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Abstract In this paper, we propose a new “full public verifiability” concept for hybrid public-key encryption

schemes. We also present a new hybrid public-key encryption scheme that has this feature, which is based on

the decisional bilinear Diffie–Hellman assumption. We have proven that the new hybrid public-key encryption

scheme is secure against adaptive chosen ciphertext attack in the standard model. The “full public verifiability”

feature means that the new scheme has a shorter ciphertext and reduces the security requirements of the

symmetric encryption scheme. Therefore, our new scheme does not need any message authentication code, even

when the one-time symmetric encryption scheme is passive attacks secure. Compared with all existing public-

key encryption schemes that are secure to the adaptive chosen ciphertext attack, our new scheme has a shorter

ciphertext, efficient tight security reduction, and fewer requirements (if the symmetric encryption scheme can

resist passive attacks).
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1 Introduction

Efficient public-key encryption (PKE) and hybrid PKE schemes are of great interest to cryptography.

Nowadays, an efficient PKE or hybrid PKE scheme must have a short ciphertext, efficient tight security

reduction, provable security against adaptive chosen ciphertext attack (CCA) in the standard model, and

so on. Many researchers have designed PKE or hybrid PKE schemes.

In 1998, Cramer and Shoup constructed a direct PKE scheme in the standard model [1]. Later,

Kurosawa and Desmedt developed a hybrid PKE scheme from the Cramer–Shoup scheme [2]. It has

three parts: a key encapsulation mechanism (KEM) scheme, a one-time symmetric encryption (SE)

scheme, and a message authentication code (MAC). It is well known that if both the KEM and the SE

are secure to CCA, then the resulting hybrid PKE scheme is also secure to CCA [3,4]. That is, the MAC
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can be omitted in such circumstances. On the other hand, Phan and Pointcheval [5] showed that strong

pseudorandom permutations security directly implies CCA security, which also does not require MAC

security. However, this model is too strict [4].

Identity-based encryption (IBE) [6] is another type of cryptographic primitive developed from PKE. In

the standard model, Boneh and Boyen proposed the first IBE scheme [7], but it is nonadaptive select-id

secure. In Ref. [8], an adaptive select-id secure IBE scheme was presented by Waters. Two interesting

and general methods for constructing CCA PKE schemes from IBE schemes were introduced by Boneh et

al. [9]. They use a strong one-time signature or MAC to authenticate the correctness of the ciphertext.

To improve their efficiency, Boyen, Mei, and Waters constructed a direct CCA PKE scheme and a

CCA KEM scheme (BMW) [10], which were based on the IBE methods of Waters and Boneh–Boyen,

respectively. In both schemes, the key technique is called “one-time identity”. In BMW’s KEM scheme,

they use Boneh and Boyen’s identity function to encrypt the “one-time identity”, which can authenticate

a known ciphertext in the formal proof. BMW’s CCA security KEM scheme has an efficient tight security

reduction, but it needs a CCA SE to achieve a CCA hybrid PKE scheme [3]. “Waters’ identity function”

is used in BMW’s PKE scheme. It can authenticate any random ciphertext in the formal proof to encrypt

the “one-time identity”. BMW’s CCA security PKE scheme has poor security reduction efficiency, but

it supports public verifiability of the KEM part of the ciphertext.

Recently, a CCA security KEM scheme was proposed by Kiltz [11]. It was based on the gap hash Diffie–

Hellman (GHDH) assumption. When combined with a CCA SE, Kiltz’s scheme results in a CCA-secure

hybrid PKE scheme. Kiltz also presented a direct PKE scheme in the same paper. Its security reduction

efficiency was not improved because it was also based on Waters’ identity function. In Ref. [12], Okamoto

proposed a MAC free CCA-secure hybrid encryption scheme, which needs a CCA KEM and a CCA-secure

SE scheme. Ref. [13] presented a new PKE scheme based on the twin Diffie–Hellman assumption. Its

short ciphertext scheme (Subsection 5.4 in Ref. [13]) is a hybrid and needs an authenticated encryption

(AE) SE to achieve CCA-security. In Ref. [14], the authors proposed a new CCA hybrid PKE scheme.

Their SE scheme should be AE secure, which is stronger than CCA. For detailed information on AE

security, readers may refer to Ref. [14]. Recently, Hanaoka and Kurosawa proposed two hybrid PKE

schemes [15]. One is based on the computational Diffie–Hellman (CDH) assumption, and the other

is based on the hashed Diffie–Hellman assumption with the same ciphertext lengths as Kurosawa and

Desmedt’s scheme [2]. Masayuki Abe et al. presented some efficient KEM schemes derived from ID-based

encryption schemes [16]. Their schemes also need CCA SE for CCA hybrid PKE schemes.

The “public verification” feature of the PKE scheme [10,11,16] has been very useful in computer network

systems. With this feature, we can verify the correctness of the ciphertext using only the public keys,

before the decryption operation. In a computer network system, we can embed the verification algorithm

in a router close to the receiver if the PKE scheme supports public verification. The router will execute the

verification algorithm using only the public keys of the receiver and will reject invalid ciphertexts. Hence,

the public verification feature reduces the computational load of the receiver and the receiver’s private

keys are less exposed. Noninteractive public key threshold encryption schemes can be used to construct

multipart encryption schemes [17], electronic voting schemes, and identity-based threshold encryption

schemes. Hence, the noninteractive threshold PKE scheme is an important extension of the PKE scheme

[18]. However, the original scheme should support public verification. Thus, PKE schemes with a public

verification feature have a wide field of application with good prospects.

The previously mentioned schemes can be divided into three categories according to the public verifi-

cation feature.

– The schemes in Refs. [1,2,12–15] do not support public verification.

– The direct PKE schemes in Refs. [10,11] support public verification.

