media, radar sensor Y Y Y Y Y Y Simulation LSTM, DBN

[35] Image Y Y Y Y Y Y TORCS Simulation CNN, DNN

[105] Vehicle states Y Y Simulation, Matlab, C++ State based model, NN

[63] Camera Y SIM2000, GTA, KITTI Perception failure Off-the-shelf binary classifier

[106] Image Y Lane detection, Caltech/Beijing Lane dataset CNN

[102] Image Y German traffic sign dataset Weight-multi CNN

[107] LIDAR, camera Y Y Y KITTI dataset CNN, SVM

[37] State Y Y Y Simulation, Car following IRL

[108] Velocity, degree Y Lateral stability controlCarsim, WEKA software C4.5 algorithm

[66] LIDAR Y Y Y Simulation DNN for collision prediction

[109] Sensor Y Y Drive in Urban environment Recurrent NN

[74] State of position Y Y Y OPENAI simulation RL

[41] Speed of vehicle platoon Y Y Y Matlab simulation NARX network

[73] 3D point clouds by
LIDAR Y Y Field test of rural and road scenarios SVM

[16] Image Y Y Y KITTI and PASCAL2007 car dataset AlexNet, GoogleNet, CNN,
region-of-interest voting

[31]
Vehicle

dynamicsLongitude/latit
ude dynamics

Y Y Y Matlab, Carsim RBF, NN, fuzzySliding mode
control

[110] Image Y German traffic sign recognition benchmark CNN(WAF-LeNet)

[111] Image Y Segmentation based on image dataset Convolutional residual
NN,Pyramid pooling

[22] Image Y Y Multi-sensor SLAM based on VL-CMU-CD and
Tsunami and Google Street View dataset Deep deconvolution NN

[112] Right/left image Y Y Y Malaga stereovision urban datasetDaimler urban
segmentation dataset DBM auto-encoder SVM

[113] Image Y Y Y Y TORCS dataset CNN

[114] Image, LIDAR Y Y Y China SSMCAR dataset Single short multi-box detector
(CNN)

[75] Vehicle state Y Policy simulation RL, deep IRL

[115] Driving style, Vehicle
state Y Y Y Matlab GMM

[116] Image Y Y Y CamVid dataset Semantic segmentation Important aware loss, DL

[117] Image Y Y Y Y Real and artificial traffic scenes
Auto-encoder, generative

adversarial network, CNN,
LSTM

‡Note: A: Perception; B: Localization and mapping; C: Object prediction; D: Path planning; E: Steering; and F: Decision making.
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