– The last category is very interesting. Each of the CCA security hybrid PKE schemes in Refs.

[10,11,16] consist of a KEM part and a one-time SE part. Their KEM parts support public verification,

but their SE parts do not.

Note that the schemes in the last category support public verification only in the KEM parts, but do

not when we consider the hybrid scheme (KEM+SE). There are only two schemes in the second category



Kang L, et al. Sci China Inf Sci November 2014 Vol. 57 112112:3

that support public verification. But they both directly use “Waters’ identity function” to authenticate

the ciphertext. Hence, their security reduction efficiency is poor and difficult to improve. In summary,

researchers have not paid enough attention to the public verification feature of hybrid PKE schemes.

Our Contributions. We propose a full public verification concept for hybrid PKE schemes. A hybrid

PKE scheme that supports full public verification means that all ciphertexts (including the KEM and SE

parts) can be verified publicly before decryption, using only the public keys.

Additionally, we have constructed a CCA hybrid PKE scheme in the standard model. This is the

first hybrid PKE scheme that supports full public verification. With this feature, the receiver executes

the verification algorithm using only the public keys, and rejects invalid ciphertexts before decryption.

Therefore, in real applications, our new scheme will improve the computational efficiency of the receiver

and reduce the possibility of their private keys being exposed.

The new scheme consists of three parts: a KEM part, a SE part, and an authentication part. In

particular, we use the following two techniques.

1. For the new scheme to have an efficient tight security reduction, we do not directly use the Waters’

identity function in the security proof section, as in Refs. [10,11]. Instead, we improve it by specifically

choosing its parameters. This improvedWaters’ identity function is efficient, so it results in a tight security

reduction efficiency scheme. This is the first method that improves the security reduction efficiency of

Waters’ identity function.

2. The improved Waters’ identity function represents a compromise. That is, it is no longer used

to answer decryption queries in the proof section. Instead, our authentication uses a combination of

the improved Waters’ identity function (determined by the SE part) and Boneh and Boyen’s identity

function (determined by the KEM part). In the proof section, Boneh and Boyen’s identity function is

used to answer decryption queries and the improved Waters’ identity function is used to authenticate the

ciphertext and reject it if it is incorrect. Consequently, the authentication can guarantee the integrity of

the ciphertext and support full public verification. It can then take the place of the MAC, if the SE only

needs to protect against passive attacks (PA).

Using these two techniques, the new hybrid PKE scheme has a short ciphertext and an efficient tight

security reduction, as in the hybrid schemes of Refs. [2,10–16]. Most importantly, the new hybrid CCA

security scheme has a distinctive advantage because it does not need the MAC, if the SE only needs to

be secure to PA. This is a weaker assumption than CCA, AE, or strong pseudorandom permutations

security. Therefore, by using a PA security SE scheme, we can achieve a CCA security hybrid PKE

scheme that simultaneously has a short ciphertext, efficient tight security reduction, and supports full

public verification.

Next, as an application of the PA requirement on SE, we can use SE as simply as possible. For instance,

using multiplication. Accordingly, the hybrid PKE scheme turns out to be a direct PKE scheme with a

short ciphertext, in contrast to the well-known direct schemes in Refs. [10,11]. Also, the efficiency of the

security reduction of our direct scheme is almost the same as that of the well-known direct PKE scheme

in Ref. [1], which has a tighter security reduction than the direct schemes in Refs. [10,11].

2 Preliminaries

2.1 Full public verification

Recently, many researchers have constructed hybrid PKE schemes, e.g., Refs. [2,10–16]. However, there

is no clear definition of ciphertext public verifiability for the hybrid PKE scheme. In particular, the KEM

part can verify the public ciphertext in the hybrid PKE schemes addressed in Refs. [10,11,14,16], but

the one-time SE (data encryption) part does not support it. Considering the full ciphertext (KEM+SE),

the receiver cannot evaluate the correctness of full ciphertext before decrypting it. This then limits the

applications to, for example, noninteractive threshold encryption schemes.

To clarify the public verifiability of the hybrid PKE scheme, we use the same concept as the public

verifiability of the ciphertext for a (direct) PKE scheme. We define the full public verification as follows.
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Definition. A hybrid PKE scheme has the full public verification property if the correctness of all

ciphertexts (the KEM and SE parts) can be computed before decryption using only the public keys.

2.2 Public key encryption

A public key encryption scheme consists of three algorithms, that is, PKE = (PKEkg, PKEenc,

PKEdec). The randomized key generation algorithm takes a security parameter k as input and gener-

ates a public key pk and a corresponding secret key sk. It is denoted as (pk, sk) ← PKEkg(1k). The

randomized encryption algorithm takes pk and a message M as inputs, and uses an internal random value

(t) to output a ciphertext C. It is denoted as C ← PKEenc(pk,M, t), or C ← PKEenc(pk,M). The

deterministic decryption algorithm takes sk and a ciphertext C as inputs, and outputs the corresponding

M or rejects an invalid ciphertext. It is denoted as M ← PKEdec(sk, C). We require that a PKE

scheme should satisfy the standard correctness requirement. Namely, for all (pk, sk)← PKEkg(1k) and

all M , PKEdec(sk, PKEenc(pk,M)) = M .

We say a PKE scheme is (ǫ, q, T )-IND-CCA secure if the advantage of any adversary A with at most

q queries to a decryption oracle DO is at most ǫ within time T . We use the following experiment.

Advind−cca
PKE,A (k) = Pr[(pk, sk)← PKEkg(1k); (M0,M1)← ADO(pk);β ← {0, 1};

C∗ ← PKEenc(pk,Mβ);β
′ ← ADO(C∗) : β′ = β]− 1/2,

where DO returns the corresponding decryption result upon a query on ciphertext C, and A is forbidden

to query C∗ at DO. We say that a PKE is IND-CCA secure if ǫ is negligible for polynomially bounded

q and T .

2.3 One-time symmetric key encryption

A one-time symmetric key encryption scheme consists of two algorithms, that is, SE = (SEenc, SEdec).

A deterministic, polynomial-time encryption algorithm SEenc takes the security parameter k, a key key,

and a message M as inputs, and outputs a ciphertext χ. Here, key is a bit string of length SEkeylen(k),

M is a bit string with arbitrary and unbounded length. A deterministic, polynomial-time decryption

algorithm SEdec takes the security parameter k, a key key, and a ciphertext χ as inputs, and outputs a

message M or a special reject symbol. We require a SE scheme that satisfies the standard correctness

requirement. Namely, for all key ∈ {0, 1}SEkeylen(k) and all M , SEdec(key, SEenc(key,M)) = M .

Cramer and Shoup [3] defined two notions of security for a one-time symmetric key encryption scheme:

security against PAs and security against adaptive CCAs. As usual, an adversary A is a probabilistic,

polynomial-time oracle query machine that takes the input 1k, where k is the security parameter.

A PA runs as follows. The adversary A chooses two messages, M0 and M1, of equal length, and gives

these to an encryption oracle. The encryption oracle generates a random key key of length SEkeylen(k),

along with random β ∈ {0, 1}, and encrypts Mβ using key. The adversary A is then given the resulting

ciphertext χ∗. Finally, the adversary outputs β′ ∈ {0, 1}.
We define AdvpaSE,A(k) to be |Pr[β′ = β] − 1/2| in the above attack game. We say that SE is secure

against PAs if, for all probabilistic, polynomial-time oracle query machines A, the function AdvpaSE,A(k)

grows negligibly in k.

An adaptive CCA is exactly the same as a PA, except that after an adversary A obtains the target

ciphertext χ∗ from the encryption oracle, it may then query a decryption oracle any number of times. In

each decryption oracle query, A submits a ciphertext χ 6= χ∗, and obtains the decryption of χ under the

key key. As in the passive attack, A outputs β′ ∈ {0, 1}.
We define AdvccaSE,A(k) to be |Pr[β′ = β] − 1/2| in the above attack game. We say that SE is secure

against adaptive CCA if, for all probabilistic, polynomial-time oracle query machines A, the function

AdvccaSE,A(k) grows negligibly in k.

Also, there is another security requirement of the SE scheme, called AE security [14]. AE security is

a stronger notion than CCA security [14], but CCA is stronger than PA security [3].
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2.4 Collision resistant hash function

H is said to be collision resistant (CR) if it is infeasible for an efficient CR adversary A to find two

distinct values x 6= y [19], such that H(x) = H(y). Let n be the length of the output of the hash function

H , which is determined by the security parameter k. We define

Advhash−cr
A (k) = Pr[A finds a collision in H].

The hash function is said to be collision resistant if the advantage function Advhash−cr
A (k) is a negligible

function of k for all polynomial-time adversaries Ahash−cr.

2.5 Target collision resistant hash function

Let H : G→ Zp be a hash function, where G is a cyclic group of prime-order p. We say a hash function

is (TH, ǫH)-target collision resistant (TCR) if any TCR adversary A has been given a random x ∈ G and

the probability of finding collisions y 6= x, such that H(x) = H(y), within time TH is at most ǫH. That

is,

Advhash−tcr
TCR,H (k) = Pr[A succeeds].

We say a hash function is target collision resistant if the advantage function Advhash−tcr
TCR,H (k) is a negligible

function of k for all polynomial-time adversaries Ahash−tcr.

2.6 Bilinear group and bilinear pairing

Let G and G1 be a pair of groups of prime-order p, where the security parameter k determines the size

of p. Let g be a generator of G. A bilinear pairing is a map e : G×G→ G1 with two properties.

1. Bilinearity: e(ga, gb) = e(g, g)ab, ∀a, b ∈ Zp.

2. Nondegeneracy: e(g, g) 6= 1.

We say that G is a bilinear group if the group operation in G can be computed efficiently, and there

exists a group G1 and an efficiently computable bilinear pairing e : G×G→ G1, as above.

2.7 Decisional bilinear Diffie–Hellman (DBDH) assumption

The challenger chooses a, b, c, d ∈ Zp at random and then flips a fair binary coin γ. If γ = 0, it outputs the

tuple (g, ga, gb, gc, Z = e(g, g)abc). Otherwise, the challenger outputs the tuple (g, ga, gb, gc, Z = e(g, g)d).

The adversary must then output a guess γ′ of γ. An adversary A (with running time at most T ) has at

least an ǫ advantage when solving the DBDH problem if

AdvdbdhA = |Pr[A(g, ga, gb, gc, e(g, g)abc)) = 0]− Pr[A(g, ga, gb, gc, e(g, g)d) = 0]| > 2ǫ,

where the probability is over the randomly chosen a, b, c, d ∈ Zp and the random bits consumed by A.
We say a DBDH problem is hard if, for polynomially bounded T, ǫ is negligible.

3 A CCA-secure hybrid encryption scheme

Let G be a group of prime-order p, for which there exists an efficiently computable bilinear map onto G1.

Additionally, let e : G×G→ G1 denote the bilinear map and g be the corresponding generator.

Setup(k): The size of the group is determined by the security parameter k. Let H1 : {0, 1}∗ → {0, 1}n
be a collision-resistant hash function, and H2 : {0, 1}∗ → Zp be a target collision-resistant hash function,

where the integer n is determined by the security parameter k. We first choose the random variables

a, b, w′, z ∈ Zp and an n-length vector w = (wi) with elements chosen at random from Zp. Next, we set

g1 = ga, g2 = gb, u′ = gw
′

, h = gz, and n-length vector u = (ui = gwi). Finally, we choose a one-time

symmetric encryption SE = (SEenc, SEdec), which is secure against PA security. The public key (pk)

and secret key (sk) are generated using

pk = (g, g1, g2, h, u
′, H1, H2,u = (ui)), sk = (a, b, w′, z,w).
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Enc(pk,m): To encrypt a message M (where M is an arbitrary bit string of unbounded length), the

sender chooses a value t ∈ Zp at random. The ciphertext is generated using

C = (C0, C1, C2) =



SEenc(e(g1, g2)
t,M), gt,

(

u′
∏

i∈V
uih

τ

)t


 ,

where the symmetric key is e(g1, g2)
t, v = H1(C0), τ = H2(C1), the set V is formed by all the is, and the

ith bit vi of v is 1.

Dec(sk, C): Let C = (C0, C1, C2) be a received ciphertext. The recipient first tests

C2 = C
w′+(

∑
i∈V

wi)+zτ

1 ,

where v = H1(C0) and τ = H2(C1). If the above equation does not hold, it rejects the ciphertext.

Otherwise, it computes key = e(g2, C1)
a = e(g1, g2)

t, and decrypts C using

M = SEdec(key, C0) = SEdec(e(g1, g2)
t, SEenc(e(g1, g2)

t,M)).

Full public verification: Our new hybrid PKE scheme supports full public ciphertext verification.

Hence, we can verify the correctness of the ciphertext (including the KEM and SE parts) before decrypting

it.

Let C = (C0, C1, C2) be a ciphertext with C0 = SEenc(e(g1, g2)
t,M), C1 = gt, and C2 = (u′∏

i∈V ui

hτ )t for some values t ∈ Zp. The consistency of ciphertext C can be tested publicly by checking whether

e(g, C2) = e(C1, (u
′∏

i∈V uih
H2(C1))) holds. Here, v = H1(C0), the set V is formed by all the is, and the

ith bit vi of v is 1. C2 is the authentication part of the hybrid scheme. It authenticates the random value

C1, and the output of the SE, C0.

As a result, our new hybrid PKE scheme has two interesting properties: 1) it supports full ciphertext

public verification; and 2) we only require that SE = (SEenc, SEdec) is secure against a PA.

Direct encryption form. The setup phase of the direct encryption form is the same as that of the

hybrid encryption form. To encrypt a message M ∈ G1, the sender chooses a random value t ∈ Zp, and

generates the ciphertext using C0 = e(g1, g2)
tM , C1 = gt, and C2 = (u′∏

i∈V uih
τ )t, where v = H1(C0)

and τ = H2(C1). To decrypt the ciphertext, the receiver first checks the ciphertext as in the hybrid form,

and decrypts the ciphertext using M = C0

e(g2,C1)a
= e(g1,g2)

tM
e(g2,gt)a .

Improved computational efficiency. The pairing computation e : G×G→ G1 is costly. Recently,

Kiltz proposed a scheme [11] that did not use the pairing computation, but his scheme was based on

the rather strong GHDH cryptographic assumption. Informally, the GHDH assumption indicates that

the two distributions (ga, gb, H(gab)) and (ga, gb, R) are hard to distinguish, even relative to a “Diffie–

Hellman oracle: that distinguishes (ga, gb, H(gab)) from (ga, gb, gz). Here, the “gap” stems from the fact

that there is a gap between the decisional and computational versions of the Diffie–Hellman problem.

The computational problem is hard to solve, even though the corresponding decisional problem is easy.

Based on the GHDH assumption, our hybrid/direct PKE schemes can also operate efficiently without

the pairing computation. The concrete schemes are described in the Appendix.

4 Security proof

Theorem. Let H1 be a collision-resistant hash function, H2 be a target collision-resistant hash func-

tion, and one-time symmetric encryption SE = (SEenc, SEdec) be a PA secure SE scheme. Assume that

the decisional bilinear Diffie–Hellman (DBDH) assumption holds. Then, our new hybrid PKE scheme is

secure against the CCA.

To be more precise, suppose A is an adversary that carries out a CCA against a PKE scheme with

advantage εA = AdvIND−CCA
A , runs in time s, and makes at most qd decryption queries. Then, there
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exists a DBDH adversary B with advantage εB = AdvDBDH
B , a PA adversary Bse, a TCR adversary

Btcr, and a CR adversary Bcr, such that B, Bse, Btcr and Bcr run in at most s plus the time to perform

O(qd(log p)3) group operations. We have

AdvDBDH
B >

√

2

nπ

(

1− qd + 1

p− qd

)

min

{

AdvIND−CCA
A ,

(

1−
√

2

nπ

)}

(1 −AdvPA
Bse

)(1−AdvTCR
Btcr

)(1 −AdvCR
Bcr

).

The simulator receives (g, ga, gb, gc, Z) from the DBDH assumption. It will make use of the adversary

A to solve the DBDH assumption (determine that Z is a random value or Z = e(g, g)abc).

Proof: In this proof, B interacts with A in the following steps.

Setup. Assume that the integer n determined by the security parameter k is a multiplier of 4. Let

G be a group of prime-order p, for which there exists an efficiently computable bilinear map onto G1.

Additionally, e : G × G → G1 denotes the bilinear map. First, the simulator B obtains (g, ga, gb, gc, Z)

from the DBDH assumption.

Next, the simulator generates:

– values y′ and z, and an n-length vector y = (yi) with all elements chosen at random from Zp;

– an n-length vector x = (xi) with all elements selected at random from Z2, and
−→x = (xi) such that

half of the xis are zero; and

– a collision-resistant hash function H1 : {0, 1}∗ → {0, 1}n and target collision-resistant hash function

H2 : {0, 1}∗ → Zp.

Then, the simulator B sets g1 = ga, g2 = gb, and h = gz1 . It computes τ ′ = H2(g
c) and fixes

u′ = gy
′

g
z(−τ ′)
1 and ui = (g1)

(−1)xi

gyi . For ease of analysis, we define two functions: J(v) = y′ +
∑

i∈V yi (mod p) and F (v) =
∑

i∈V(−1)xi (mod p), then (u′∏
i∈V ui) = g

z(−τ ′)
1 g

F (v)
1 gJ(v).

Finally, the simulator chooses a one-time symmetric encryption SE = (SEenc, SEdec), which is PA

secure. It outputs the public key (pk) and keeps the secret key (sk), that is,

pk = (g, g1, g2, h, u
′,u, H1, H2, ), sk = (a(unknown), b(unknown), z, y′,x,y).

Decryption Phase 1. A decryption query for the ciphertext C = (C0, C1, C2) is answered as follows.

1) B tests e(g, C2) = e(C1, (u
′∏

i∈V uih
H2(C1))), if it does not hold, B will reject the ciphertext. 2)

Otherwise, B computes τ = H2(C1). If (τ − τ ′)z + F (v) = 0(mod p), it aborts (Abort1) and rejects the

ciphertext. 3) Otherwise, B calculates gt1 = (C2/(C
J(v)
1 ))1/((τ−τ ′)z+F (v)) and key = e(g2, g

t
1), and returns

M from M = SEdec(key, C0) = SEdec(e(g1, g2)
t, SEenc(e(g1, g2)

t,M)).

Challenge Phase. The simulator receives (M0,M1) from the adversary A, chooses β ∈ {0, 1} at

random, and computes C∗
0 = SEenc(Z,Mβ) and v∗ = H1(C

∗
0 ). If F (v∗) 6= 0, it aborts (Abort2).

Otherwise, it sends the challenge ciphertext

C∗ = (C∗
0 , C

∗
1 , C

∗
2 ) = (SEenc(Z,Mβ), g

c, gcJ(v
∗)).

Here, τ∗ = H2(C
∗
1 ) = H2(g

c) = τ ′, and thus C∗
2 = (u′∏

i∈V∗ uih
τ∗

)c = (g
F (v∗)
1 gJ(v

∗)g
z(τ∗−τ ′)
1 )c = gcJ(v

∗).

If key∗ = Z = e(g, g)abc holds, the above ciphertext is valid on Mβ, i.e.,

C∗ =

(

SEenc(e(g, g)abc,Mβ), g
c,

(

u′
∏

i∈V∗

uih
τ∗

)c)

.

When key∗ = Z = e(g, g)d is a random value, C∗
0 and C∗

1 are independent. Recall that C∗
2 is a re-

sult directly computed from C∗
0 and C∗

1 , and the information of β in C∗
2 is essentially contained in

SEenc(e(g, g)d,Mβ). Thus, the adversary A can only derive information about β from C∗
0 = SEenc(e(g,

g)d, Mβ). According to the definition of a PA secure one-time SE scheme, C∗
0 is independent of β in the

adversary’s view, except for a negligible probability AdvPA
Bse

.
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Decryption Phase 2. Let C = (C0, C1, C2) be a valid ciphertext submitted by the adversary A,
which can be tested by a pairing computation (as in Decryption Phase 1). The simulator deals with the

decryption queries differently in the following three scenarios.

1. When C1 = C∗
1 (τ∗ = H2(C

∗
1 ) = H2(C1) = τ) and C0 = C∗

0 , C2 must equal to C∗
2 . Therefore,

C = C∗ holds. Hence, the simulator will reject this decryption query. We will ignore this situation.

2. C1 = C∗
1 and C0 6= C∗

0 . If F (v) = 0, the simulator aborts (Abort3), else we have F (v) 6= 0 and

the simulator gets C2 = (g
F (v)
1 gJ(v)g

z(τ∗−τ ′)
1 )c. Here gac = (C2/(C

∗
1 )

J(v))1/F (v) can be easily computed,

which solves the DBDH assumption1). Hence, the simulator breaks the simulation (Break). Suppose

that this event (C1 = C∗
1 and C0 6= C∗

0 ) occurs with probability η in this simulation.

3. When C1 6= C∗
1 , the simulator decrypts the ciphertext as it does in Decryption Phase 1.

Guess Phase. At the end of the simulation, the adversary A outputs the guess value of β′. If β = β′,

the simulator decides that Z = e(g, g)abc in the DBDH assumption, otherwise Z is a random value.

In the above simulation description, if the decryption query on C = (C0, C1, C2), where C0 6= C∗
0 and

v∗ = H1(C
∗
0 ) = H1(C0) = v, the simulator will abort with AdvCR

Bcr
(HashAbort). Similarly, if C1 6= C∗

1 and

τ∗ = H2(C
∗
1 ) = H2(C1) = τ , the simulator will abort with AdvTCR

Btcr
(HashAbort). Also, the simulator

will abort or break the simulation at events Abort1, Abort2, Abort3, or Break. In the following, we

individually discuss these four possibilities.

If (τ − τ ′)z + F (v) = 0(mod p) in Decryption Phase 1, Abort1 will happen. In Decryption Phase 2,

Abort1 will happen when τ 6= τ ′ and (τ − τ ′)z + F (v) = 0(mod p). Hence,

Pr[Abort1] = Pr[(τ − τ ′)z + F (v) = 0(mod p) ∧ τ 6= τ ′] + Pr[(τ − τ ′)z + F (v) = 0(mod p) ∧ τ = τ ′]

= Pr[(τ − τ ′)z + F (v) = 0(mod p)|τ 6= τ ′]Pr[τ 6= τ ′] + Pr[F (v)

= 0(mod p)|τ = τ ′]Pr[τ = τ ′],

merely considers the probability of Pr[(τ − τ ′)z + F (v) = 0(mod p)|τ 6= τ ′]Pr[τ 6= τ ′]. The adversary A
will not know τ ′ before the Challenge Phase, and so at the first decryption query the probability of

Pr[(τ − τ ′)z + F (v) = 0] should be equal to 1/p. In the second query phase, the adversary A has the

known values of the previous queries, so Pr[(τ − τ ′)z + F (v) = 0] = 1/(p − 1). This leads to the k-th

probability,

Prk[(τ − τ ′)z + F (v) = 0(mod p)|τ 6= τ ′]Pr[τ 6= τ ′] =

(

1

p− qk + 1

)(

1− 1

p

)

.

After q′d times queries, the probability of Pr[(τ − τ ′)z + F (v) = 0(mod p)|τ 6= τ ′]Pr[τ 6= τ ′] is

Pr[(τ − τ ′)z + F (v) = 0(mod p)|τ 6= τ ′]Pr[τ 6= τ ′]

=

q′
d
∑

1

Prk[(τ − τ ′)z + F (v) = 0(mod p)|τ 6= τ ′]Pr[τ 6= τ ′]

=

q′
d
∑

1

(

1

p− qk + 1

)(

1− 1

p

)

6

(

1− 1

p

)(

1

p
+

1

p− 1
+ · · ·+ 1

p− q′d + 1

)

6

(

1− 1

p

)(

q′d
p− q′d

)

.

Then, Pr[Abort1] is

Pr[Abort1] = Pr[(τ − τ ′)z + F (v) = 0(mod p) ∧ τ 6= τ ′] + Pr[(τ − τ ′)z + F (v) = 0(mod p) ∧ τ = τ ′]

1) In fact, we can get the solution to the CDH assumption [11] by calculating gac from (C2/(C∗
1 )

J(v))1/F (v), only if we

know g, ga and gc. If the CDH assumption is solved, we can easily solve the DBDH assumption.
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= Pr[(τ − τ ′)z + F (v) = 0(mod p)|τ 6= τ ′]Pr[τ 6= τ ′] + Pr[F (v)

= 0(mod p)|τ = τ ′]Pr[τ = τ ′]

6

(

1− 1

p

)(

q′d
p− q′d

)

+
Pr[τ 6= τ ′] + Pr[F (v) = 0(mod p)|τ = τ ′]

p

<

(

1− 1

p

)(

q′d
p− q′d

)

+
1

p

<

(

q′d
p− q′d

)

+
1

p

<
q′d + 1

p− q′d
<

qd + 1

p− qd
,

where q′d is the decryption query number in Decryption Phase 1, which should always be less than or

equal to the total decryption query number qd.

Abort2 occurs if F (v∗) 6= 0, i.e.,

Pr[Abort2] = Pr[F (v∗) = 0].

We will compute this later.

C1 = C∗
1 and C0 6= C∗

0 must occur at the k-th query for the simulator to either abort (Abort3) or break

(Break) the simulation, which also implies that this event cannot occur in the previous k − 1 queries.

Then, at the k-th query, Abort3 and Break appear with probabilities

Pk[Abort3] = ηPr[F (v) = 0](1− η)k−1,

Pk[Break] = ηPr[F (v) 6= 0](1− η)k−1.

Here, v = H1(C0), C0 6= C∗
0 means v 6= v∗.

In the above equations, we use the fact that any two events F (v1) = 0 and F (v2) = 0 are independent,

which is derived from the following observations. During the whole simulation, A can get at most n+ 2

equations: ui = (g1)
(−1)xi

gyi , where i ∈ {1, . . . , n}, from the public key, C∗
2 = gc(y

′+
∑

i∈V∗ yi); and
∑

i∈V∗(−1)xi = 0 from the challenge ciphertext C∗
2 = (u′∏

i∈V∗ uih
τ∗

)c. They can be rewritten in terms

of the discrete logarithm as

logg ui = (−1)xi logg g1 + yi, i ∈ {1, . . . , n},
logg C

∗
2 = cy′ + c

∑

i∈V∗

yi,

∑

i∈V∗

(−1)xi = 0.

Except for the n + 2 equations above, the adversary A cannot get any more useful information on

(xi, yi) from the decryption queries. If the ciphertext C = (C0, C1, C2) (constructed by the adversary A)
is in the correct form, it can pass the verification equation e(g, C2) = e(C1, (u

′∏
i∈V uih

H2(C1))). From

C2 = (u′∏
i∈V uih

H2(C1))t, the adversary A has

logg C2 = t logg(u
′hH2(C1)) + t

∑

i∈V
logg ui = t logg(u

′hH2(C1)) + t
∑

i∈V
((−1)xi logg g1 + yi),

which is a linear combination of the above n+ 2 equations. Otherwise, the ciphertext C = (C0, C1, C2)

cannot pass the verification equation. The simulator will reject it and the adversary A will get nothing.

Therefore, for the 2n variables (xi, yi), and the n+ 2 equations above, the xis are information theory

secure against the adversary A. Then, for any v (except for the v∗), the sum
∑

i∈V(−1)xi (mod p) is

independent from the adversary’s view. Similar to the argument in Ref. [8], for any pair of different C0

and C′
0, v and v′ will differ by at least one bit. For at least one j, xj will be included in the function F

for one, but not the other. Hence, the probability of F (v) = 0 is independent from the adversary’s view,
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Table 1 n, Cmin, and C′
min

Security level n Cmin C′
min

80 160 0.125 567 0 0.126 158 0

128 256 0.099 443 8 0.099 737 0

256 512 0.070 420 5 0.070 524 7

512 1024 0.049 831 3 0.049 868 5

the v is computed from v = H1(C0), and C = (C0, C1, C2) is submitted by the adversary A as a

decryption query.

After (at most) qd queries, the probability of Abort3 and Break are

Pr[Abort3] =

qd
∑

k=1

Pk[Abort3] = (1 − (1− η)qd)Pr[F (v) = 0] and

Pr[Break] =

qd
∑

k=1

Pk[Break] = (1− (1− η)qd)Pr[F (v) 6= 0].

In the Break event, the simulator breaks the simulation and solves the CDH assumption using gac =

(C2/(C
∗
1 )

J(v))1/F (v) with probability Pr[Break]. Under CDH assumption [11], Pr[Break] must be a

negligible value. Because Pr[F (v) 6= 0] and Pr[F (v) = 0] are constants relative to the output length

of the H1 function (the value Pr[F (v) = 0] will be computed later), 1 − (1 − η)qd should be negligible.

Therefore, Pr[Abort3] = (1− (1− η)qd)Pr[F (v) = 0] is negligible.

From the above analysis, the simulator will not abort with

Pr[Abort] = Pr[Abort1]Pr[Abort2](1− Pr[Break] − Pr[Abort3])(1 −AdvPA
Bse

)

(1−AdvTCR
Btcr

)(1 −AdvCR
Bcr

)

>

(

1− qd + 1

p− qd

)

Pr[F (v∗) = 0](1− (1− (1 − η)qd)Pr[F (v) 6= 0]

− (1− (1− η)qd)Pr[F (v) = 0]) · (1 −AdvPA
Bse

)(1−AdvTCR
Btcr

)(1 −AdvCR
Bcr

)

=

(

1− qd + 1

p− qd

)

Pr[F (v∗) = 0](1− η)qd(1−AdvPA
Bse

)(1 −AdvTCR
Btcr

)(1−AdvCR
Bcr

).

In what follows, we compute the probability of Pr[F (v∗) = 0](Pr[F (v) = 0]). Let Preven be the

probability of v having an even number of bits with a value of 1. Suppose that v has 2m bits with a

value of 1 with a probability of Prm, i.e., Preven =
∑n/2

m=0 Prm. From probability theory, we have

Prm[F (v) = 0] =
Cm

n/2C
m
n/2

C2m
n

.

Define Cm = (Cm
n/2)

2/C2m
n . It is easy to verify that Cm = Cn/2−m, and Cm > Cm+1, for 0 6 m 6 n/4.

Hence, because m ranges from 1 to n/2, the minimum Cmin is

Cmin = Cn/4 =
(C

n/4
n/2 )

2

C
n/2
n

=
(n2 !)

4

n!(n4 !)
4
.

Applying the Stirling formula [20] limn→∞
√
2πn(n/e)n

n! = 1, we get

C′min =

√

8

nπ
.

Table 1 shows the values of Cmin =
(n

2
!)4

n!(n

4
!)4 and C′min =

√

8
nπ for 80-bit, 128-bit, 256-bit, and 512-bit

security levels [21], which correspond to the output length (n) of the secure hash functions.
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According to Table 1, the values of Cmin and C′min are sufficiently close at different security levels for

us to substitute C′
min =

√

8
nπ for Cmin =

(n

2
!)4

n!(n

4
!)4 .

Hence, for the above simulation run by B,

Pr[F (v) = 0] =

n/2
∑

m=0

Prm · Prm[F (v) = 0]

> C′min

n/2
∑

m=0

Prm

= C′minPreven

=
C′min

2

=

√

2

nπ
.

Assume that adversary A can successfully attack the above PKE scheme with advantage εA. Then,

the simulator B can successfully solve the DBDH assumption with advantage

εB = Pr[Abort1]Pr[Abort2](1−AdvPA
Bse

)(1−AdvTCR
Btcr

)(1 −AdvCR
Bcr

)Pr[Break] + εAPr[Abort]

>

(

1− qd + 1

p− qd

)

Pr[F (v∗) = 0](εA(1− η)qd + (1− (1− η)qd)Pr[F (v) 6= 0])

· (1−AdvPA
Bse

)(1 −AdvTCR
Btcr

)(1−AdvCR
Bcr

).

If εA > 1−
√

2
nπ , εB achieves the minimum (

√

2
nπ (1−

√

2
nπ ))(1−

qd+1
p−qd

)(1−AdvPA
Bse

)(1−AdvTCR
Btcr

)(1−

AdvCR
Bcr

) when η = 1. Otherwise, εB takes the minimal value
√

2
nπ εA(1 −

qd+1
p−qd

)(1 − AdvPA
Bse

)(1 −
AdvTCR

Btcr
)(1 −AdvCR

Bcr
), when η = 0.

Based on the discussion above, the simulator B is able to solve DBDH assumption with probability

AdvDBDH
B >

√

2

nπ
(1 − qd + 1

p− qd
)min

{

AdvIND−CCA
A ,

(

1−
√

2

nπ

)}

(1−AdvPA
Bse

)(1 −AdvTCR
Btcr

)(1 −AdvCR
Bcr

),

if adversary A can attack our PKE scheme with probability AdvIND−CCA
A .

In the direct PKE scheme form, the encrypted message M should belong to G1. Then, we can encrypt

it as: C0 = e(g1, g2)
tM , C1 = gt, and C2 = (u′∏

i∈V uih
τ )t, where v = H1(C0) and τ = H2(C1). Our

new direct PKE scheme is a special case of our new hybrid PKE scheme, and so it can be proved to be

CCA secure based on the DBDH assumption, in a similar way to our new hybrid PKE scheme.

5 Comparison and conclusion

Tables 2 and 3 show common efficiency comparisons of all the known chosen ciphertext secure hybrid

PKE schemes and direct encryption schemes in the standard model.

In Table 2:

– Ciphertext overhead shows the difference between the lengths of the ciphertext and plaintext, and |p|
and |mac| are the length of a group element and an authentication tag, respectively. In Ref. [22], NIST

recommends curves, so that 128 bits of security elements in G need 256 bits. Our scheme then allows for

an efficient implementation with a 512 bits overhead in the ciphertext size for a 128 bits security based

on the DBDH assumption.

– A “
√
” in the “Full Public Verify?” column means that the scheme supports full public verification.

The KEM part in BMW’s and Kiltz’s hybrid PKE schemes can publicly verify the ciphertext. However,
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Table 2 Hybrid PKE comparison

Scheme Security Assumption Ciphertext Overhead Full Public Verify? SE Security Requirement

Kurosawa–Desmedt [2] DDH 2|p|+ |mac| − AE

BMW [10] DBDH 2|p| − CCA

Kiltz [11] GHDH 2|p| − CCA

Okamoto [12] DDH 2|p| − CCA

CKS [13] DDH 2|p|+ |mac| − AE

KPSY [14] DDH 2|p|+ |mac| − AE

Hanaoka and Kurosawa 1 [15] CDH 3|p| − CCA

Hanaoka and Kurosawa 2 [15] HDH 2|p|+ |mac| − AE

Abe, etc. [16] DDH 2|p| − CCA

Ours DBDH 2|p|
√

PA

Table 3 Direct PKE comparison

Scheme Security Assumption Ciphertext Overhead Public Verify? Reduction Efficiency

CS [1] DDH 3|p| − 1

BMW [10] DBDH 2|p|
√

1/(nqd)

Kiltz Appendix B [11] GHDH 2|p| √∗ 1/(nqd)

Ours DBDH 2|p|
√

1/
√
n

their SE parts use the CCA security one-time SE algorithm, which does not support public verification.

Hence, BMW’s and Kiltz’s hybrid schemes cannot satisfy the full public verification.

– The “SE Security Requirement” column considers the security requirements of the SE scheme in the

CCA-secure hybrid schemes. Note that AE > CCA > PA.

In Table 3:

– Our new direct PKE scheme has a short ciphertext overhead that is the same as BMW’s and Kiltz’s

schemes. It only requires 512 bits of overhead at the 128-bit security level for one-time encryption.

– A “
√
” in the “Public Verify?” column means that the scheme supports public verification. Note

that Kiltz’s scheme only supports public verification in the gap and pairing groups [11].

– The reduction efficiency column considers the tightness relationship between the hardness problem

assumption and the security of the schemes. The “n” in the expression is the output length of Waters’

hash function and the “qd” is the number of decryption requests from the adversary in the secure proof.

Obviously, qd ≫ n is required at any security level [21]. If the scheme has a tighter relationship with

the hardness problem assumption, it is more secure. The efficiency of the security reduction of the new

scheme is close to that of [1], and is a significant improvement over those in [10,11].

From the above comparisons, our new hybrid PKE scheme is the first that simultaneously supports

full public verification, has a short ciphertext overhead, and provides an efficient security reduction. Our

direct scheme can operate as efficiently as those in Refs. [10,11]. Additionally, it has a tight security

reduction. When our schemes are based on the GHDH assumption [11], we can remove the pairing

computations. This will further improve the computational efficiency.
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Appendix A

Setup(k): Let G be a group with order p, where p is a prime and p is determined by security parameter k. Let

H1 : {0, 1}∗ → {0, 1}n be a collision-resistant hash function, H2 : {0, 1}∗ → Zp be a target collision-resistant hash

function, and H3 be a random instance of a hash function, such that the GHDH assumptions hold (see Ref. [11]

for concrete security requirements). Here, the integer n is determined by the security parameter k. First, we pick

a random generator g ∈ G, and choose random a,w′, z ∈ Zp and n-length vector w = (wi), whose elements are

chosen at random from Zp. Next, we set g1 = ga, u′ = gw
′

, h = gz, and n-length vector u = (ui = gwi). Finally,

we choose a one-time symmetric encryption SE = (SEenc, SEdec) that is PA secure. The public key pk and

secret key sk are given by

pk = (g, g1, h, u
′
,H1,H2, H3,u = (ui)), sk = (a,w′

, z,w).
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Enc(pk,m): The sender chooses a value t ∈ Zp at random. The ciphertext is generated using

C = (C0, C1, C2) =

(

SEenc(H3(g
t
1),M), gt,

(

u
′
∏

i∈V

uih
τ

)t)

,

where the symmetric key is H3(g
t
1), v = H1(C0), τ = H2(C1), the set V is formed by all the is, and the ith bit vi

of v is 1.

Dec(sk,C): Let C = (C0, C1, C2) be a received ciphertext. The recipient first tests

C2 = C
w′+(

∑
i∈V wi)+zτ

1 ,

where v = H1(C0) and τ = H2(C1). If the above equation does not hold, it rejects the ciphertext. Otherwise, it

decrypts C using

M = SEdec(H3(C
a
1 ), C0) = SEdec(H3(g

t
1), SEenc(H3(g

t
1),M)).

Similar to the hybrid PKE scheme in Section 3, the above hybrid PKE scheme will not need the MAC and can

easily remove the pairing computation based on the GHDH assumption as Ref. [11] does.

If the Enc phase is C0 = H3(g
t
1)M , C1 = gt, C2 = (u′

∏

i∈V
uih

τ )t, where v = H1(C0) and τ = H2(C1), then

we will get the direct PKE scheme. Similar to the schemes proposed in Section 3 and Ref. [11], both schemes

without pairing computations can be proved to be CCA secure using the GHDH assumption in the standard

model.


